
1. INTRODUCTION

Simulation is an approximate or 1:1 imitation of an actual
process, often taking part in the virtual environment,
troubleshooting, researching, testing, training, monitoring,
controlling, or educating. In the past decade, simulations
have been vital in production and development as they are
capable of preventing many problems related to planning
and reducing bottlenecks at early stages, also during the
real-time maintenance of the process [1–5]. And con -
sidering especially the increasing complexity of tech -

nology and the rise in using fully autonomous systems,
simulations help to enforce and change features related to
work safety. One of the simulation aspects – the concept
of the Digital Twin (DT) [6,7] – is exploited in this
research to develop a precise dual-way synchronized
simulation interface for the propulsion drives [8,9] to be
ready to be integrated into the electrical vehicles [10].

Physics simulations are very common and critical
nowadays. They are used enormously in such appli -
cations as MATLAB Simulink, Simscape, CAD design,
SolidWorks, etc., and in simulations of the physical pro -
cesses in gamified environments. They should be con-
sidered in the planning stage of mechatronic systems [11].

Proceedings of the Estonian Academy of Sciences,
2021, 70, 4, 392–398

https://doi.org/10.3176/proc.2021.4.04
Available online at www.eap.ee/proceedings

ROS middle-layer integration into Unity3D as an interface option for
propulsion drive simulations of autonomous vehicles

Vladimir Kutsa,b*, Anton Rassõlkinc, Sergei Jegorova and Viktor Rjabtšikovc

a Department of Mechanical and Industrial Engineering, School of Engineering, Tallinn University of Technology, Ehitajate tee 5,
19086 Tallinn, Estonia
b Electronic and Computer Engineering Department, University of Limerick, Limerick, V94 T9PX, Ireland
c Department of Electrical Power Engineering and Mechatronics, School of Engineering, Tallinn University of Technology,
Ehitajate tee 5, 19086 Tallinn, Estonia

Received 17 June 2021, accepted 19 July 2021, available online 1 November 2021

© 2021 Authors. This is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Abstract. As autonomous vehicle development continues at growing speeds, so does the need to optimize, diagnose, and test various
elements of autonomous systems under different conditions. Since such processes should be carried out in parallel, it may result in
bottlenecks in development and increased complexity. The trend for Digital Twins offers a promising option for the diagnosis and
testing to be carried out separately from the physical devices, incl. autonomous vehicles in the virtual world. The idea of
intercommunication between virtual and physical twins provides possibilities to estimate risks, drawbacks, physical damages to the
vehicle’s drive systems, and the physical vehicleʼs critical conditions. Although providing communications between these systems
arises at the speed that will be adequate to represent the physical vehicle in the virtual world correctly, it is still a trendy topic. This
paper aims to demonstrate the enhancement of communications by using the Robot Operating System (ROS) as a middleware interface
between two twinning systems by the example of the autonomous vehicleʼs propulsion drive. Data gathered from the physical and
virtual worlds can be exchanged in the middle to allow for continuous training and optimization of the propulsion drive model, which
would lead to more efficient path planning and energy-efficient drive of the autonomous vehicle itself. Additionally, a comparative
analysis of ROS and its next version ROS2 is provided, discussing their differences and outlining drawbacks.

Key words: ROS, autonomous vehicles, propulsion drives, digital twins, simulations.

* Corresponding author, vladimir.kuts@taltech.ee

MANUFACTURING
ENGINEERING

http://creativecommons.org/licenses/by-nc/4.0/

Of course, all physics simulations have approximation and
simplifications, since not all possible physical laws can
be simulated simultaneously as yet; however, such simu -
lations provide considerable benefits in research and
testing.

