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1. INTRODUCTION

Let K be either the field R of real numbers or the field C of complex numbers. By a topological algebra
we will always mean a topological linear space over K, where the separately continuous multiplication has
been defined.

Recall that a topological algebra (A,τA) is a left (right or two-sided) Segal topological algebra in a
topological algebra (B,τB) via an algebra homomorphism f : A→ B, if

(1) clB( f (A)) = B;
(2) f is continuous;
(3) f (A) is a left (respectively, right or two-sided) ideal of B.
In short, we will denote Segal topological algebra by a triple (A, f ,B).
Let us briefly recall the definition of the category Seg of Segal topological algebras. Its objects are

all left (right or two-sided) Segal topological algebras. For any (A, f ,B),(C,g,D) ∈ Ob(Seg), the set
Mor((A, f ,B),(C,g,D)) of morphisms from (A, f ,B) to (C,g,D) consists of all such pairs (α,β ) of continu-
ous algebra homomorphisms α : A→C and β : B→D, for which g◦α = β ◦ f , i.e. we have a commutative
diagram

A
f−−−−→ Byα

yβ

C
g−−−−→ D

.

The composition of morphisms of Seg is defined componentwise as follows:
for any (A, f ,B),(C,g,D),(E,h,F) ∈ Ob(Seg) and any morphisms (α,β ) : (A, f ,B) → (C,g,D),
(γ,δ ) : (C,g,D)→ (E,h,F), the composition of (γ,δ ) and (α,β ) is (γ,δ )◦ (α,β ) = (γ ◦α,δ ◦β ).
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In [1], pp. 2–4, it was shown that this composition of morphisms is correctly defined and associative.
Moreover, it was demonstrated that the identity morphism for an object (A, f ,B) of Seg is a pair (1A,1B) of
identity maps.

First categorical properties of the category Seg were studied in [3] and [4]. The paper [3] also provides
some historical overview of Segal topological algebras.

The aim of this research is to study whether there exists a coproduct of a family (Aλ , fλ ,Bλ )λ∈Λ of Segal
topological algebras in the category Seg.

2. TENSOR PRODUCT ALGEBRA

Let Λ be an index set (which can be finite or infinite) and let (Aλ ,τλ )λ∈Λ be a family of topological algebras.
Equip the direct product ∏

λ∈Λ

Aλ with the box topology τ ∏
λ∈Λ

Aλ
, the base of which consists of sets in the form

{ ∏
λ∈Λ

Uλ : Uλ ∈ τλ}.

Then we can consider the topological tensor product algebra ( ⊗
λ∈Λ

Aλ ,τ ⊗
λ∈Λ

Aλ
), where the topology τ ⊗

λ∈Λ

Aλ

is the topology in which the map l : ∏
λ∈Λ

Aλ → ⊗
λ∈Λ

Aλ , defined by l( ∏
λ∈Λ

aλ ) = ⊗
λ∈Λ

aλ for each ∏
λ∈Λ

aλ ∈ ∏
λ∈Λ

Aλ ,

is continuous. This means that τ ⊗
λ∈Λ

Aλ
= {l(W ) : W ∈ τ ∏

λ∈Λ

Aλ
}. In this topology on the tensor product, for

each neighbourhood O of zero in ⊗
λ∈Λ

Aλ , there exist neighbourhoods (Oλ )λ∈Λ of zero in algebras (Aλ )λ∈Λ,

such that ⊗
λ∈Λ

Oλ ⊆ O. The topology τ ⊗
λ∈Λ

Aλ
is called the tensor product topology on ⊗

λ∈Λ

Aλ ,τ ⊗
λ∈Λ

Aλ
.

Notice that the general form of an element a of ⊗
λ∈Λ

AΛ is a =
k
∑

i=1
⊗

λ∈Λ

a(λ ,i), where k ∈ Z+, i.e. every

element of the tensor product is a finite sum of simple tensors ⊗
λ∈Λ

aλ .

We start this paper with a result about the density of images of maps between tensor products.

Lemma 1. Let Λ be an index set, (Aλ ,τλ )λ∈Λ, (Bλ ,σλ )λ∈Λ two families of topological algebras and
( fλ : Aλ → Bλ )λ∈Λ a family of maps. Let ( ⊗

λ∈Λ

Aλ ,τ ⊗
λ∈Λ

Aλ
),( ⊗

λ∈Λ

Bλ ,τ ⊗
λ∈Λ

Bλ
) be the respective topological

tensor product algebras and f : ⊗
λ∈Λ

Aλ → ⊗
λ∈Λ

Bλ be a map, which is given by

f
( k

∑
i=1
⊗

λ∈Λ

a(λ ,i)

)
=

k

∑
i=1
⊗

λ∈Λ

fλ (a(λ ,i)) for each
k

∑
i=1
⊗

λ∈Λ

a(λ ,i) ∈ ⊗
λ∈Λ

Aλ .

If fλ (Aλ ) is dense in Bλ for each λ ∈ Λ, then the set f ( ⊗
λ∈Λ

Aλ ) is dense in ⊗
λ∈Λ

Bλ .

Proof. Take any b ∈ ⊗
λ∈Λ

Bλ . Then there exist k ∈ Z+, and for each λ ∈ Λ, elements b(λ ,1), . . . ,b(λ ,k) such

that b =
k
∑

i=1
⊗

λ∈Λ

b(λ ,i). Set K = {(λ , i) : λ ∈Λ, i ∈ {1, . . . ,k}} and let U be any neighbourhood of b in ⊗
λ∈Λ

Bλ .

Then there exists a neighbourhood O of zero in ⊗
λ∈Λ

Bλ such that b+O ⊆U . As the addition is continuous

in ⊗
λ∈Λ

Bλ , then there exists a neighbourhood V of zero in ⊗
λ∈Λ

Bλ such that V + · · ·+V︸ ︷︷ ︸
k times

⊆ O.

