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Abstract. This paper aims to introduce a new class of submodules, called (m,n)-semiprime submodule, which is a generalization
of semiprime submodule. Let M be a unital A-module and m,n ∈ N. Then a proper submodule P of M is said to be an (m,n)-
semiprime submodule if whenever amx ∈ P for some a ∈ A,x ∈M, then anx ∈ P. In addition to giving many characterizations and
properties of this kind of submodules, we also use them to characterize von Neumann regular modules.
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1. INTRODUCTION

Throughout this article, we focus only on commutative rings with nonzero identity and nonzero unital mod-
ules. Let A always represent such a ring and M represent such an A-module. Let P be a proper submodule
of M, I be a nonempty subset of A and K be a nonempty subset of M. The residuals of P by I and K are
defined as follows:

(P :M I) = {x ∈M : Ix⊆ P}
(P : K) = {a ∈ A : aK ⊆ P}.

If I = {a} and K = {x} are the singletons, where a ∈ A,x ∈ M, we prefer (P :M a) and (P : x) instead of
(P :M {a}) and (P : {x}), respectively.

Prime ideals/submodules and their generalizations have a distinguished place in commutative algebra
since they are not only used in classifying rings/modules but they have also some applications in other areas
such as algebraic geometry, graph theory, factorization theory, etc. For instance, reduced rings, a wide class
of commutative rings including integral domains, von Neumann regular rings and the Cartesian product of
integral domains are characterized in terms of semiprime ideals (i.e. an ideal which is equal to its radical).
Furthermore, in 2007 Badawi defined the concept of 2-absorbing ideals, which is a generalization of prime
ideals, and he used them to characterize Dedekind domains [7]. Recently, several other generalizations of
prime ideals and 2-absorbing ideals have been introduced and they have been used to characterize some
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important class of rings such as valuation domains, von Neumann regular rings, divided domains, etc. See,
for example, [2,9,16].

The extension of reduced rings to modules was first presented by Lee and Zhou in [19]. An A-module
M is said to be a reduced module if for each a ∈ A,x ∈ M with ax = 0, aM ∩Ax = 0, or equivalently,
a2x = 0 implies that ax = 0 [19]. Afterwards, Saraç extended the notion of semiprime ideals to modules as
follows: a proper submodule P of M is said to be a semiprime submodule if a2x ∈ P implies that ax ∈ P for
each a ∈ A,x ∈ M [21]. Note that an A-module M is a reduced module if and only if the zero submodule
is a semiprime submodule. The concept of semiprime submodules has been widely studied in many papers
(see, for example, [11,18]). Our aim in this research is to study a generalization of semiprime submodules
and to use them to characterize a certain class of modules such as von Neumann regular modules and a
subclass of Artinian modules. Let P be a proper submodule of M and m,n ∈ N. P is said to be an (m,n)-
semiprime submodule if amx ∈ P implies that anx ∈ P for each a ∈ A,x ∈M. Among other results presented
in this paper, we show that every semiprime submodule is an (m,n)-semiprime submodule for each positive
integer m,n but the converse is not true in general (see Example 1 and Example 2). We also investigate the
stability of (m,n)-semiprime submodules under homomorphisms, in factor modules, in quotient modules,
in the Cartesian product of modules, in trivial extension AnM of an A-module M, in the tensor product of
modules (see Corollary 2 and Theorems 2–6). Finally, we characterize the descending chain condition of
a certain type of submodules and von Neumann regular modules in terms of (m,n)-semiprime submodules
(see Theorem 7 and Theorem 8).

2. CHARACTERIZATION OF (m,n)-SEMIPRIME SUBMODULES

Definition 1. Let P be a proper submodule of M and m,n∈N. P is said to be an (m,n)-semiprime submodule
if amx ∈ P implies that anx ∈ P for each a ∈ A,x ∈M.

Recall from [2] that a proper ideal P of A is said to be an (m,n)-closed ideal if xm ∈ P implies that xn ∈ P
for each x ∈ A.