In a previous study that we conducted on the electrical
motors simulation in which the DT for a propulsion drive
of an autonomous electric vehicle was developed [9],
Unity3D was used for simulations of the DT that was
exchanging messages with the Robot Operating System
(ROS) node through a ROS bridge [12]. However, ROS
is not only used for robots but also for various drones,
self-driving vehicles, and autonomous systems. ROS
enables inter-process communication; it is believed to be
a quality method of interconnecting a digital twin pro -
pulsion drive system with its real counterpart. ROS was
used for performance calculation applying an empirical
performance model for the induction motor (IM). In this
research Unity3D is used as a visualization tool, which is
connected with ROS directly [13]. Even though Unity3D
simulated most of the motor’s physical behaviour (torque
and rotation), the response and the received numerical
values, unfortunately, do not suit the DT development in
the long run. The reason for this is the complexity of the
overall system of physics of the IM. Moreover, to make
the system transferable and usable with other models (not
the ones present in Unity3D but also in Gazebo or else -
where), the physics handling must be close to stand alone.

The main aim of the current research was to develop
a framework and a toolkit, including a middle-layer ROS
interface, connected with the physical propulsion drive
workbench and its DT, which can be visualized in various
simulation engines. The related paper aims to develop a
methodology to connect the interface with Unity3D for
the visualization, considering data exchange and feed -
back.

2. METHODOLOGY

2.1. Working principle of a test bench on a digital

twin

The physical component of the proposed DT is being
developed as a hybrid of both data-driven and process-
driven modelling principles. Although most of the para -
meters describing the physical behaviour of a propulsion
drive can be calculated using physical equations, some
values can only be read from the real electrical drive. An
example of such ROS node structure used in the presented
case can be seen in Fig. 1, where the input current from
the frequency converter to the IM was recorded, simulated
in ROS, and used to calculate other ROS parameters. The
infrastructure features the nodes calculating torque,
power, and the efficiency of the motor as well as a node
that checks motor windings for mal functions.

V. Kuts et al.: ROS_Unity3D 393

Fig. 1. Input current measurements sampled at 5 kHz frequency.

The DT operates on the simulated data, generated
based on real data measured and gathered from the 7.5 kW
IM (ABB 3GAA132214-ADE) for the current case study.
The data was gathered using the data acquisition system
(DAS) Dewetron DEWE2 and saved into files with
a different extension (*.mat, *.xlsx, *.csv, *.txt). The
measured data can be anything regarding the motor’s
operation, namely input currents and voltages, consumed
and shaft powers, torque and angular velocity on data
acquisition, and other additional data calculated from
them. According to DAS tuning (16Hz–100kHz), the
parameters can be measured with different frequencies,
and the received data is relative to time. This feature
enables to recreate the motor’s behaviour precisely as it
happened in the real case scenario with the help of the
ROS server. It should be noted that the graph from the
ROS package rqt plot is not included in this paper be -
cause it could not handle plotting messages at such high
frequency.

In the proposed DT system, the ROS server acts as a
data server and physics simulator. The idea behind it is the
following: the server is a standalone subsystem of a test
bench (TB) responsible for processing real measured data
of the motor, calculating other motor parameters based on
the processed data, and streaming them to the ROS topics
available for models.

ROS nodes are ROS server components performing
calculations, real data processing, and streaming of data. The
real data is fetched to the appropriate ROS node presented
in the server, processed and translated into ROS messages,
and finally, sent to the DT model over the ROS bridge. The
real data can be based on the empirical model (e.g., effi -
ciency map of the motor) or the actual raw data, an exam -
ple of data used for fetched ROS node is presented in Fig. 2.

Upon receiving ROS messages, the model can perform
the necessary actions to simulate the mechanical, elec -
trical, or thermal behaviour. Models can be present in any
simulation environment. They are subscribed to ROS
server’s topics over the application programming interface
(API) or the ROS bridge and configured to perform
the necessary operations based on the subscribed ROS
topic (e.g., rotation based on received angular speed).
Furthermore, the module can feature simulated ‘measure -
ment’ devices/sensors that can send back the data over the
ROS bridge. In this case, the ROS nodes can process and
calculate other required values, as would happen in the
TB.