Now, for each λ ∈ Λ, there exists a neighbourhood Vλ of zero in Bλ such that ⊗
λ∈Λ

Vλ ⊆V , and for every

(λ , i) ∈ K, b(λ ,i)+Vλ ∈ b(λ ,i)+ ⊗
λ∈Λ

Vλ . As the general element of a tensor product is some finite sum of

simple tensors, then it is clear that, for each i ∈ {1, . . . ,k}, we have

⊗
λ∈Λ

(b(λ ,i)+Vλ )⊆ ⊗
λ∈Λ

(b(λ ,i)+ ⊗
λ∈Λ

Vλ )⊆ ⊗
λ∈Λ

b(λ ,i)+ ⊗
λ∈Λ

Vλ .
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For each (λ , i) ∈ K, set U(λ ,i) = b(λ ,i)+Vλ . Then, for each (λ , i) ∈ K, U(λ ,i) is a neighbourhood of b(λ ,i) and

k

∑
i=1
⊗

λ∈Λ

U(λ ,i) ⊆
k

∑
ı=1

(
⊗

λ∈Λ

b(λ ,i)+ ⊗
λ∈Λ

Vλ

)
=

k

∑
i=1
⊗

λ∈Λ

b(λ ,i)+
k

∑
i=1
⊗

λ∈Λ

Vλ ⊆ b+
k

∑
i=1

V ⊆ b+O⊆U.

Since fλ (Aλ ) is dense in Bλ for each λ ∈ Λ, then there exist partially ordered sets (Iλ ,�λ )λ∈Λ, and for
each (λ , i) ∈ K, the family (aζ(λ ,i)

)ζ(λ ,i)∈Iλ
of elements of Aλ such that ( f (aζ(λ ,i)

))ζ(λ ,i)∈Iλ
converges to b(λ ,i).

This means that, for every (λ , i) ∈ K, there exists an element η(λ ,i) ∈ Iλ such that from ζ(λ ,i) �λ η(λ ,i) it
follows that fλ (aζ(λ ,i)

) ∈U(λ ,i).
Define the multi-index set ∏

λ∈Λ

Iλ and consider on it the partial order � defined by

(φ(λ ,i))λ∈λ � (ψ(λ ,i))λ∈Λ if and only if φ(λ ,i) �λ ψ(λ ,i) for each λ ∈ Λ. Then ( ∏
λ∈Λ

Iλ ,�) becomes a par-

tially ordered set of multi-indices.
Take any (aζ(λ ,i)

)λ∈Λ ∈ ⊗
λ∈Λ

Aλ with (ζ(λ ,i))λ∈Λ � (η(λ ,i))λ∈Λ and i ∈ {1, . . . ,k} fixed. Then

ζ(λ ,i) �λ η(λ ,i) for each λ ∈ Λ and we have that fλ (aζ(λ ,i)
) ∈U(λ ,i). This means that

f
( k

∑
i=1
⊗

λ∈Λ

aζ(λ ,i)

)
=

k

∑
i=1
⊗

λ∈Λ

fλ (aζ(λ ,i)
) ∈

k

∑
i=1
⊗

λ∈Λ

U(λ ,i) ⊆U

for all (ζ(λ ,i))λ∈Λ ∈ ∏
λ∈Λ

Iλ with (ζ(λ ,i))λ∈Λ � (η(λ ,i))λ∈Λ. Hence, the family

( f (
k
∑

i=1
⊗

λ∈Λ

aζ(λ ,i)
))(ζ(λ ,i))λ∈Λ∈ ∏

λ∈Λ

Iλ
converges to b.

As b is an arbitrary element of ⊗
λ∈Λ

Bλ , then the set f ( ⊗
λ∈Λ

Aλ ) is dense in ⊗
λ∈Λ

Bλ .

Remark 1. Notice that Lemma 1 is also true in case we have families (Aλ ,τλ )λ∈Λ and (Bλ ,σλ )λ∈Λ of
topological linear spaces instead of topological algebras. Moreover, the map f , given in Lemma 1, is
continuous, and if all the maps ( fλ )λ∈Λ are algebra homomorphisms, then the map f is also an algebra
homomorphism.

3. SOME PROPERTIES OF THE FREE PRODUCT OF ALGEBRAS

Remember (see [2], p. 203) that for a collection (Aλ )λ∈Λ of algebras, their tensor algebra is an algebra

T =

(⊕
λ∈Λ

Aλ

)
⊕
( ⊕

λ ,µ∈Λ

(Aλ ⊗Aµ)

)
⊕
( ⊕

λ ,µ,ν∈Λ

(Aλ ⊗Aµ ⊗Aν)

)
⊕ . . .

and every element t ∈ T is in the form

t =
k⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

))

for some k, pl,rm,l ∈ Z+ and tq,m,1, . . . , tq,m,il ∈
⋃

λ∈Λ Aλ .
In [2], pp. 203–205, we defined the algebraic operations in T as follows. If ρ ∈K,

t =
kt⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

))
∈ T
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and

s =
ks⊕

f=1

( u f⊕
g=1

(vg, f

∑
h=1

sh,g,1⊗ . . .⊗ sh,g, j f

))
∈ T,

then

ρt =
kt⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

(ρtq,m,1)⊗ . . .⊗ tq,m,il

))
,

t + s =
kt+ks⊕
l=1

( wl⊕
m=1

( xm,l

∑
q=1

zq,m,1⊗ . . .⊗ zq,m,Ll

))
,

where

Ll =

{
il, if 1 6 l 6 kt

jl−kt , if kt < l 6 kt + ks
, wl =

{
pl, if 1 6 l 6 kt

ul−kt , if kt < l 6 kt + ks
, (3.1)

xm,l =

{
rm,l, if 1 6 l 6 kt

vm,l−kt , if kt < l 6 kt + ks
and zq,m,d =

{
tq,m,d , if 1 6 l 6 kt

sq,m,d , if kt < l 6 kt + ks
. (3.2)