Remark 1. (i) In the previous definition, if m ≤ n, then every proper submodule of an A-module M is
an (m,n)-semiprime submodule. Thus, we always assume that m > n if we mention (m,n)-semiprime
submodule of a given module.

(ii) If we consider the ring A as a module over itself, then an (m,n)-semiprime submodule P of A is an
(m,n)-closed ideal of A.

Example 1. Every semiprime submodule of M is an (m,n)-semiprime submodule for each m > n. To see
this, take a semiprime submodule P of M and assume that amx ∈ P for some a ∈ A,x ∈M. Then note that
a2(am−2x)∈ P. Since P is semiprime submodule, we conclude that am−1x ∈ P. By continuing in this manner,
we have anx ∈ P.

Example 2. (An (m,n)-semiprime submodule that is not semiprime) Let us consider Z-module Zpn ,
where p is a prime number and n> 2. Then note that P=(0) is not a semiprime submodule since p2(pn−2)=
0 and p(pn−2) = pn−1 6= 0. On the other hand, let amx = 0 for some a,x ∈ Z. Then we have pn|amx, which
yields that pn|anx. Thus, we have anx = 0. Therefore, P = (0) is an (m,n)-semiprime submodule.

Proposition 1. Let P be a proper submodule of an A-module M and m,n ∈ N with m > n. The following
statements are satisfied:

(i) If P is an (m,n)-semiprime submodule, then P is a (k,n)-semiprime submodule for each k ≥ m.
(ii) If P is an (m,n)-semiprime submodule, then P is an (m,k)-semiprime submodule for each k ≥ n.
(iii) If P is an (m,n)-semiprime submodule, then P is a (k,k′)-semiprime submodule for each k≥m and

k′ ≥ n.
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Proof. (i): Suppose that P is an (m,n)-semiprime submodule and k ≥ m. Now, we will show that P is a
(k,n)-semiprime submodule. Let akx ∈ P for some a ∈ A,x ∈M. Since P is an (m,n)-semiprime submodule
and am(ak−mx) ∈ P, we conclude that ak+n−mx ∈ P. Note that k+ n−m ≤ k− 1. Assume that k+ n−m ≤
m. Then we have amx∈ P, which yields that anx∈ P. Therefore, assume that k+n−m > m. Since ak+n−mx =
am(ak+n−2mx) ∈ P, we have ak+2n−2mx ∈ P. By continuing in this manner, we can obtain atx ∈ P for some
t ≤ m and thus we have amx ∈ P. Since P is an (m,n)-semiprime submodule, we get anx ∈ P, as required.

(ii): Suppose that P is an (m,n)-semiprime submodule and amx ∈ P for some a ∈ A,x ∈ M. Then we
have anx ∈ P. Since k ≥ n, we conclude that akx ∈ P. Therefore, P is an (m,k)-semiprime submodule.

(iii): Follows from (i) and (ii).

Proposition 2. (i) Let Pi be an (m,n)-semiprime submodule for each i ∈ ∆. Then
⋂

i∈∆ Pi is an (m,n)-semi-
prime submodule.

(ii) Let Pi be an (mi,ni)-semiprime submodule for each i ∈ ∆, where mi > ni. Suppose that sup{mi : i ∈
∆}<∞. Then

⋂
i∈∆ Pi is an (m,n)-semiprime submodule, where m= sup{mi : i∈∆} and n= sup{ni : i∈∆}.

(iii) Let Pi be an (mi,ni)-semiprime submodule for each i = 1,2, . . . ,k. Then
⋂k

i=1 Pi is an (m,n)-semi-
prime submodule, where m = m1 +m2 + · · ·+mk and n = n1 +n2 + · · ·+nk.

Proof. (i): It is clear.
(ii): First note that sup{ni : i∈ ∆} ≤ sup{mi : i∈ ∆}. Suppose that sup{mi : i∈ ∆}= m, sup{ni : i∈ ∆}=

n. Without loss of generality, we may assume that m 6= n. Since Pi is an (mi,ni)-semiprime submodule, by
Proposition 1, we have that Pi is an (m,n)-semiprime submodule. Then, by (i), we have that

⋂
i∈∆ Pi is an

(m,n)-semiprime submodule.
(iii): It is an analogue of (ii).