The current DT consists of the Unity3D model and the
ROS server. The ROS server streams simulated values
regarding input power (3-phase current and voltages),
efficiency calculated based on measured torque, and
angular velocity. The torque is calculated by the physics
engine of Unity3D, whereas other values are based on the
real data. This creates a problem of incorrect data cal -
culation because Unity3D does not focus on calculating
correct values on physics laws, as it is more for games,
allowing developers to adjust the physics laws to the game
setup. This is why the shift from the physics engine of the
model environment to ROS was introduced. The ROS
server would serve physical parameters based on the real
TB data and independent of the modelling environment.
Figure 3 depicts the above-described architecture of the
TB DT. The bottom part of the figure illustrates the
operation of the ROS server and the top part shows
Unity3D (the visualization environment). The processed
data from the ROS server is streamed over the ROS bridge
to Unity, where object controllers perform actions on parts
of the drive based on the received data.

Proceedings of the Estonian Academy of Sciences, 2021, 70, 4, 392–398394

Fig. 2. Input current measurements sampled at 5 kHz frequency used for fetched ROS node.

–

–

Additionally, ROS can record rosbags – files with
recorded values from topics/servers that can be played
back to repeat the behaviour. Such a feature would allow
us additional analytical features on the DT side.

2.1.1. ROS interfacing

To allow easy interfacing of ROS with other systems,
a ROS bridge node has to be used. It converts ROS

communications into a JavaScript Object Notation
(JSON) file format and sends them outside the ROS
ecosystem. JSON is used because of its universal format
with existing libraries that support its serialization and
deserialization in almost every modern programming
language. Taking it one step further, the ROS bridge can
be used to port specific ROS topics to and out of Message
Queuing Telemetry Transport (MQTT) protocol to upscale
the system and allow it to run on multiple machines
around the world. The so-called MQTT bridge sends data
to the remote server by taking the serialized message on a
specified ROS topic and publishes it into a specified
MQTT topic. The MQTT bridge is also capable of the
inverse – it receives a JSON-serialized message and
attempts to deserialize it into a specified ROS topic in a
specific message type. Together these systems make the
inter facing of ROS with any visualization solution much
simpler to develop. To further simplify the deserialization
process, classes that match ROS message types were
created in C# for Unity3D implementation of the ROS
interface. This approach can be considered the most
efficient because, in this case, a ROS message delivered
in the serialized form via the MQTT can be directly
deserialized into an object of a matching type. This
approach can be implemented similarly on the majority of
the existing programming languages, making it the most
straightforward and most versatile option.

Unity3D is used for visualization, see Fig. 4. Unity3D
engine is connected to the physics simulator via the ROS
interface, a 1:1 scale propulsion drive model with the
transmission, wheel parts, and non-visible gears. The
model is being assembled as the physical one, and each
part is controlled by a related script, where data is fed from
the middle layer.

V. Kuts et al.: ROS_Unity3D 395

Fig. 3. Architecture of the TB DT.

Fig. 4. Visualization of the propulsion drive test bench created in Unity3D.

2.2. Application of ROS2

In that case, the DT architecture was transferred from
ROS to the ROS2 framework. ROS2 is the next version
of ROS. This transfer was required for several reasons:
deprecation of ROS that would follow in 2025, support of
the Data Distribution Service (DDS) standard, industry-
grade support [14]. Furthermore, ROS2 core libraries use
the C++11 standard features and are targeting even some
features of the C++14 standard, which improved the core
of ROS [15]. The real-time operating systemsʼ support
was a problem from the beginning of ROS, and many
researchers tried to overcome this issue, leading to the
creation of several ROS “spin-offs” for real-time op -
erating systems. However, these were still not sufficient
to make ROS practical for embedded real-time systems
[16]. ROS2 promises to introduce real-time support up to
bare-metal microcontrollers. The ROS2 framework will
become a powerful, robust, and modern middleware to be
considered in any robotics/automotive vehicles project
with all the implemented features.