The multiplication of elements had to satisfy the rule

t · s =
kt ks⊕
ε=1

pX1 uX2⊕
δ=1

rX3 ,X1 vX4 ,X2

∑
y=1

( iX1⊗
u=1

tX5,X3,u⊗
jX2⊗

d=1

sX6,X4,d

)
,

where

X1 =

⌊
ε−1

ks

⌋
+1, X2 = ε−X1ks = ε−

⌊
ε−1

ks

⌋
ks,

X3 =

⌊
δ −1
pX1

⌋
+1 =

⌊
δ −1

pb ε−1
ks c+1

⌋
+1, X4 = δ −X3 pX1 = δ −

⌊
δ −1

pb ε−1
ks c+1

⌋
pb ε−1

ks c+1,

X5 =

⌊
y−1
vX4,X2

⌋
+1 =

 y−1
v

δ−

 δ−1
pb ε−1

ks c+1

pb ε−1
ks c+1

,ε−b ε−1
ks cks

+1

and

X6 = y− (X5−1)vX4,X2 = y−
⌊

y−1
vX4,X2

⌋
+1

= y−

 y−1
v

δ−

 δ−1
pb ε−1

ks c+1

pb ε−1
ks c+1

,ε−b ε−1
ks cks

v
δ−

 δ−1
pb ε−1

ks c+1

pb ε−1
ks c+1

,ε−b ε−1
ks cks

.

Suppose that we have two collections of algebras, (Aλ )λ∈Λ and (Bλ )λ∈Λ, indexed by the same set Λ.
We can consider the algebras (Aλ )λ∈Λ disjoint by setting a = (a,λ ) for every a ∈ Aλ . Similarily, we can
consider the algebras (Bλ )λ∈Λ disjoint. We need the disjointness of these families of algebras in order to be
able to choose for every a∈ ∪

λ∈Λ

Aλ and every b∈ ∪
λ∈Λ

Bλ unique indices λa ∈Λ and λb ∈Λ such that a∈ Aλa

and b ∈ Bλb . Thus, in what follows, for λ ,µ ∈ Λ with λ 6= µ we have Aλ ∩Aµ = /0 = Bλ ∩Bµ . Morever, for
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any a ∈ ∪
λ∈Λ

Aλ and every b ∈ ∪
λ∈Λ

Bλ we will denote by λa the unique index from Λ such that a ∈ Aλa and by

λb the unique index from Λ such that b ∈ Bλb . Notice that in some places we need to write µa instead of λa
and µb instead of λb.

Let T be the tensor algebra of algebras (Aλ )λ∈Λ and S the tensor algebra of algebras (Bλ )λ∈Λ.
Suppose that there are also algebra homomorphisms fλ : Aλ → Bλ for all λ ∈ Λ. Define a map

h̃T : ∪
λ∈Λ

Aλ → ∪
λ∈Λ

Bλ by h̃T (a) = fλa(a). Now, define a map hT : T → S by setting

hT (t) =
k⊕

l=1

pl⊕
m=1

rm,l

∑
q=1

h̃T (tq,m,1)⊗·· ·⊗ h̃T (tq,m,il )

for every element

t =
k⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

))
of T . Modifying the ideas of [2], pp. 208–209, we can show that hT is an algebra homomorphism. Indeed,
using the symbols given in (3.1)−(3.2), we obtain that for ρ ∈K,

t =
kt⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

))
∈ T

and

s =
ks⊕

f=1

( u f⊕
g=1

(vg, f

∑
h=1

sh,g,1⊗ . . .⊗ sh,g, j f

))
∈ T,

and we have

hT (t)+hT (s) =
kt⊕

l=1

pl⊕
m=1

rm,l

∑
q=1

il⊗
u=1

h̃T (tq,m,u)+
ks⊕

f=1

u f⊕
g=1

vg, f

∑
h=1

j f⊗
v=1

h̃T (sh,g,v)

=
kt+ks⊕
l=1

wl⊕
m=1

xm,l

∑
q=1

Ll⊗
d=1

h̃T (zq,m,d)

= hT

(kt+ks⊕
l=1

( wl⊕
m=1

( xm,l

∑
q=1

zq,m,1⊗ . . .⊗ zq,m,Ll

)))
= hT (t + s),

hT (ρt) =
k⊕

l=1

pl⊕
m=1

rm,l

∑
q=1

h̃T (ρtq,m,1)⊗ . . .⊗ h̃T (tq,m,il )

=
k⊕

l=1

pl⊕
m=1

rm,l

∑
q=1

(ρ h̃T (tq,m,1))⊗ . . .⊗ h̃T (tq,m,il ) = ρ

( k⊕
l=1

pl⊕
m=1

rm,l

∑
q=1

il⊗
u=1

h̃T (tq,m,u)

)
= ρhT (t)

and

hT (t · s) = hT

( kt⊕
l=1

ks⊕
f=1

( pl⊕
m=1

u f⊕
g=1

rm,lvg, f

∑
y=1

il⊗
u=1

t⌊ y−1
vg, f

⌋
+1,m,u

⊗
j f⊗

d=1

s
y−
⌊

y−1
vg, f

⌋
vg, f ,g,d

))

=
kt⊕

l=1

ks⊕
f=1

( pl⊕
m=1

u f⊕
g=1

rm,lvg, f

∑
y=1

il⊗
u=1

h̃T

(
t⌊ y−1

vg, f

⌋
+1,m,u

)
⊗

j f⊗
d=1

h̃T

(
s

y−
⌊

y−1
vg, f

⌋
vg, f ,g,d

))
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=

( kt⊕
l=1

pl⊕
m=1

rm,l

∑
q=1

il⊗
u=1

h̃T (tq,m,u)

)
·
( ks⊕

f=1

u f⊕
g=1

vg, f

∑
h=1

j f⊗
d=1

h̃T (sh,g,d)

)
= hT (t) ·hT (s).

Hence, hT is indeed an algebra homomorphism.
Suppose that, for every λ ∈ Λ, fλ (Aλ ) is a left (right or two-sided) ideal of Bλ . It is natural to ask

whether it is then true that hT (T ) is a left (right or two-sided) ideal of S. Actually, we will show that the
answer to the question “Whether hT (T ) is a left (right or two-sided) ideal of S” does not depend on the fact
whether fλ (Aλ ) is or is not a left (right or two-sided) ideal of Bλ for every λ ∈ Λ.

