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Abstract. Signals in nerves include electrical, mechanical and thermal components and are characterised by the complexity of
processes. The modelling of these signals is analysed from the viewpoint of DeLanda, who has demonstrated the possibility of
revealing Deleuze’s philosophical theories by using the notions from nonlinear dynamics. It is shown that the mathematical modelling
of processes in nerves by the authors of this paper follows the general ideas of multiplicity and causal interactions described by

DeLanda.
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1. INTRODUCTION

The propagation of signals in nerves is a fascinating prob-
lem which is related to cognitive processes and processing
of neural information. Much is known about signal propa-
gation in nerves from the physical and physiological view-
points. Experimental studies and theoretical predictions
over the last two centuries have cast light on the main
mechanisms responsible for signal formation and propa-
gation. Besides the physical description, this complex
process or the physics of thought should be analysed also
from the philosophical viewpoint. Noble [43] has stressed
the need “to unravel the complexity of biological pro-
cesses” and suggested modelling in an integrative way.
This is important for understanding the emergent prop-
erties in biological systems and the interaction processes
responsible for them [38]. The nervous system is a com-
plex structure, and as Koch and Laurent [35] stress, one
should take into account “the highly nonlinear, non-
stationary, and adaptive nature of the neuronal elements”,
which requires the understanding of the context in which
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the system operates. Much attention has been paid to
physical complex systems, which require the use of math-
ematical descriptions developed in nonlinear dynamics
[25,37,42]. Overviews of modelling the signal propa-
gation in nerves [14,17,29,45,47] demonstrate the com-
plexity of the process. Keywords of this process such as
nonlinearity, coupling, emergent structures, etc. are char-
acteristic of many phenomena which have motivated the
analysis from a wider perspective than only nonlinear
dynamics or system biology. Many philosophers have
paid attention to complex systems, among them Morin
[39] and Deleuze and Guattari [12], to mention a few.
From the viewpoint of physical systems, DelLanda’s
studies [8] are important because he has explained the
philosophical ideas of Deleuze in terms of nonlinear
dynamics.

It should be noted that philosophers have often used
the modelling of neurophysiology or cognitive processes
as an example for explaining abstraction [3,4,13,32,36].
In this context, the celebrated Hodgkin—Huxley model is
used for demonstrating the role of physical laws and sim-
plifications or modifications for deriving the governing
equations [1,3,4,6,36].
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It should also be noted that the development of com-
plexity sciences, which includes ideas from physics,
mathematics and social sciences, has been influenced by
philosophers [5]. Paul Cilliers and Edgar Morin, Manuel
DeLanda et al. are all mentioned in the Castellani map [5].
Concerning the biophysical phenomena, the ideas of syn-
ergetics developed by Haken [27] are also relevant. Al-
though the focus of synergetics is the self-organisation of
patterns and structures, it has opened a gateway for study-
ing coupled systems. The ensemble of waves described
above is also a macroscopic system in the sense of syn-
ergetics.

In what follows, the ideas of DeLLanda and Deleuze are
used to characterise the modelling of signals in nerves
proposed by Engelbrecht, Tamm and Peets [17,24]. It is
demonstrated that such modelling corresponds to general
philosophical ideas. In Section 2, the ideas of modelling
[17] are briefly explained. Section 3 presents the ideas of
DeLanda [8] based on Deleuze’s philosophical notions,
but reconstructs them within the framework of math-
ematical terminology. Section 4 deals with the modelling
of signals in nerves by comparing the ideas with the philo-
sophical framework. Section 5 presents some con-
clusions.

2. MATHEMATICAL MODELLING OF SIGNAL
COMPONENTS IN NERVES

Herein we follow the ideas of modelling proposed by

Engelbrecht, Tamm and Peets in their recent publications

[16,18-24], see also [44]. The modelling is based on the

careful analysis of the mechanisms of electro-mechano-

physiological interactions (see summary in [23,24]). An
overview of the principles of modelling is presented by

Engelbrecht et al. [17]. This model follows the scheme:

1. derive time-dependent models (equations) for all the

effects that seem to be significant for the whole process,

based on physical laws;

propose coupling mechanisms between the effects;

solve the coupled system of equations;

validate the results by comparing them with experiments.