The contribution of ROS2 to the TB DT lies in the use
of DDS. In ROS2, all communication is built upon the
DDS standard defined by the OMG (Object Management
Group) consortium, and developers are free to switch
between supported vendors. DDS supports distributed
discovery that allows nodes in the distributed network to
be discovered by other nodes without a broker, which is
different from the custom communication protocol used
in ROS, a master node. Furthermore, ROS2 provides
various QoS (Quality of Service) under which the mes -
sages are delivered. As soon as our TB is directly
connected over the Internet to the DT, it will feature many
sensors on it, making DDS a viable option to use in such
a scenario.

One of the beneficial features of ROS2 is its launch
files, which are written in Python, allowing the creation of
complex logic in launching ROS2 nodes. Previously, we
had to create several launch files and run them in a specific
sequence. Otherwise, a node responsible for the ROS
bridge would crash. In ROS2, this problem is mitigated.

From the developers’ point of view, ROS2 API encour -
ages the OOP (Object-Oriented Programming) principles
much stronger and helps to understand the written code
better. One drawback that was observed is the lack of
information about specific functionalities, and it will take
time before the ROS2 community becomes as big as the
one ROS has.

3. CONCLUSIONS

The primary outcome of this part of the more extensive
research in developing the fully synchronized DT of the
propulsion drive was the development of the ROS
interface and its later transfer to ROS2. It is possible to
feed it with the physical data gathered and give the data
to visual simulation, which in the related use case is
Unity3D. The given data simulation runs and gives logged
feedback about physical interactions back to the ROS
middle layer, where the model is being improved and sent
back to the visual side, improving it after each data
movement loop. However, some limitations were met
during the development of the methodology, and more
developments are in progress to reach the final research
aim, see Table 1.

The ROS2 interface connected with the digital twin of
the propulsion drive workbench visualized in Unity3D
was introduced during the current research. Raw and
simulated data as well as empirical models can be post-

Proceedings of the Estonian Academy of Sciences, 2021, 70, 4, 392–398396

Table 1. Limitations and further steps

Limitations Further steps

The model was tested with only one type of visual
simulation tool. Possible additional integrations should be
performed in the middle layer to be suitable for additional
software tool packages.

To establish correct torque calculations based on the real
values collected from the physical TB.

To implement a two-way connection between the physical
TB and its DT.

If the DT and the TB work simultaneously over the
Internet, the frequency of data acquisition may be too high
to send on time and there is the possibility of lags.

The injection process flow of new components of the TB
into the DT.

To create unpredicted behaviours in the system, trigger
points, and try to make the system respond to the
unpredicted change, thus making it more adaptive to
changes.

Table 1. Limitations and further steps

processed and fed to the visual simulation, where addi -
tional data is being logged and given as feedback to the
middleware to improve the model and physical simulation
itself. The next crucial step is to feed physical simulation
directly with data from the physical drive, enabling syn -
chron ization between the real and virtual worlds through
the developed interface.

ACKNOWLEDGEMENTS

The research was supported by the Estonian Research
Council under grant PSG453 “Digital Twin for Propul -
sion Drive of Autonomous Electric Vehicle”. In addition,
Vladimir Kuts received funding from the European
Unionʼs Horizon 2020 research and innovation program
under the Marie Skłodowska-Curie grant agreement No.
847577; and a research grant from Science Foundation
Ireland (SFI) under grant number 16/RC/3918 (Irelandʼs
European Structural and Investment Funds Programmes
and the European Regional Development Fund 2014-2).
The pub lication costs of this article were covered by the
Estonian Academy of Sciences and Tallinn University of
Technology.