As h is an algebra homomorphism, then ρh(t) = h(ρt) ∈ h(T ) and h(t)+ h(s) = h(t + s) ∈ h(T ) for
every t,s ∈ T and every ρ ∈K. What concerns the multiplication of elements of hT (T ) with elements of S,
then it is not always true that v ·hT (t),hT (t) · v ∈ hT (T ) for arbitrary t ∈ T and v ∈ S.

Indeed, suppose that there exist λ0,λ1 ∈Λ such that Aλ0 is a proper subalgebra1 of Bλ0 , fλ0 is the identity
map on Aλ0 (i.e. fλ0 is an inclusion), Aλ1 = Bλ1 =K, where Bλ0 is an algebra over the field K and fλ1 is the
identity map on K.

As Aλ0 is a proper subalgebra of Bλ0 , then there exists b ∈ Bλ0 such that b 6∈ Aλ0 . Now, take the unit
element eK of the field K. Then eK ∈ Aλ1 ⊂ T . Hence, fλ1(eK) = eK ∈ hT (T ) and b ∈ Bλ0 ⊂ S. Therefore,
we can consider the product b ·eK = b⊗eK ∈ ShT (T )⊂ S. As the algebras (Bλ )λ∈Λ are considered pairwise
disjoint, then we obtain b⊗ eK ∈ Bλ0⊗Bλ1 .

Suppose that b⊗ eK ∈ hT (T ). Then b⊗ eK ∈ fλ0(Aλ0)⊗ fλ1(Aλ1). Hence, there exist m ∈ Z+ and
elements b1, . . . ,bm ∈ Aλ0 , k1, . . . ,km ∈ Aλ1 =K such that b⊗eK = ∑

m
i=1 bi⊗ki. Thus, for every bilinear map

g : Bλ0⊗Bλ1 → Bλ0 , we must have g(b⊗ eK) = g(∑m
i=1 bi⊗ ki).

Let g : Bλ0 ⊗ Bλ1 → Bλ0 be a map, for which g(∑n
j=1 c j ⊗ l j) = ∑

n
j=1 l jc j for every

∑
n
j=1 c j ⊗ l j ∈ Bλ0 ⊗Bλ1 . Then it is easy to see that g is well defined and is a bilinear map. Moreover,

g(b⊗ eK) = b and g(∑m
i=1 bi⊗ ki) = ∑

m
i=1 kibi. As Aλ0 is a subalgebra of Bλ0 , then ∑

m
i=1 kibi ∈ Aλ0 , while

b 6∈ Aλ0 . Hence, g(b⊗ eK) 6= g(∑m
i=1 bi⊗ ki). This is a contradiction, which shows that b⊗ eK 6∈ h(T ).

Therefore, S ·hT (T ) 6⊂ hT (T ).
Similarly, we can show that hT (T ) ·S 6⊂ hT (T ) in general. Thus, we have shown that hT (T ) is not always

a left (right or two-sided) ideal of S.
With that we have given a proof (in case of left ideals, the other cases are similar) of the following

Lemma.

Lemma 2. Let (Aλ )λ∈Λ and (Bλ )λ∈Λ be two collections of disjoint algebras indexed by the same set Λ.
Let ( fλ : Aλ → Bλ )λ∈Λ be a collection of algebra homomorphisms, T be the tensor algebra of algebras
(Aλ )λ∈Λ and S the tensor algebra of algebras (Bλ )λ∈Λ. Let h̃T : ∪

λ∈Λ

Aλ → ∪
λ∈Λ

Bλ be the map, defined by

h̃T (a) = fλa(a), where λa ∈ Λ is the unique index such that a ∈ Aλa . Let hT : T → S be the map, defined by

hT (t) =
k⊕

l=1

pl⊕
m=1

rm,l

∑
q=1

h̃T (tq,m,1)⊗·· ·⊗ h̃T (tq,m,il )

for every element

t =
k⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

))
of T . Then hT (T ) is a left (right or two-sided) ideal of S if and only if S · hT (T ) ⊆ hT (T ) (respectively,
hT (T ) ·S⊆ hT (T ) or S ·hT (T ) ·S⊆ hT (T )).

1 This situation is possible, for example, when Bλ0
is a topological algebra, which has a maximal ideal Aλ0

that is not closed in
the topology of Bλ0

.
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Consider the two-sided ideals I of T and J of S, generated by the sets

{x⊗ y− xy : x,y ∈ Aλ ,λ ∈ Λ} and {z⊗w− zw : z,w ∈ Bλ ,λ ∈ Λ},

respectively. As hT is an algebra homomorphism, then, for every fixed λ ∈ Λ and x,y ∈ Aλ , we have

hT (x⊗ y− xy) = hT (x⊗ y)−hT (xy) = h̃T (x)⊗ h̃T (y)− h̃T (xy)

= fλ (x)⊗ fλ (y)− fλ (xy) = fλ (x)⊗ fλ (y)− fλ (x) fλ (y) ∈ J,

which means that hT (I)⊆ J.
Consider the free product T/I of algebras (Aλ )λ∈Λ and the free product S/J of algebras (Bλ )λ∈Λ.
Let

κI : T → T/I, κJ : S→ S/J

be the respective quotient maps. Define a map h : T/I→ S/J by h(κI(t)) = κJ(hT (t)) for every t ∈ T . This
map is well defined because hT (I)⊆ J. Moreover, h is an algebra homomorphism because the maps hT ,κI
and κJ are algebra homomorphisms.

Lemma 3. Let (Aλ )λ∈Λ and (Bλ )λ∈Λ be two collections of disjoint algebras indexed by the same set,
( fλ : Aλ → Bλ )λ∈Λ a collection of algebra homomorphisms, T the tensor algebra of algebras (Aλ )λ∈Λ and
S the tensor algebra of algebras (Bλ )λ∈Λ. Consider the two-sided ideals I of T and J of S, generated by the
sets

{x⊗ y− xy : x,y ∈ Aλ ,λ ∈ Λ} and {z⊗w− zw : z,w ∈ Bλ ,λ ∈ Λ},

respectively, the free product T/I of algebras (Aλ )λ∈Λ and the free product S/J of algebras (Bλ )λ∈Λ. Define
a map h : T/I → S/J by h(κI(t)) = κJ(hT (t)) for every t ∈ T , where hT is defined as in Lemma 2. If
S ·hT (T )⊆ hT (T ) (hT (T ) ·S ⊆ hT (T ) or S ·hT (T ) ·S ⊆ hT (T )), then h(T/I) is a left (respectively, right or
two-sided) ideal of S/J.