As usual, one should start from the assumptions:

1. electrical signals are the carriers of information [7] and
trigger all the other processes (called the Hodgkin—
Huxley paradigm for short);

2. axoplasm in a nerve fibre can be modelled as fluid
where a pressure wave is generated due to an electrical
signal;

3. biomembrane can deform (stretch, bend) under mech-
anical impact [28];

4. channels in biomembranes can be opened and closed
under the influence of electrical signals as well as
mechanical input [40];

W

5. there is strong experimental evidence of electrical or
chemical transmittance of signals from one neuron to
another [31].

Next, the hypotheses are introduced [19,21,24]:

1. all mechanical waves in the axoplasm and the sur-
rounding biomembrane together with the heat pro-
duction are generated due to changes in electrical
signals (action potential or ion currents) that dictate
the functional shape of coupling forces;

2. formalism of internal variables can be used for de-
scribing the exo- and endothermic processes of heat
production;

3. changes in the pressure wave may also influence the
waves in a biomembrane.

Based on these assumptions and hypotheses, the following

are essential remarks:

1. changes in variables mean mathematically either their
space or time derivatives;

2. pulse-type profiles of electrical signals mean that the
derivatives have a bi-polar shape which is energeti-
cally balanced;

3. coupling is assumed due to forces in corresponding
governing equations;

4. functional shapes of coupling forces are proposed in
the form of first-order polynomials of gradients or
time derivatives of variables [16,18].

As a result of modelling, it is possible to simulate an en-

semble of waves in the axon. This ensemble has the fol-

lowing components (notations correspond to the dimen-
sionless case):

1. action potential AP which has an amplitude Z, and the
ion currents. In the case of the Hodgkin—Huxley (HH)
model, these ion currents are Jy, Jy, and J;, in the case
of the FitzHugh—Nagumo (FHN) model, there is only
one ion current J (here the ion currents for the HH
model denote potassium, sodium and leakage currents,
respectively);

2. longitudinal wave LW in the biomembrane with an
amplitude U;

3. transverse displacement TW in the biomembrane with
an amplitude W;

4. pressure wave PW in the axoplasm with an amplitude P;

5. temperature change ©.

The ensemble is composed of primary and secondary

components: the primary components (AP, LW, PW) are

characterised by finite velocities while the secondary
components (TW, ®) have no characteristic velocities.
This is the backbone of modelling, the details of
which are explained in the references above. The final
mathematical model is a system of coupled differential
equations [20,21,24]. The system in the equilibrium
state is excited by an electrical signal above a certain
threshold, which generates the AP, and then all the other
components of the ensemble are generated, which is quali-
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tatively similar to the experimental data (cf. the analysis For numerical simulations, the system of governing
by Engelbrecht et al. [16,21]). The backbone of modelling  equations is solved by using the pseudospectral method
is based on consistent physical laws but is open to further ~ [24,44]. Leaving aside the structure of this system with
modifications. The structure of the mathematical model its coefficients, a typical ensemble in dimensionless vari-
and the interactions between its components are depicted ~ ables is shown in Fig. 2. The input (Fig. 2a) is above the
in Fig. 1. It demonstrates the coupling between the com-  threshold and it takes some time before a typical AP is
ponents of the ensemble, reflecting the structure of amodel ~ formed. The ensemble (Fig. 2b) corresponds qualitatively

used for numerical verification. In principle, the feedback  to the experimental results as well as the shape of the TW
may also be taken into account. (Fig. 2¢).