Now, we give a characterization of (m,n)-semiprime submodules in terms of (m,n)-closed ideals.

Theorem 1. Let P be a proper submodule of M and m > n be two integers. The following statements are
equivalent:

(i) P is an (m,n)-semiprime submodule.
(ii) (P : x) is an (m,n)-closed ideal for each x ∈M−P.
(iii) (P :M am) = (P :M an) for each a ∈ A.
(iv) For each a ∈ A and each submodule K of M, amK ⊆ P implies that anK ⊆ P.
(v) For each submodule K of M with K * P, (P : K) is an (m,n)-closed ideal.

Proof. (i)⇒ (ii): Suppose that P is an (m,n)-semiprime submodule and x ∈M−P. Let am ∈ (P : x). Then
we have amx ∈ P. Since P is an (m,n)-semiprime submodule, we have anx ∈ P, which yields that an ∈ (P :
x). Therefore, (P : x) is an (m,n)-closed ideal.

(ii)⇒ (iii): Since m > n, we always have (P :M an) ⊆ (P :M am). Let x ∈ (P :M am). Then we have
am ∈ (P : x). If x ∈ P, then clearly, we have x ∈ (P : an). So assume that x ∈ M−P. Then, by (ii), (P : x)
is an (m,n)-closed ideal. Since am ∈ (P : x), we conclude that an ∈ (P : x), which yields that x ∈ (P :M
an). Therefore, (P :M am)⊆ (P :M an).

(iii)⇒ (iv): Suppose that amK ⊆ P for some a ∈ A and a submodule K of M. Thus, we have K ⊆ (P :M
am). Then, by (iv), we conclude that K ⊆ (P :M an), and this implies that anK ⊆ P.

(iv)⇒ (v): It is clear.
(v)⇒ (i): Let amx ∈ P for some a ∈ A,x ∈ M. If x ∈ P, then we have anx ∈ P. Therefore, assume that

x /∈ P. Now, put K = Ax. Since am ∈ (P : K) and (P : K) is an (m,n)-closed ideal, we get an ∈ (P : K), which
implies that anx ∈ P.

As a result of Theorem 1, we give the following explicit result.

Corollary 1. Suppose that P is an (m,n)-semiprime submodule of M. Then (P : M) is an (m,n)-closed ideal
of A.
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We now give the following example to illustrate that the converse of the previous corollary is not true in
general.

Example 3. (A non-(m,n)-semiprime submodule whose residual is (m,n)-closed ideal) Consider Z-
module M = Z×Z and submodule P = (0)× pm+1Z, where p is a prime number and m > 2. Then P is
not an (m,n)-semiprime submodule since pm(0, p) = (0, pm+1) ∈ P and pn(0, p) = (0, pn+1) /∈ P for each
n < m. On the other hand, (P : M) = (0) is a prime ideal, thus is an (m,n)-closed ideal.

Theorem 2. Let f : M→ L be an A-homomorphism. The following statements are satisfied:
(i) If P is an (m,n)-semiprime submodule of M containing Ker( f ) and f is surjective, then f (P) is an

(m,n)-semiprime submodule of L.
(ii) If K is an (m,n)-semiprime submodule of L such that f−1(K) 6= M, then f−1(K) is an (m,n)-

semiprime submodule of M.

Proof. (i): Let amy ∈ f (P) for some a ∈ A,y ∈ L. Since f is surjective, we can write y = f (x) for some
x ∈ M. Thus, we have amy = am f (x) = f (amx) ∈ f (P). As Ker( f ) ⊆ P, we obtain amx ∈ P. Since P is an
(m,n)-semiprime submodule of M, we have anx ∈ P, so that we have f (anx) = any ∈ f (P). Hence, f (P) is
an (m,n)-semiprime submodule of L.