Proof. We will prove the claim for left ideals. The other cases are similar.
As h is an algebra homomorphism and T/I is an algebra, then h(T/I) + h(T/I) ∈ h(T/I) and

λh(T/I)⊆ h(T/I) for every λ ∈K.
Take any a ∈ h(T/I) and any b ∈ S/J. Then a ∈ h(κI(T )) = κJ(hT (T )) and b ∈ κJ(S). As

S ·hT (T )⊆ hT (T ) and κJ is an algebra homomorphism, then

b ·a ∈ κJ(S) ·κJ(hT (T ))⊆ κJ(S ·hT (T ))⊆ κJ(hT (T )) = h(κI(T )) = h(T/I).

With that we have proved that S/J ·h(T/I)⊆ h(T/I), i.e. that h(T/I) is a left ideal of S/J.

Open question 1. Is the condition S · hT (T ) ⊆ hT (T ) (hT (T ) · S ⊆ hT (T ) or S · hT (T ) · S ⊆ hT (T ))
necessary for h(T/I) to be a left (respectively, right or two-sided) ideal of S/J?

4. SOME PROPERTIES OF TENSOR ALGEBRA OF TOPOLOGICAL ALGEBRAS

Let (iµ : Aµ → T )µ∈Λ be a family of inclusion maps sending elements of Aµ into the direct summand Aµ of
T , respectively, i.e. iµ(a) = a ∈ Aµ ⊂ T for every a ∈ Aµ and every µ ∈ Λ. Then the map iµ is an algebra
homomorphism for every µ ∈ Λ. Moreover, the quotient map κI is an algebra homomorphism. Hence, all
maps of the family (αµ = κI ◦ iµ : Aµ → T/I)µ∈Λ are algebra homomorphisms.

Similarly, let ( jµ : Bµ → S)µ∈Λ be a family of inclusion maps, which are also algebra homomorphisms,
and (βµ = κJ ◦ jµ : Bµ → S/J)µ∈Λ be respective algebra homomorphisms. Notice that h◦αλ = βλ ◦ fλ for
each λ ∈ Λ. Indeed, fix any λ ∈ Λ and take a ∈ Aλ . Then
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(h◦αλ )(a) = h(κI(iλ (a))) = h(κI(a)) = κJ(hT (a)) = κJ( fλ (a))

= κJ( jλ ( fλ (a))) = ((κJ ◦ jλ )◦ fλ )(a) = (βλ ◦ fλ )(a).

If all algebras (Aλ )λ∈Λ are topological algebras, set

F =
{

v : T/I→C : C is a topological algebra,v is an algebra

homomorphism such that v◦αµ is continuous for each µ ∈ Λ

}
.

On the tensor algebra T , consider the direct sum topology

τT = {O⊆ ⊕
i∈Z+

Xi : f−1
i (O) ∈ τi for each i ∈ Z+},

where
Xi = ⊕

λ1,...,λi∈Λ

(Aλ1⊗·· ·⊗Aλi)

and τi is the tensor product topology on Xi. It is known that the topology τT is the final topology defined by
the inclusion maps fi : Xi→ T . Hence, all inclusion maps are continuous in the topology τT . The topology
τT on tensor algebra T is also called the tensor algebra topology.

Equip T/I with the topology τ t
λ∈Λ

Aλ
, in which all maps v ∈ F are continuous. Then (T/I,τ t

λ∈Λ

Aλ
) is a

topological algebra (see [2], pp. 210–212).
If all algebras (Bλ )λ∈Λ are topological algebras, we consider on S the tensor algebra topology τS and

take the quotient topology
τS/J = {U ⊆ S/J : {s ∈ S,κJ(s) ∈U} ∈ τS}

on S/J. Then the quotient algebra (S/J,τS/J) is a topological algebra and κJ : S→ S/J is a continuous
map. Since the inclusion map jµ is continuous with respect to the topology τS, then βµ = κJ ◦ fµ is also
continuous for each µ ∈ Λ.

Suppose now that the maps ( fλ )λ∈Λ are also continuous. With respect to topologies τtλ∈ΛAλ
and τS/J ,

the map h becomes continuous, because from the fact that h ◦αλ = κJ ◦ fλ is a continuous map for each
λ ∈ Λ, it follows that h ∈ F .

Using the symbols defined above, we obtain another result.

Proposition 1. Let T and S be tensor algebras of two collections of topological algebras, (Aλ )λ∈Λ and
(Bλ )λ∈Λ, indexed by the same set Λ, respectively, and let I and J be the two-sided ideals of T and S,
generated by the sets

{x⊗ y− xy : x,y ∈ Aλ ,λ ∈ Λ} and {z⊗w− zw : z,w ∈ Bλ ,λ ∈ Λ},

respectively. Suppose that there are also maps fλ : Aλ → Bλ for all λ ∈ Λ such that fλ (Aλ ) is dense in Bλ

for all λ ∈ Λ. Then h(T/I) is also dense in S/J.

Proof. Take any w ∈ S/J and any neighbourhood W of w in S/J. Then there exist some element

v =
kv⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

vq,m,1⊗ . . .⊗ vq,m,il

))
∈ S

and a neighbourhood V of v in S such that w = κJ(v) and κJ(V )⊆W . Let

K = {µ = (κ,ν ,ρ) : l ∈ {1, . . . ,kv},ν ∈ {1, . . . , pl},κ ∈ {1,rν ,l},ρ ∈ {1, . . . , il}}.
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Notice that the set K is a finite set. Now, for every µ ∈ K, there exists unique λµ = λvµ
∈ Λ such that

vµ := vκ,ν ,ρ ∈ Bλµ
. Similarly to the proof of Lemma 1, we can find for each µ ∈ K a neighbourhood Vλµ

of
vµ in Bλµ

such that
kv⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

Vλ(q,m,1)
⊗ . . .⊗Vλ(q,m,il )

))
⊆V.