REFERENCES

1. AhmadiAhangar, R., Rosin, A., Niaki, A. N., Palu, I. and

Korõtko, T. A review on real-time simulation and analysis
methods of microgrids. Int. Trans. Electr. Energy Syst., 2019,
29(11), e12106. https://doi.org/ 10.1002/2050-7038.12106

2. Venkatesan, S., Manickavasagam, K., Tengenkai, N. and
Vijayalakshmi, N. Health monitoring and prognosis of
electric vehicle motor using intelligent-digital twin. IET
Electr. Power Appl., 2019, 13(9), 1328–1335. https://doi.org/
10.1049/iet-epa.2018.5732

3. Turner, G. Soaring through virtual aviation: The role of VR
in aerospace manufacturing. Manufacturing Global, 2020.

4. Gevorkov, L., Rassõlkin, A., Kallaste, A. and Vaimann, T.
Simulink based model of electric drive for throttle valve in
pumping application. In Proceedings of the 2018 19th
International Scientific Conference on Electric Power
Engineering (EPE), Brno, Czech Republic, May 16–18,
2018. IEEE, 1–4. https://doi.org/10.1109/EPE.2018.8395996

5. Rasheed, I., Asad, B., Khaliq, H. S., Khan, M. H., Bukhari,
S. Z. H. and Bukhari, S. N.-U.-H. Fast numerical techniques
based analysis of electromagnetic problems using MATLAB. In
Proceedings of the 2014 12th International Conference on
Frontiers of Information Technology, Islamabad, Pakistan,
December 17–19, 2014. IEEE, 2015, 115–120. https://doi.org/
10.1109/FIT.2014.30

6. Kousi, N., Gkournelos, C., Aivaliotis, S., Giannoulis, C.,
Michalos, G. and Makris, S. Digital twin for adap tation
of robots’ behavior in flexible robotic assembly lines.
Procedia Manuf., 2019, 28, 121–126. https://doi.org/10.10
16/j.promfg.2018.12.020

7. Kuts, V., Sarkans, M., Otto, T., Tähemaa, T. and
Bondarenko, Y. Digital Twin: Concept of hybrid program -
ming for industrial robots – use case. In Proceedings of the
ASME 2019 International Mechanical Engineering
Congress and Exposition, vol. 2B, Salt Lake City, UT, USA,
November 11–14, 2019. https://doi.org/10.1115/IMECE2019-
10583

8. Kuts. V., Modoni, G. E., Otto, T., Sacco, M., Tähemaa, T.,
Bondarenko, Y. and Wang, R. Synchron izing physical
factory and its digital twin through an IIoT middleware:
a case study. Proc. Est. Acad. Sci., 2019, 68(4), 364–370.
https://doi.org/10.3176/proc. 2019.4.03

9. Rassõlkin, A., Vaimann, T., Kallaste, A. and Kuts, V. Digital
twin for propulsion drive of autonomous electric vehicle. In
Proceedings of the 2019 IEEE 60th International Scientific
Conference on Power and Electrical Engineering of Riga
Technical University (RTUCON), Riga, Latvia, October 7–
9, 2019. IEEE, 2020, 1–4.

10. Khaled, N., Pattel, B. and Siddiqui, A. Digital Twin
development and cloud deployment for a Hybrid Electric
Vehicle. In Digital Twin Development and Deployment
on the Cloud. Academic Press, Cambridge, MA, 2020.

11. Sell, R., Coatanéa, E. and Christophe, F. Important aspects
of early design in mechatronic. In Proceedings of the
6th International DAAAM Baltic Conference Industrial
Engineering, Tallinn, Estonia, April 24–26, 2008.

12. Rassõlkin, A., Rjabtšikov, V., Vaimann, T., Kallaste, A.,
Kuts, V. and Partyshev, A. Digital Twin of an electrical motor
based on empirical performance model. In Proceedings of
the 2020 XI International Conference on Electrical Power
Drive Systems (ICEPDS), St Petersburg, Russia, October
4–7, 2020. IEEE, 1–4.

13. Sita, E., Horváth, C. M., Thomessen, T., Korondi, P. and
Pipe, A. G. ROS-Unity3D based system for monitoring
of an industrial robotic process. In Proceedings of the
2017 IEEE/SICE International Symposium on System
Integration, Taipei, Taiwan, December 11–14, 2017. IEEE,
2018, 1047–1052. https://doi.org/10.1109/SII.2017.8279361

14. Noetic Ninjemys: The Last Official ROS 1 Release. Open
Robotics. https://www.openrobotics.org/blog/2020/5/23/noetic-
ninjemys-the-last-official-ros-1-release (accessed 2021-05-29).

