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Abstract. This paper numerically addresses bright optical solitons with cubic-quintic-septic (polynomial) law of nonlinear refrac-
tive index. The adopted scheme is with Adomian decomposition. The surface and contour plots are presented along with negligibly
small error count.
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1. INTRODUCTION

One of the key features of optical soliton transmission is self-phase modulation (SPM). There are several
forms of SPM that are known today which form the structure of the fiber optic material. The simplest,
most renowned and commonly used is Kerr law nonlinearity that leads to cubic Schrödinger’s equation
as the governing model and is also referred to as nonlinear Schrödinger’s equation (NLSE). A few other
forms of SPM that are commonly studied are power law, parabolic law, log law, dual-power law, saturable
law, quadratic-cubic law, anti-cubic law, and generalized anti-cubic law. Very recently, Kudryashov has
proposed a variety of SPM structures that are gaining popularity in the field of quantum optics in spite of
the fact that these theoretical forms of nonlinearity have not yet been reached in any laboratory [1–19].
This paper is the study of bright optical solitons from a numerical perspective for a specific form of non-
Kerr law of nonlinear refractive index. It is called cubic-quintic-septic law of nonlinear refractive index
that is occasionally referred to as polynomial law of nonlinearity. The Adomian decomposition method
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(ADM) is the adopted scheme of this paper. The numerical simulations that are recovered by ADM are
compared with the pre-existing results that have been obtained analytically. The results are astounding, and
the measured error is significant. The results are all exhibited after a quick revisitation to the model and its
known analytical results.

1.1. Description of the governing model

The NLSE with cubic-quintic-septic law of nonlinearity that models the problem to be solved, in its dimen-
sionless form, is given by [20]:

iut +auxx +
�
b1|u|2 +b2|u|4 +b3|u|6

�
u = 0, a,b1,b2 and b3 2 R. (1)

Equation (1) models the evolution of pulses in an optical fiber where the complex field u(x, t) represents the
wave variable. Furthermore, in Eq. (1) the first term is temporal evolution, the second-order derivative with
respect to the spatial variable x represents the dispersion, while in the nonlinear term, the coefficients b1, b2
and b3 represent the SPM effect that stems from nonlinear refractive index of the fiber. This type of NLSE
has been studied by few authors and the most important works have been reported in [20–22].

1.2. Bright solitons

The bright 1-soliton solution to Eq. (1) was recently established in [20,21], as

u(x, t) = Asech1/3[B(x�nt)]⇥ exp{i[�kx+wt +q ]}, (2)

where the amplitude and the velocity of the soliton are respectively

A = 6

s
4(w +ak2)

b3
, (3)

and
n =�2ak, (4)

whereas the inverse width of the soliton is

B = 3

r
w +ak2

a
. (5)

The mathematical restrictions for the existence of the soliton are as follows:

a
�
w +ak2�> 0, b3

�
w +ak2�> 0 and ab3 > 0, (6)

the last constraint in (6) is derived from relating A with B.

2. SOLUTION ALGORITHM

We know that u is a complex-valued function, then, considering its real part and its imaginary part we can
decompose it as u(x, t) = p(x, t)+ iq(x, t), then we have the following nonlinear Cauchy problem:

8
<

:

�Ltq+aRp+N1(p,q) = 0,
Lt p+aRq+N2(p,q) = 0,
u(x,0) = (p(x,0),q(x,0)).

(7)
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In the above decomposition we have considered the following nomenclature for the operators involved:

Lt =
∂
∂ t

, R =
∂ 2

∂x2 .