(ii): Let amx ∈ f−1(K) for some a ∈ A,x ∈ M. Then we have f (amx) = am f (x) ∈ K. Since K is
an (m,n)-semiprime submodule of L, we conclude that an f (x) = f (anx) ∈ K, which implies that anx ∈
f−1(K). Therefore, f−1(K) is an (m,n)-semiprime submodule of M.

As an immediate consequence of the previous theorem, we give the following results.

Corollary 2. Let P be a proper submodule of M. The following statements are satisfied:
(i) Suppose that K is a submodule of M with K ⊆ P. Then P/K is an (m,n)-semiprime submodule of

M/K if and only if P is an (m,n)-semiprime submodule of M.
(ii) If P is an (m,n)-semiprime submodule of M and K is a submodule of M with K * P, then P∩K is an

(m,n)-semiprime submodule of K.

Let M be an A-module. Then an element a ∈ A is said to be a zero divisor on M if there exists 0 6= x ∈M
such that ax = 0. The set of all zero divisors on M is denoted by z(M).

Theorem 3. Let M be an A-module and S⊆ A be a multiplicatively closed set of A. The following statements
are satisfied:

(i) If P is an (m,n)-semiprime submodule of M with (P : M)∩S = Ø, then S−1P is an (m,n)-semiprime
submodule of S−1M.

(ii) If S−1P is an (m,n)-semiprime submodule of S−1M such that z(M/P)∩S = Ø, then P is an (m,n)-
semiprime submodule of M.

Proof. (i): Suppose that P is an (m,n)-semiprime submodule of M and
(a

s

)m x
t ∈ S−1P for some a ∈ A,x ∈

M; s, t ∈ S. This implies that uamx ∈ P and thus am(ux) ∈ P for some u ∈ S. Since P is an (m,n)-semiprime
submodule, we conclude that an(ux) ∈ P. This implies that

(a
s

)n x
t =

an(ux)
snut ∈ S−1P. Therefore, S−1P is an

(m,n)-semiprime submodule of S−1M.
(ii): Suppose that S−1P is an (m,n)-semiprime submodule of S−1M such that z(M/P)∩S =Ø. Let amx∈

P for some a ∈ A,x ∈M. Then we have
(a

1

)m x
1 ∈ S−1P. Since S−1P is an (m,n)-semiprime submodule, we

get
(a

1

)n x
1 ∈ S−1P, which yields that uanx ∈ P. If anx /∈ P, we have u ∈ S∩ z(M/P), which is a contradiction.

Hence, we have anx ∈ P and thus P is an (m,n)-semiprime submodule of M.

Let M be an A-module. The trivial extension or idealization AnM = A⊕M of M is a commutative
ring with the componentwise addition and the multiplication defined by (a,x)(b,y) = (ab,ay+bx) for each
a,b ∈ A; x,y ∈M [20]. If I is an ideal of A and P is a submodule of M, then InP is an ideal of AnM if and
only if IM ⊆ P [4,13]. In that case, I nP is said to be a homogeneous ideal of AnM. Now, we are ready to
determine homogeneous (m,n)-semiprime ideals of the trivial extension AnM.
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Theorem 4. Let I be an ideal of A and P is a proper submodule of M such that IM ⊆ P. The following
statements are satisfied:

(i) If I nP is an (m,n)-semiprime ideal of AnM, then I is an (m,n)-semiprime ideal of A and P is an
(m,n)-semiprime submodule of M.

(ii) If I is an (m,n)-semiprime ideal of A and P is an (m,n)-semiprime submodule of M, then InP is an
(m,n+1)-semiprime ideal of AnM.