Initial excitation

Z(X, 0) =—»

(l) Action Potential and Ton Current(s)

AP: Z(X, T) and J(X, T)

(3) Transverse Wave itudi e (4) Pressure Wave
[in biomembrane] D in bi [in axoplasm|
(([TW: W(X, T)

Fig. 1. Components and interactions of the mathematical model. The ensemble starts with an initial excitation Z(X,7) at 7= 0 above
a threshold value leading to the emergence of an electrical signal AP. Then the other members of the ensemble emerge over a certain

period of time, caused by coupling forces (indicated by bold vertical arrows). Here X, T denote dimensionless space and time,
respectively.
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Fig. 2. Typical nerve pulse ensemble formation and propagation: (a) generation of the AP (solid line, at 7= 250) from an initial
input (dash-dot line, at 7= 0). At 7= 250, a typical shape of the AP has been formed from the narrow ‘spark’ type initial condition;
(b) the components of AP, PW, LW and ®; (c) the components of LW and TW. The initial condition in the middle of the spatial period
(n=2048) forms left and right propagating AP, which, in turn, generates all the other signals through coupling forces. Left propagating
waveprofiles are shown in a moving frame of reference (n = 256) at 7= 250 for (a) and at 7= 800 for (b) and (c). Here n is a

computational node in a dimensionless space X and 7 denotes dimensionless time. For mathematical details and values of model
parameters, see [23].
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The model described in this section is focused on the
ensemble and does not elaborate on the details of the
generation of the AP.

3. MODELLING VIEWED FROM THE
PHILOSOPHICAL VIEWPOINT

The following analysis is based, first, on DeLanda’s [§]
analysis of the ideas of Deleuze and Guattari [12] by the
conceptual explanation of mathematics involved and,
second, on the analysis of DeLLanda’s assemblages [10].
Deleuze and Guattari [12] conceptualise multiplicities by
using the concept of manifolds. The notion of manifolds
in mathematical physics permits to describe complicated
structures in terms of the topological properties of simpler
spaces. They also demonstrate that morphogenesis (things
taking forms) can be characterised in terms of singu-
larities. DeLanda [8] explains how the ideas of multi-
plicity developed by Deleuze can be described within the
theory of differentiable manifolds that are widely used in
nonlinear dynamics. This permits an explanation of the
basic ontological concepts such as (1) extensive and inten-
sive spaces and (2) actual and virtual spaces in terms that
are understandable to physicists and mathematicians.
Actually, DeLanda’s explanations build an excellent basis
for understanding complexity in many fields [5]. As em-
phasised by Holdsworth [30], DeLanda “recovers for
mathematical practice a capacity to clarify the meaning of
events as they arise within a synthetic process of becom-
ing interdisciplinary”. The focus of Deleuze’s studies is
on dynamical processes, and in this context one has to
analyse the system being modelled, taking into consider-
ation: (1) a range of behaviours, fluctuations, patterns and
thresholds; (2) in the dynamical model: phase space,
trajectory, attractors and bifurcations; (3) in the mathe-
matics used to construct the model: manifold, function and
singularity [46]. This has been done in detail by DeLanda
[8]. However, it should be added to the modelling of
physical processes that the basic physical laws must al-
ways be checked [17,20]. This is emphasised by DeLanda
[8] by stressing the need to understand the basics. He
assumes a minimum of objective knowledge to initiate the
process and the rest emerges from there. This corresponds
to the well-known principle of Occam’s razor — entities
are not to be multiplied without necessity. Such an attitude
is also supported by Einstein [15]: “... the supreme goal
of all theory is to make irreducible basic elements as
simple and as few as possible ...”. Without going into
details, let us list the essential ideas of DeLanda [8] which
will be useful in the analysis of signals in nerves:

e Interdisciplinarity is needed for understanding com-

plex processes.

e Complex processes are characterised by multiplicity,
which is the activator for changes in the system.

e Multiplicity is characterised by differences that are
productive and cause interactions.

e One should distinguish between intensive and extensive
properties of systems; intensive properties such as
pressure, temperature, density, etc. cannot be divided,
extensive properties such as length, area, volume, and
amount of energy can be divided into parts. Intensive
properties have critical thresholds, differences (gradi-
ents) in intensity store potential energy.

A whole emerges from parts by causal interactions.
Changes (gradients) are characterised by velocities (or
differential relations).