In addition, the nonlinear components N1 and N2 in terms of p and q are, respectively, given as

N1(p,q) = p[b1(p
2 +q

2)+b2(p
2 +q

2)2 +b3(p
2 +q

2)3] (8)

and
N2(p,q) = q[b1(p

2 +q
2)+b2(p

2 +q
2)2 +b3(p

2 +q
2)3]. (9)

Assuming that the operator L is invertible and its inverse is L
�1
t =

R
t

0(·)ds, we apply the inverse to Eq. (7)
and considering p(x,0) and q(x,0), we have

p(x, t) = p(x,0)�
Z

t

0
(aRp(x,s)+N1(p(x,s),q(x,s)))ds, (10)

q(x, t) = q(x,0)+
Z

t

0
(aRq(x,s)+N2(p(x,s),q(x,s)))ds. (11)

The Adomian decomposition method essentially allows us to assume that the p and q components of the
solution can be expressed as the series [23]

p(x, t) =
•

Â
n=0

pn(x, t) and q(x, t) =
•

Â
n=0

qn(x, t), (12)

where each of the summands pn, qn will be found recursively as will be established below. While the non-
linear operators N1 and N2 can be decomposed as

N1(p,q) =
•

Â
n=0

An(p0, p1, . . . , pn;q0,q1, . . . ,qn) (13)

and
N2(p,q) =

•

Â
n=0

Bn(p0, p1, . . . , pn;q0,q1, . . . ,qn), (14)

where each of the summands An, Bn are known as Adomian polynomials in two variables, which will be
calculated by means of the following integral formulas [24]:

An(p0, . . . , pn;q0, . . . ,qn) =
1

2p

Z p

�p
N1

� n

Â
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pke
ikw ,

n

Â
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qke
ikw�

e
�inw

dw, n � 1, (15)

Bn(p0, . . . , pn;q0, . . . ,qn) =
1

2p

Z p

�p
N2

� n

Â
k=0

pke
ikw ,

n

Â
k=0

qke
ikw�

e
�inw

dw, n � 1, (16)

in the case where n = 0, we have A0(p0) = N1(p0) and B0(q0) = N2(q0).
Substituting Eqs (12), (13) and (14) in Eqs. (10) and (11), we obtain the following equalities:

•

Â
n=0

pn(x, t) = p0(x,0)�
Z

t

0

⇣
a

∂ 2

∂x2

•

Â
n=0

pn(x,s)+
•

Â
n=0

An(p0, . . . , pn;q0, . . . ,qn)
⌘

ds, (17)

•

Â
n=0

qn(x, t) = q0(x,0)+
Z

t

0

⇣
a

∂ 2

∂x2

•

Â
n=0

qn(x,s)+
•

Â
n=0

Bn(p0, . . . , pn;q0, . . . ,qn)
⌘

ds. (18)
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From the above equalities (17) and (18), by matching terms of the same order, we obtain the following
algorithm to find each of the components of the solution to our model:

pm(x, t) =−
∫ t

0

(
a

∂ 2

∂x2 pm−1(x,s)+Am−1(p0, . . . , pm−1;q0, . . . ,qm−1)
)

ds, m ≥ 1, (19)

qm(x, t) =
∫ t

0

(
a

∂ 2

∂x2 qm−1(x,s)+Bm−1(p0, . . . , pm−1;q0, . . . ,qm−1)
)

ds, m ≥ 1. (20)

Once each of the components has been obtained, the solution according to the series given in Eq. (12) is

u(x, t) = p(x, t)+ iq(x, t) =
∞

∑
n=0

pn(x, t)+ i
∞

∑
n=0

qn(x, t). (21)

For practical cases it is sufficient to obtain an approximation to the solution, which we acquire through
summations up to order N, i.e., for our simulations we will consider uN(x, t) given by:

uN(x, t) = pN(x, t)+ iqN(x, t) =
N

∑
n=0

(
pn(x, t)+ iqn(x, t)

)
. (22)

The decomposition method that we are proposing in the present study is a very useful and powerful tool for
solving nonlinear partial differential equations and in particular nonlinear Schrödinger type equations; for
further details see [25,26] and their references.
Next, we will illustrate the application of the proposed method by solving Eq. (1) in some particular exam-
ples. We will also compare our results with those previously obtained for the case of singular solitons in
[27].