Since fλ (Aλ ) is dense in Bλ for every λ ∈Λ, then there exist partially ordered sets (Iλ ,�λ )λ∈Λ
and for each

µ ∈ K a family (aζµ
)

ζµ∈Iλµ

of elements of Aλµ
such that ( fλµ

(aζµ
))

ζµ∈Iλµ

converges to vµ . This means that,

for every µ ∈ K, there exists an element ηµ ∈ Iµ such that from ζµ �λµ
ηµ it follows that fλµ

(aζµ
) ∈Vλµ

.
Define the multi-index set ∏

µ∈K
Iλµ

and consider on it the partial order �, defined by

(φµ)µ∈K � (ψµ)µ∈K if and only if φµ �λµ
ψµ for each µ ∈K. Then ( ∏

µ∈K
Iλµ

,�) becomes a partially ordered

set of multi-indices.
Take any (aζµ

)µ∈K ∈ ⊗
µ∈K

Aλµ
with (ζµ)µ∈K � (ηµ)µ∈K . Then ζµ �λµ

ηµ for each µ ∈ K and we have

fλµ
(aζµ

) ∈Vµ . As h(κI(t)) = κJ(hT (t)) for each t ∈ T , then this means that

h
(

κI

( kv⊕
l=1

( pl⊕
m=1

( rm,l

∑
q=1

aζ(q,m,1)
⊗ . . .⊗aζ(q,m,il )

))))

= κJ

( kv⊕
l=1

( pl⊕
m=1

( rm,l

∑
q=1

fλ(q,m,1)
(aζ(q,m,1)

)⊗ . . .⊗ fλ(q,m,il )
(aζ(q,m,il )

)

)))

∈ κJ

( kv⊕
l=1

( pl⊕
m=1

( rm,l

∑
q=1

Vλ(q,m,1)
⊗ . . .⊗Vλ(q,m,il )

)))
⊆ κJ(V )⊆W

for every

t =
kv⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

aζ(q,m,1)
⊗ . . .⊗aζ(q,m,il )

))
∈ T

with (ζµ)µ∈K � (ηµ)µ∈K . Hence, the family

(t(ζµ )µ∈K
)(ζµ )µ∈K∈ ∏

µ∈K
Iλµ

=

(
h
(

κI

( kv⊕
l=1

( pl⊕
m=1

( rm,l

∑
q=1

aζ(q,m,1)
⊗ . . .⊗aζ(q,m,il )

)))))
(ζµ )µ∈K∈ ∏

µ∈K
Iλµ

of elements of h(T/I) converges to w.
As w is an arbitrary element of S/J, then the set h(T/I) is dense in S/J.

Corollary 1. Let (Aλ )λ∈Λ and (Bλ )λ∈Λ be two sets of disjoint topological algebras, indexed by the same set
Λ. For every λ ∈ Λ, let fλ : Aλ → Bλ be a continuous algebra homomorphism such that fλ (Aλ ) is dense in
Bλ . Define a map h : T/I→ S/J by h(κI(t)) = κJ(hT (t)) for every t ∈ T , where hT is defined as in Lemma 2.
If S ·hT (T )⊆ hT (T ) (hT (T ) ·S ⊆ hT (T ) or S ·hT (T ) ·S ⊆ hT (T )), then h(T/I) is a dense left (respectively,
right or two-sided) ideal of S/J.

Proof. The claim follows from Lemma 3 and Proposition 1.

Corollary 2. Let (Aλ , fλ ,Bλ )λ∈Λ be a family of Segal topological algebras, T the tensor algebra of algebras
(Aλ )λ∈Λ, S the tensor algebra of algebras (Bλ )λ∈Λ, I and J two-sided ideals of T and S, generated by the
sets

{x⊗ y− xy : x,y ∈ Aλ ,λ ∈ Λ} and {z⊗w− zw : z,w ∈ Bλ ,λ ∈ Λ},
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respectively, and h : T/I → S/I a map, defined in Lemma 3. If S · hT (T ) ⊆ hT (T ) (hT (T ) · S ⊆ hT (T )
or S · hT (T ) · S ⊆ hT (T )), then (T/I,h,S/I) is a left (respectively, right or two-sided) Segal topological
algebra.

Remark 2. Notice that the result in Corollary 2 does not depend on whether some particular Segal topo-
logical algebra (Aλ0 , fλ0 ,Bλ0) from the family (Aλ , fλ ,Bλ )λ∈Λ is left, right or two-sided Segal topological
algebra.

5. COPRODUCTS IN THE CATEGORY SEG

Definition 1. The coproduct of the family (Aλ , fλ ,Bλ )λ∈Λ of Segal topological algebras in the cate-
gory Seg is an ordered pair (( t

λ∈Λ

Aλ ,h, t
λ∈Λ

Bλ ),((αµ ,βµ))µ∈Λ), consisting of a Segal topological algebra

( t
λ∈Λ

Aλ ,h, t
λ∈Λ

Bλ ) and a family ((αµ ,βµ) : (Aµ , fµ ,Bµ)→ ( t
λ∈Λ

Aλ ,h, t
λ∈Λ

Bλ ))µ∈Λ of morphisms in Seg such

that for any object (C,g,D) of Seg and every family ((γµ ,δµ) : (Aµ , fµ ,Bµ)→ (C,g,D))µ∈Λ of morphisms
in Seg, there exists a unique morphism (θ ,ω) : ( t

λ∈Λ

Aλ ,h, t
λ∈Λ

Bλ )→ (C,g,D) in Seg such that the diagram

D Bν

t
λ∈Λ

Bλ Bµ

t
λ∈Λ

Aλ Aµ . . . . . .

C Aν

δν

βν
ω

βµ

δµ

h

θ

αµ

γµ

fµg

γν

fν

αν

commutes.