15. Thomas, D. Changes between ROS 1 and ROS 2. ROS 2
Design. http://design.ros2.org/articles/changes.html (accessed
2021-05-26).

16. Maruyama, Y., Kato, S. and Azumi, T. Exploring the
performance of ROS2. In Proceedings of the 13th
International Conference on Embedded Software (EMSOFT),
Pittsburgh, PA, USA, October 1–7, 2016. ACM, 1–10.
https://doi.org/10.1145/2968478.2968502

V. Kuts et al.: ROS_Unity3D 397

https://doi.org/10.1002/2050-7038.12106
https://doi.org/10.1049/iet-epa.2018.5732
https://doi.org/10.1049/iet-epa.2018.5732
https://doi.org/10.1049/iet-epa.2018.5732
https://doi.org/10.1109/FIT.2014.30
https://doi.org/10.1109/FIT.2014.30
https://doi.org/10.1109/FIT.2014.30
https://doi.org/10.1016/j.promfg.2018.12.020
https://doi.org/10.1016/j.promfg.2018.12.020
https://doi.org/10.1016/j.promfg.2018.12.020
https://doi.org/10.1115/IMECE2019-10583
https://doi.org/10.1115/IMECE2019-10583
https://doi.org/10.3176/proc.2019.4.03
https://www.openrobotics.org/blog/2020/5/23/noetic-ninjemys-the-last-official-ros-1-release
https://www.openrobotics.org/blog/2020/5/23/noetic-ninjemys-the-last-official-ros-1-release
https://www.openrobotics.org/blog/2020/5/23/noetic-ninjemys-the-last-official-ros-1-release

Proceedings of the Estonian Academy of Sciences, 2021, 70, 4, 392–398398

ROS-i keskmise kihi integreerimine Unity3D-ga liidese valikuna autonoomsete
sõidukite jõuülekande simulatsioonideks

Vladimir Kuts, Anton Rassõlkin, Sergei Jegorov ja Viktor Rjabtšikov

Kuna autonoomne sõidukite arendamine jätkub kasvava kiirusega, suureneb ka vajadus optimeerimiseks, diagnoosiks
ja erinevate autonoomsete süsteemide elementide erinevates tingimustes katsetamiseks. Kuna nimetatud protsesse tuleks
teostada paralleelselt, võib see arengus põhjustada kitsaskohti ja keerukust. Digitaalsete kaksikute kontsept pakub
paljutõotavat võimalust diagnoosimiseks ja testimiseks, mis viiakse läbi füüsilistest seadmetest eraldi, sisaldades ka
autonoomsete sõidukite testimist virtuaalmaailmas. Virtuaalsete ja füüsiliste kaksikute vahelise kommunikatsiooni
põhimõte annab võimaluse hinnata riske, puudusi, sõiduki juhtimissüsteemide füüsilisi kahjustusi ning füüsilisi kriitilisi
tingimusi. Nende süsteemide vahelise side loomine toimub kiirusega, mis on piisav füüsilise sõiduki virtuaalses maailmas
täpseks esitamiseks, olles endiselt trendikas teema. Selle artikli eesmärk on näidata, kuidas antud probleemi lahendada,
kasutades ROS-i vahevara liidesena kahe reaalse süsteemi vahel autonoomse sõiduki tõukejõu ajami näitel. Füüsilisest
ja virtuaalsest maailmast kogutud andmeid saab vahetada keskse platvormi kaudu, et võimaldada jõuseadme mudeli
pidevat õpetamist ja optimeerimist, mille tulemuseks on tõhusam tee planeerimine ning autonoomse sõiduki enda
energiasäästlik kasutamine. Lisaks on esitatud robotite operatsioonisüsteemi (ROS) ja järgmise versiooni ROS2 võrdlev
analüüs, kus on käsitletud nendevahelisi erinevusi ning välja toodud platvormide puudused.