Causality for processes is related to multiplicities.
Non-equilibrium (according to DeLanda intensive)
states demonstrate explicitly the potential for nonlin-
earities that do not cause essential differences in or
close to equilibrium states.

e One should distinguish between intrinsic (belonging
to the system) and extrinsic (originating from outside)
conditions for a system.

e Emergence means a process where novel properties
and capacities emerge from causal interaction.

e One should understand the inertiality of a system and
the role of thresholds and triggers in dynamical
processes.

e Every physical process also means the transfer of
information.

In addition, DeLanda [10] argues about the notion of
‘assemblage’, which is also introduced by Deleuze.
Assemblage in English means gathering of things into
unities, which is actually different from the French notion
of ‘agencement’, as proposed by Deleuze. Unity in the
assemblage is defined “by the intrinsic relations that
various parts have to one another in a whole” [41] while
Deleuze and Guattari [11] take into account the external
relations by using ‘agencement’ and in this way also
include the process of formation in the notion. From the
physical viewpoint, the concept of nonlinearity (loss of
proportionality) is also relevant in philosophy. For ex-
ample, Knyazeva [34] has formulated the principles of
nonlinear thinking. Those principles are related to multi-
plicity [12] and synergetics [27], and are needed for the
management of nonlinear processes.

4. HOW THE MODELLING OF SIGNALS IN
NERVES CORRESPONDS TO PHILOSOPHICAL
IDEAS

First, it should be stressed that the modelling of signals in
nerves briefly described in Section 2 is based on inter-
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disciplinary considerations [22]. Indeed, the knowledge
from physics and continuum mechanics is used for de-
scribing the physiological effects within the framework of
mathematics. The laws of physics (balance of momentum,
the Fourier’s law) are basic, although they are modified
to grasp the physiological effects. From the epistemo-
logical viewpoint, the basic laws constitute propositional
knowledge (knowing that). An ensemble of waves
emerges as a result of interactions between intensive
properties of the system and the coupling forces that are
related to changes in field variables (time or space deri-
vatives), and it all has a corresponding mathematical de-
scription. To model temperature changes, the role of poss-
ible chemical reactions (exo- and endothermic processes)
is described by the concept of internal variables widely
used in continuum mechanics. The main role in signal
formation is related to the intrinsic properties of the struc-
tural elements of axons, but is also dependent on the ex-
trinsic properties such as the temperature of the environ-
ment or the ion concentration of the extracellular fluid.
Signal formation is influenced by the multiplicity of pro-
cesses — for example, temperature effects are caused by
several mechanisms. The system is characterised by a
trigger threshold — the initial condition for generating the
AP should be above the threshold. The mechanical com-
ponents of the ensemble depend on inertia, as it should be
for wave processes. This dependence has a direct con-
sequence on the width of the LW in the biomembrane.

In terms of DeLanda, an ensemble of waves can be
called an ‘assemblage’. However, as far as the notion of
‘ensemble’ does not describe the process of formation, in
order to associate the two notions one could use ‘dy-
namical ensemble’, which emphasises possible changes,
i.e., not only the propagation but also the process of
formation. This way or another, an ensemble of waves in
nerves is the result of a causal interaction resulting in a
complex. This complex is a carrier of information and
serves as a basic element for neural networks. Figure 1
also demonstrates the importance of using the diagrams
noted by DeLanda [10] for explaining causal relations in
his philosophical analysis.

As a matter of fact, this modelling follows the ideas
of Weber [50] who states that “... all the crucial ex-
planatory burden in experimental biology (including elec-
trophysiology) is and must be borne by laws of physics
and chemistry”. However, Craver [6] also stresses the
importance of biological facts, which brings us directly to
interdisciplinarity in order to describe the mechanisms
responsible for the generation of signals in nerves.

The multiplicity of effects characteristic of signals in
nerves analysed above is limited to propagation effects.
The modification of intrinsic and extrinsic properties
could certainly improve the predictive power of the
model. For example, the coupling (activation) forces may

need to be specified by a more refined description of lipids
in the biomembrane or filaments in the axoplasm. The
molecular effects related to ion movement and the in-
fluence of membrane proteins might influence the emer-
gence of an ensemble. The influence of environmental
temperature as an extrinsic property can be accounted for
by the coefficients of the governing system.