Proof. (i): Suppose that I nP is an (m,n)-semiprime ideal of AnM. First, we will show that I is an (m,n)-
semiprime ideal of A. To prove this, choose a,b ∈ A such that amb ∈ I. Then we have (a,0)m(b,0) =
(amb,0) ∈ InP. Since InP is an (m,n)-semiprime ideal of AnM, we have (a,0)n(b,0) = (anb,0) ∈ InP,
which implies that anb∈ I. Thus, I is an (m,n)-semiprime ideal of A. Let amx∈P for some a∈ A,x∈M.
Then we have (a,0)m(0,x) = (0,amx) ∈ I nP, which implies that (a,0)n(0,x) = (0,anx) ∈ I nP. Thus, we
obtain anx ∈ P. Therefore, P is an (m,n)-semiprime submodule of M.

(ii): Suppose that I is an (m,n)-semiprime ideal of A and P is an (m,n)-semiprime submodule of M. Let
(a,x)m(b,y) = (amb,mam−1bx+ amy) ∈ I nP for some a,b ∈ A; x,y ∈M. Then we have amb ∈ I and also
mam−1bx + amy ∈ P. Since I is an (m,n)-semiprime ideal of A, we get anb ∈ I. Since m > n, we have
mam−1bx ∈ IM ⊆ P and thus we get amy ∈ P. As P is an (m,n)-semiprime submodule of M, we have
any ∈ P. Therefore, we conclude that (a,x)n+1(b,y) = (an+1b,(n+1)anbx+an+1y) ∈ I nP. Hence, I nP is
an (m,n+1)-semiprime ideal of AnM.

Proposition 3. Let M1 and M2 be two A-modules and M = M1×M2. Suppose that Pi is a proper submodule
of Mi for each i = 1,2. The following statements are equivalent:

(i) P = P1×P2 is an (m,n)-semiprime submodule of M.
(ii) Pi is an (m,n)-semiprime submodule of Mi for each i = 1,2.

Proof. (i)⇒ (ii): Suppose that P is an (m,n)-semiprime submodule of M. Let amx ∈ P1 for some a ∈ A,x ∈
M1. Then we have am(x,0)∈P. Since P is an (m,n)-semiprime submodule of M, we conclude that an(x,0) =
(anx,0) ∈ P, which implies that anx ∈ P1. Thus, P1 is an (m,n)-semiprime submodule of M1. A similar
argument shows that P2 is an (m,n)-semiprime submodule of M2.

(ii)⇒ (i): Suppose that Pi is an (m,n)-semiprime submodule of Mi for each i = 1,2. Let am(x1,x2) =
(amx1,amx2) ∈ P for some a ∈ A,xi ∈ Mi. Then we have amxi ∈ Pi. Since Pi is an (m,n)-semiprime sub-
module, we get anxi ∈ Pi, which yields that an(x1,x2) = (anx1,anx2) ∈ P. Hence, P is an (m,n)-semiprime
submodule of M.

Let Mi be an Ai-module for each i = 1,2, . . . ,k. Suppose that M = M1×M2×·· ·×Mk and A = A1×A2×
·· ·×Ak. Then M is an A-module and each submodule P of M has the form P = P1×P2×·· ·×Pk, where
Pi is a submodule of Mi. Now, we characterize (m,n)-semiprime submodules of the Cartesian product of
modules.

Theorem 5. Let Mi be an Ai-module for each i = 1,2, . . . ,k, M = M1×M2×·· ·×Mk and A = A1×A2×
·· ·×Ak. Suppose that Pi is a proper submodule of Mi and P = P1×P2×·· ·×Pk. The following statements
are equivalent:

(i) P is an (m,n)-semiprime submodule of M.
(ii) Pi is an (m,n)-semiprime submodule of Mi for each i = 1,2, . . . ,k.

Proof. (i)⇒ (ii): Suppose that P is an (m,n)-semiprime submodule of M. Now, choose t ∈ {1,2, . . . ,k} and
we will show that Pt is an (m,n)-semiprime submodule of Mt . To see this, take at ∈ At ,xt ∈ Mt such that
am

t xt ∈ Pt . Now, put a = (0,0, . . . ,0,at ,0, . . . ,0) and x = (0,0, . . . ,0,xt ,0, . . . ,0). Then note that amx ∈ P. As
P is an (m,n)-semiprime submodule, we conclude that anx ∈ P, which implies that an

t xt ∈ Pt and this shows
that Pt is an (m,n)-semiprime submodule of Mt .