3. NUMERICAL EXAMPLES

In this section, we will apply the ADM-based algorithm described in the previous section to solve several
particular cases of Eq. (1). The results obtained will be shown by means of graphs in which the profiles of
the solutions as well as the absolute errors resulting from the N level of approximation can be observed.

Example 1. For this example we will consider the parameters given in Table 1.

Therefore the initial condition is given by the following function:

u(x, t) = 1.53sech1/3[4.54x]× exp{i[−2.03x+2.05]}. (23)

The results obtained from the simulation and the absolute error with N iteration steps are shown in Fig. 1.

Table 1. Parameters for model (1) corresponding to example 1

a b1 b2 b3 ω κ A B ν θ N Max Error

1.52 2.03 3.00 1.08 1.22 2.03 1.53 4.54 −6.17 2.05 15 4.0×10−8
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Fig. 1. Graphical representation of the results of example 1: (a) 3D bright soliton, (b) 2D density contour and (c) Absolute error
with N = 15 iteration steps.

Example 2. For this example we will consider the parameters given in Table 2.

Therefore the initial condition is given by the following function:

u(x, t) = 1.21sech1/3[2.32x]× exp{i[−1.05x+1.25]}. (24)

The results obtained from the simulation and the absolute error with N iteration steps are shown in Fig. 2.

Table 2. Parameters for model (1) corresponding to example 2

a b1 b2 b3 ω κ A B ν θ N Max Error

2.11 2.15 −2.51 1.58 1.05 1.05 1.21 2.32 −4.43 1.25 14 2.0×10−7

Fig. 2. Graphical representation of the results of example 2: (a) 3D bright soliton, (b) 2D density contour and (c) Absolute error
with N = 14 iteration steps.
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Table 3. Parameters for model (1) corresponding to example 3

a b1 b2 b3 ω κ A B ν θ N Max Error

2.05 1.28 2.05 3.10 4.25 −0.50 1.35 4.57 2.05 −0.55 14 1.0×10−7

Example 3. For this example we will consider the parameters given in Table 3.

Therefore the initial condition is given by the following function:

u(x, t) = 1.35sech1/3[4.57x]× exp{i[0.5x−0.55]}. (25)

The results obtained from the simulation and the absolute error with N iteration steps are shown in Fig. 3.

Example 4. For this example we will consider the parameters given in Table 4.

Therefore the initial condition is given by the following function:

u(x, t) = 1.45sech1/3[4.06x]× exp{i[0.2x−1.12]}. (26)

The results obtained from the simulation and the absolute error with N iteration steps are shown in Fig. 4.

Fig. 3. Graphical representation of the results of example 3: (a) 3D bright soliton, (b) 2D density contour and (c) Absolute error
with N = 14 iteration steps.

Table 4. Parameters for model (1) corresponding to example 4

a b1 b2 b3 ω κ A B ν θ N Max Error

1.95 3.21 2.35 1.52 3.50 −0.20 1.45 4.06 0.78 −1.12 14 6.0×10−7
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Fig. 4. Graphical representation of the results of example 4: (a) 3D bright soliton, (b) 2D density contour and (c) Absolute error
with N = 14 iteration steps.

4. CONCLUSIONS

In this paper we applied ADM to numerically address optical solitons with polynomial law of nonlinearity.
The scheme compares the analytical results with the numerical surface plots as well as the corresponding
contour plots, and the error measure, as seen, is truly remarkable. The results appear to encourage ventur-
ing further along in this direction. The ADM scheme as well as the Laplace ADM (LADM) will be later
implemented to numerically address SPM in birefringent fibers as well as in dispersion-flattened fibers. Ad-
ditional forms of SPM that will be later handled are anti-cubic law, generalized anti-cubic law, saturable
law, Kudryashov’s law and many others. The results of such research activities will be sequentially reported
and their exhibits will be gradually visible.
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