Thus, to have a coproduct (( t
λ∈Λ

Aλ ,h, t
λ∈Λ

Bλ ),((αµ ,βµ))µ∈Λ) in Seg, it is equivalent to having the

following conditions fulfilled:
(1) there exists ( t

λ∈Λ

Aλ ,h, t
λ∈Λ

Bλ ) ∈ Ob(Seg);

(2) there exist two families (αµ : Aµ → t
λ∈Λ

Aλ )µ∈Λ and (βµ : Bµ → t
λ∈Λ

Bλ )µ∈Λ of continuous algebra

homomorphisms such that h◦αµ = βµ ◦ fµ for each µ ∈ Λ;
(3) for any (C,g,D)∈Ob(Seg) and families (γµ : Aµ →C)µ∈Λ, (δµ : Bµ →D)µ∈Λ of continuous algebra

homomorphisms such that g◦ γµ = δµ ◦ fµ for each µ ∈ Λ, there exist continuous algebra homomorphisms
θ : t

λ∈Λ

Aλ →C and ω : t
λ∈Λ

Bλ → D such that

(3a) θ ◦αµ = γµ for each µ ∈ Λ;
(3b) ω ◦βµ = δµ for each µ ∈ Λ;
(3c) g◦θ = ω ◦h;
(3d) if θ : t

λ∈Λ

Aλ →C and ω : t
λ∈Λ

Bλ → D are continuous algebra homomorphisms such that

g◦θ = ω ◦h, γµ = θ ◦αµ and δµ = ω ◦βµ for each µ ∈ Λ, then θ = θ and ω = ω .
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Theorem 1. Let (Aλ , fλ ,Bλ )λ∈Λ be a family of left (right or two-sided) Segal topological algebras, T the
tensor algebra of algebras (Aλ )λ∈Λ, S the tensor algebra of algebras (Bλ )λ∈Λ, I and J two-sided ideals of
T and S, generated by the sets

{x⊗ y− xy : x,y ∈ Aλ ,λ ∈ Λ} and {z⊗w− zw : z,w ∈ Bλ ,λ ∈ Λ},

respectively, and h : T/I → S/I a map, defined in Lemma 3. If S · hT (T ) ⊆ hT (T ) (respectively,
hT (T ) · S ⊆ hT (T ) or S · hT (T ) · S ⊆ hT (T )), then the coproduct of the family (Aλ , fλ ,Bλ )λ∈Λ exists and
is in the form (( t

λ∈Λ

Aλ ,h, t
λ∈Λ

Bλ ),((αµ ,βµ))µ∈Λ), where t
λ∈Λ

Aλ = T/I, t
λ∈Λ

Bλ = S/J, αµ = κI ◦ iµ and

βµ = κJ ◦ jµ for each µ ∈ Λ.

Proof. We follow the steps (1)–(3d), as described after the definition of a coproduct in Seg, in order to prove
the present theorem.

(1) By Corollary 2, we know that ( t
λ∈Λ

Aλ ,h, t
λ∈Λ

Bλ ) ∈ Ob(Seg).

(2) In the beginning of Section 4 we already checked that h◦αµ = βµ ◦ fµ for every µ ∈ Λ.
(3) Take any (C,g,D) ∈ Ob(Seg) and families (γµ : Aµ → C)µ∈Λ, (δµ : Bµ → D)µ∈Λ of continuous

algebra homomorphisms such that g◦ γµ = δµ ◦ fµ for each µ ∈ Λ.
Remember that t

λ∈Λ

Aλ = T/I and t
λ∈Λ

Bλ = S/J, which means that every element of t
λ∈Λ

Aλ is of the

form κI(t) for some

t =
kt⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

))
∈ T

and every element of t
λ∈Λ

Bλ is of the form κJ(v) for some

v =
kv⊕

o=1

( uo⊕
p=1

(wp,o

∑
n=1

vn,p,1⊗ . . .⊗ vn,p,io

))
∈ S.

Define maps θ : t
λ∈Λ

Aλ →C and ω : t
λ∈Λ

Bλ → D as follows:

θ(κI(t)) =
kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

γ̃(tq,m,d)

))
,

where γ̃(tq,m,d) = γµ(tq,m,d) for tq,m,d ∈ Aµ (here µ = λtq,m,d ) and

ω(κJ(v)) =
kv

∑
o=1

( uo

∑
p=1

(wp,o

∑
n=1

io

∏
d=1

δ̃ (vn,p,d)

))
,

where δ̃ (vn,p,d) = δµ(vn,p,d) for vn,p,d ∈ Bµ (here µ = λvn,p,d ).
Take any u ∈ T such that κI(u) = κI(t). Then s = u− t ∈ I, which means that s has the form

s =
ks⊕

f=1

( u f⊕
g=1

(vg, f

∑
h=1

sh,g,1⊗ . . .⊗ sh,g, j f

))
,

where, for all possible values of q,m,d, we have sq,m,d = xsq,m,d ⊗ ysq,m,d − xsq,m,d ysq,m,d for some
xsq,m,d ,ysq,m,d ∈ Aλsq,m,d

and u = t + s has the form

u =
kt+ks⊕
l=1

( wl⊕
m=1

( xm,l

∑
q=1

zq,m,1⊗ . . .⊗ zq,m,Ll

))
,
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where Ll,wl,xm,l and zq,m,d are defined as in (3.1)–(3.2). Notice that, for all possible values of q,m,d, we
have

θ(κI(sq,m,d)) = θ(κI(xsq,m,d ⊗ ysq,m,d − xsq,m,d ysq,m,d )) = γ̃(xsq,m,d )γ̃(ysq,m,d )− γ̃(xsq,m,d ysq,m,d )

= γλsq,m,d
(xsq,m,d )γλsq,m,d

(ysq,m,d )− γλsq,m,d
(xsq,m,d ysq,m,d ) = θC,

because γλsq,m,d
is an algebra homomorphism.

This means that θ(κI(s)) = θC and θ(κI(u)) = θ(κI(s+ t)) = θ(κI(s))+θ(κI(t)) = θ(κI(t)). Hence,
θ is correctly defined. Similarly, we can also check that ω is correctly defined, i.e. if κJ(v1) = κJ(v2), then
also ω(κJ(v1)) = ω(κJ(v2)).

As the maps (γµ : Aµ →C)µ∈Λ, (δµ : Bµ → D)µ∈Λ were continuous algebra homomorphisms, then the
maps θ and ω are also continuous algebra homomorphisms.