(ii)⇒ (i): Suppose that Pi is an (m,n)-semiprime submodule of Mi for each i = 1,2, . . . ,k. Let a =
(a1,a2, . . . ,ak) ∈ A and x = (x1,x2, . . . ,xk) ∈ M such that amx ∈ P. This implies that am

i xi ∈ Pi. Since Pi is
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an (m,n)-semiprime submodule of Mi, we have an
i xi ∈ Pi, which yields that anx ∈ P. Therefore, P is an

(m,n)-semiprime submodule of M.

Theorem 6. Let M be an A-module. The following statements are satisfied:
(i) Suppose that F is a flat A-module and P is an (m,n)-semiprime submodule of M such that F ⊗P 6=

F⊗M. Then F⊗P is an (m,n)-semiprime submodule of F⊗M.
(ii) Suppose that F is a faithfully flat A-module. Then P is an (m,n)-semiprime submodule of M if and

only if F⊗P is an (m,n)-semiprime submodule of F⊗M.

Proof. (i): Let F be a flat A-module and P be an (m,n)-semiprime submodule such that F⊗P 6= F⊗M. Let
a ∈ A. Then, by Theorem 1, (P :M am) = (P :M an). Also, by [6, Lemma 3.2], we have

(F⊗P :F⊗M am) = F⊗ (P :M am)

= F⊗ (P :M an)

= (F⊗P :F⊗M an).

Again, by Theorem 1, F⊗P is an (m,n)-semiprime submodule of F⊗M.
(ii): Suppose that F is a faithfully flat A-module.
(⇒) Let P be an (m,n)-semiprime submodule of M. Assume that F ⊗P = F ⊗M. Now, consider the

exact sequence 0→ F⊗P ⊆→ F⊗M→ 0. Since F is faithfully flat, the sequence 0→ P ⊆→M→ 0 is exact
so that P = M, which is a contradiction. Thus, F⊗P 6= F⊗M. As P is an (m,n)-semiprime submodule of
M, by (i), F⊗P is an (m,n)-semiprime submodule of F⊗M.

(⇐) Let F ⊗P be an (m,n)-semiprime submodule of F ⊗M. Take a ∈ A. Then, by Theorem 1 and [6,
Lemma 3.2], we have

F⊗ (P :M am) = (F⊗P :F⊗M am)

= (F⊗P :F⊗M an)

= F⊗ (P :M an).

Thus, we conclude that F ⊗ (P :M am) = F ⊗ (P :M an). Now, consider the exact sequence 0→ F ⊗ (P :M
an)

⊆→ F⊗ (P :M am)→ 0. As F is faithfully flat, we get the exact sequence 0→ (P :M an)
⊆→ (P :M am)→

0, which implies that (P :M an) = (P :M am). Again, by Theorem 1, we have that P is an (m,n)-semiprime
submodule of M.

Now, we investigate the conditions under which every submodule of a module is an (m,n)-semiprime.

Theorem 7. Let M be an A-module and m > n be two positive integers. The following statements are
equivalent:

(i) Every proper submodule P of M is an (m,n)-semiprime submodule.
(ii) For each submodule N of M and each element a ∈ A, the descending chain

aN ⊇ a2N ⊇ a3N ⊇ ·· · ⊇ amN ⊇ ·· ·

of submodules of M terminates at the nth step.
(iii) anN = amN for each a ∈ A and each submodule N of M.