The present model [24] pays attention to coupling
effects and keeps the models rather simple as far as the
components of an ensemble are concerned. Recent ex-
periments have demonstrated more details about the
structure of the biomembrane, axoplasm and ion channels.
For example, the influence of the myelin sheath is relevant
to the propagation of the AP. It has been shown how this
myelin sheath can be taken into account for the LW [49].
As mentioned above, the structure of the axoplasm is not
homogenous but consists of filaments and proteins. Singh
et al. [48] have shown experimentally how the structures
inside a nerve influence the propagating signal. They even
suggested that different waves coexist with an ionic spike.
It is an interesting challenge to formulate these ideas by a
mathematical model.

The propagation of signals in nerves is part of the
phenomena in the brain which are much more compli-
cated. Goriely et al. [26] have shown how interdisci-
plinarity can help to understand the multiplicity of pro-
cesses needed for the analysis of the extremely complex
function of the brain at many scales (at molecular, cellular,
and tissue levels).

5. FINAL REMARKS

In Section 4, it is demonstrated that the descriptions pres-
ented in Sections 2 and 3 follow similar lines. Historically,
the analyses and explanations have used different ter-
minology, but in essence, the ideas are similar. The math-
ematical model described above is based on the analysis
of physical mechanisms [23,24]. Kaplan and Craver [32]
have formed a model-to-mechanism-mapping requirement
that says: “In successful explanatory models in cognitive
and systems neuroscience (a) the materials in the model
correspond to components, activities, properties, and organ-
isational features of the target mechanism that produces,
maintains, or underlines the phenomenon, and (b) the
(perhaps mathematical) dependencies posited among
these variables in the model correspond to the (perhaps
quantifiable) causal relations among the components of
the target mechanism”. This is exactly the ideology fol-
lowed in our modelling. For nerve signals, models of single
effects are brought together by coupling forces that de-
pend on changes in intensive field variables. As a result,
an ensemble is formed, which is a carrier of information.
All the keywords of Section 3 on the philosophical ideas —
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interdisciplinarity, basic laws, multiplicity, changes in in-
tensive variables, nonlinearities, and causality — are used
in the mathematical modelling of signals in nerves. Certainly,
it is not only the collection of keywords that correspond
to the philosophy of DeLanda but the whole construction
of modelling that follows the idea of assemblage, which
is the emergence of a whole from parts due to interactions.
In a nutshell, as stressed by DeLanda [9], intensive dif-
ferences are productive — this is actually the essence of the
philosophy behind the modelling of signals in nerves.
Such philosophy is characteristic of the modelling of
nervous systems from the viewpoint of complexity in-
cluding nonlinear and nonstationary effects [35]. The role
of interactions in systems biology is emphasised in many
studies [33,43] and it also reflects the philosophical ideas
briefly addressed above. Finally, it should be stressed that
the discussion on explanatory and modelling strategies in
systems biology also involves the question of whether
these strategies are mechanistic [2]. Clearly, the studies of
philosophical accounts in systems biology serve a better
understanding. Attention should be paid to causality and
possible idealisation [3] and to the basic laws of physics
[50] together with biological facts [6]. In principle, we
agree with Driessen [13] who says that “philosophy is a good
school for developing the intuitive capacity of scientist”.
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Signaalid narvirakkudes filosoofia moistetes

Jiiri Engelbrecht, Kert Tamm ja Tanel Peets

Nérvikiududes leviv signaal koosneb elektrilise komponendi korval ka mehaanilistest ja termilistest komponentidest,
mis kokku moodustavad ansambli. Sellise ansambli modelleerimine on kirjeldatud DeLanda filosoofilist analiiiisi jar-
gides, kasutades mittelineaarse diinaamika mdisteid. On niidatud, et autorite poolt konstrueeritud narvikius leviva an-
sambli matemaatiline mudel on kooskdlas DeLanda ideega kausaalsete seoste olulisusest ning ekstensiivsetest ja
intensiivsetest muutujatest.