(3a) Fix any µ ∈ Λ and any a ∈ Aµ . Then αµ(a) = (κI ◦ iµ)(a) = κI(iµ(a)) = κI(a). Hence,
(θ ◦αµ)(a) = θ(κI(a)) = γµ(a). Thus, θ ◦αµ = γµ for each µ ∈ Λ.

(3b) Fix any µ ∈ Λ and any b ∈ Bµ . Then βµ(b) = (κJ ◦ jµ)(b) = κJ( jµ(b)) = κJ(b). Hence,
(ω ◦βµ)(b) = ω(κJ(b)) = δµ(b). Thus, ω ◦βµ = δµ for each µ ∈ Λ.

(3c) Take any x ∈ t
λ∈Λ

Aλ . Then there exists

t =
kt⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

))
∈ T

such that x = κI(t).
Notice that, for any a ∈ ∪

λ∈Λ

Aλ , we have

(g◦ γ̃)(a) = (g◦ γµa)(a) = (δµa ◦ fµa)(a) = (δ̃ ◦ f̃ )(a),

where f̃ : ∪
λ∈Λ

Aλ → ∪
λ∈Λ

Bλ is defined as f̃ (a) = fµa(a) for each a ∈ ∪
λ∈Λ

Aλ and δ̃ : ∪
λ∈Λ

Bλ → D is defined as

δ̃ (b) = δµb(b) for each b ∈ ∪
λ∈Λ

Bλ . Hence, g◦ γ̃ = δ̃ ◦ f̃ .

Define maps α : ∪
λ∈Λ

Aλ → t
λ∈Λ

Aλ and β : ∪
λ∈Λ

Bλ → t
λ∈Λ

Bλ by α(a) = αµa(a) and β (b) = βµb(b),

respectively. Then δ̃ = ω ◦β , γ̃ = θ ◦α and β ◦ f̃ = h◦α .
Notice that, for every µ ∈ Λ and every a ∈ Aµ , we have (h◦αµ)(a) = (h◦κI)(a).
Now, because of the definitions of addition and multiplication via direct sums and tensor products in T ,

(g◦θ)(x) = g(θ(κI(t))) = g

(
kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

γ̃(tq,m,d)

)))

=
kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(g◦ γ̃)(tq,m,d)

))
=

kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(δ̃ ◦ f̃ )(tq,m,d)

))

=
kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

((ω ◦β )◦ f̃ )(tq,m,d)

))
=

kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(ω ◦(h◦α))(tq,m,d)

))

=
kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(ω ◦(h◦κI))(tq,m,d)

))
=(ω ◦h)

kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

κI

( il

∏
d=1

tq,m,d

)))

= (ω ◦h)
(

κI

( kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

(tq,m,1⊗ . . .⊗ tq,m,il

))))
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= (ω ◦h)
(

κI

( kt⊕
l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

))))
= (ω ◦h)(κI(t)) = (ω ◦h)(x)

for each x ∈ t
λ∈Λ

Aλ . Hence, g◦θ = ω ◦h.

(3d) Suppose that θ : t
λ∈Λ

Aλ →C and ω : t
λ∈Λ

Bλ →D are continuous algebra homomorphisms such that

g◦θ = ω ◦h, γµ = θ ◦αµ and δµ = ω ◦βµ for each µ ∈ Λ. Take any x ∈ t
λ∈Λ

Aλ . Then there exists

t =
kt⊕

l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

))
∈ T

such that x = κI(t).
Now, because of the definitions of addition and multiplication via direct sums and tensor products in T

and since θ ,κI,θ are algebra homomorphisms, we obtain

θ(x) = (θ ◦κI)

( kt⊕
l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

)))

= (θ ◦κI)

( kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

tq,m,d

)))
=

kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(θ ◦κI)(tq,m,d)

))

=
kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(θ ◦κI)(iµtq,m,d
(tq,m,d))

))
=

kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(θ(κI ◦ iµtq,m,d
))(tq,m,d)

))

=
kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(θ ◦αµtq,m,d
)(tq,m,d)

))
=

kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(γµtq,m,d
)(tq,m,d))

))

=
kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(θ ◦αµtq,m,d
)(tq,m,d)

))
=

kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(θ(κI ◦ iµtq,m,d
))(tq,m,d)

))

=
kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(θ ◦κI)(iµtq,m,d
(tq,m,d))

))
=

kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

(θ ◦κI)(tq,m,d)

))

= (θ ◦κI)

( kt

∑
l=1

( pl

∑
m=1

( rm,l

∑
q=1

il

∏
d=1

tq,m,d

)))
= (θ ◦κI)

( kt⊕
l=1

( pl⊕
m=1

( rm,l

∑
q=1

tq,m,1⊗ . . .⊗ tq,m,il

)))
= θ(x)

for each x ∈ t
λ∈Λ

Aλ . Using similar arguments for ω̃,ω,κJ and the definitions of addition and multiplication

in S, we can show that ω̃(y) = ω(y) for each y∈ t
λ∈Λ

Bλ . As it holds for each x∈ t
λ∈Λ

Aλ and each y∈ t
λ∈Λ

Bλ ,

then we have θ̃ = θ and ω̃ = ω .
With this we have proved our claim that ( t

λ∈Λ

Aλ ,h, t
λ∈Λ

Bλ ) is the coproduct of the family

(Aλ , fλ ,Bλ )λ∈Λ of Segal topological algebras. Hence, the coproduct exists in the category Seg.

Open question 2. Is the condition S · hT (T ) ⊆ hT (T ) (hT (T ) · S ⊆ hT (T ) or S · hT (T ) · S ⊆ hT (T ))
necessary for the existence of a coproduct?

6. CONCLUSIONS

In the present research we have found a sufficient condition for the existence of coproducts in the category
Seg and stated some open problems.
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Kokorrutised Segali topoloogiliste algebrate kategoorias Seg

Mart Abel

On leitud piisav tingimus kokorrutiste leidumiseks kategoorias Seg ja sõnastatud mõned lahtised prob-
leemid.
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