Proof. (i)⇒ (ii): Suppose that every proper submodule P of M is an (m,n)-semiprime submodule of M. Let
a ∈ A and N be a submodule of M. Consider the descending chain aN ⊇ a2N ⊇ a3N ⊇ ·· · ⊇ amN ⊇ ·· · . If
anN = M, then the descending chain terminates at the nth step since anN = an+1N = · · · = M. Therefore,
assume that anN is a proper submodule of M. As amN ⊆ amN and amN is an (m,n)-semiprime submodule
of M, by Theorem 1, anN ⊆ amN and this implies that anN = amN. This gives that the descending chain
aN ⊇ a2N ⊇ a3N ⊇ ·· · ⊇ amN ⊇ ·· · terminates at the nth step.
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(ii)⇔ (iii): It is straigtforward.
(ii)⇒ (i): Let P be a proper submodule of M. Now, we will show that P is an (m,n)-semiprime sub-

module of M. To see this, choose a ∈ A and a submodule K of M such that amK ⊆ P. Then, by assumption,
amK = anK ⊆ P. Again, by Theorem 1, P is an (m,n)-semiprime submodule of M.

Recall from [8] that an A-module M is said to be a multiplication module if each submodule P of M has
the form P = IM for some ideal I of A. In this case, it is clear that P = (P : M)M, where (P : M) = {a ∈ A :
aM ⊆ P}. For more details on multiplication modules, we refer the reader to [1] and [12].

The concept of von Neumann regular rings and its generalizations have aroused great interest, and have
been widely studied in many papers (see, for example, [3,10,15,17]. Recall from [22] that a commutative
ring A is said to be a von Neumann regular ring if for each a ∈ A, there exists b ∈ A such that a = a2b. In
this case, the principal ideal (a) = (e) is generated by an idempotent element e ∈ A. Recently, Jayaram
and Tekir [14] extended the concept of von Neumann regular ring to modules by defining M-von Neumann
regular elements of a module. Let M be an A-module. Then an element a ∈ A is said to be an M-von
Neumann regular if aM = a2M [14]. An A-module M is said to be a von Neumann regular module if for
each x ∈M, Ax = aM = a2M for some a ∈ A. Now, we characterize von Neumann regular modules in terms
of (m,n)-semiprime submodules.

Theorem 8. Let M be a finitely generated A-module. The following statements are equivalent:
(i) M is a von Neumann regular module.
(ii) M is a multiplication reduced module, in which every proper submodule is (m,n)-semiprime.

Proof. (i)⇒ (ii): Suppose that M is a finitely generated von Neumann regular module. Then clearly M is a
multiplication module. According to [14, Lemma 10], M is a reduced module. Also, by [14, Theorem 1], for
each a ∈ A, aM = a2M. Now, let P be a proper submodule of M. Choose an element a ∈ A and a submodule
K of M such that amK ⊆ P. Since M is multiplication module, we have K = (K : M)M, which implies that
amK = (K : M)amM. As aM = a2M, we conclude that amK = (K : M)amM = (K : M)anM = an(K : M)M =
anK. This gives that amK = anK ⊆ P. Then, by Thoerem 1, P is an (m,n)-semiprime submodule of M.

(ii)⇒ (i): Let M be a finitely generated reduced multiplication module, in which every proper submodule
is (m,n)-semiprime. Let a ∈ A. Now, we will show that aM = a2M. If amM = M, then there is nothing to
prove. Thus, assume that amM is proper. Then, by assumption, amM is an (m,n)-semiprime submodule of
M. Since amM ⊆ amM, by Theorem 1, anM = amM, which implies that anM = an+1M. Since M is a finitely
generated module, by [5, Corollary 4], (1−ab)anM = 0 for some b ∈ A. Since M is reduced, we conclude
that (1− ab)aM = 0, which implies that aM = a2bM ⊆ a2M ⊆ aM. Thus, we have aM = a2M. Then, by
[14, Theorem 1], M is a von Neumann regular module.

3. CONCLUSIONS

In this article, we have discussed the concept of (m,n)-semiprime submodules, which is a generalization of
semiprime submodules of modules over commutative rings. We have investigated many properties of (m,n)-
semiprime submodules, as well as the relations between (m,n)-semiprime submodules and other classical
ideals/submodules such as (m,n)-closed ideals and semiprime submodules. We have also characterized von
Neumann regular modules and a subclass of Artinian modules in terms of this concept.
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