Coproducts in the category Seg of Segal topological algebras

Mart Abel
School of Digital Technologies, Tallinn University, Narva mnt 25, 10120 Tallinn, Estonia; Institute of Mathematics and Statistics, University of Tartu, Narva mnt 18, 51009 Tartu, Estonia; mart.abel@ tlu.ee, mart.abel@ut.ee

Received 23 April 2021, accepted 16 June 2021, available online 20 July 2021
(C) 2021 Author. This is an Open Access article distributed under the terms and conditions of the Creative Commons AttributionNonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/).

Abstract. In this paper we find a sufficient condition for a family of Segal topological algebras to have a coproduct in the category Seg.

Key words: Segal topological algebras, category, tensor product algebra, free product, coproduct.

1. INTRODUCTION

Let \mathbb{K} be either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. By a topological algebra we will always mean a topological linear space over \mathbb{K}, where the separately continuous multiplication has been defined.

Recall that a topological algebra $\left(A, \tau_{A}\right)$ is a left (right or two-sided) Segal topological algebra in a topological algebra $\left(B, \tau_{B}\right)$ via an algebra homomorphism $f: A \rightarrow B$, if
(1) $\mathrm{cl}_{B}(f(A))=B$;
(2) f is continuous;
(3) $f(A)$ is a left (respectively, right or two-sided) ideal of B.

In short, we will denote Segal topological algebra by a triple (A, f, B).
Let us briefly recall the definition of the category Seg of Segal topological algebras. Its objects are all left (right or two-sided) Segal topological algebras. For any $(A, f, B),(C, g, D) \in \mathrm{Ob}(\mathbf{S e g})$, the set $\operatorname{Mor}((A, f, B),(C, g, D))$ of morphisms from (A, f, B) to (C, g, D) consists of all such pairs (α, β) of continuous algebra homomorphisms $\alpha: A \rightarrow C$ and $\beta: B \rightarrow D$, for which $g \circ \alpha=\beta \circ f$, i.e. we have a commutative diagram

The composition of morphisms of Seg is defined componentwise as follows:
for any $(A, f, B),(C, g, D),(E, h, F) \in \mathrm{Ob}(\mathbf{S e g})$ and any morphisms $(\alpha, \beta):(A, f, B) \rightarrow(C, g, D)$, $(\gamma, \delta):(C, g, D) \rightarrow(E, h, F)$, the composition of (γ, δ) and (α, β) is $(\gamma, \delta) \circ(\alpha, \beta)=(\gamma \circ \alpha, \delta \circ \beta)$.

In [1], pp. 2-4, it was shown that this composition of morphisms is correctly defined and associative. Moreover, it was demonstrated that the identity morphism for an object (A, f, B) of $\mathbf{S e g}$ is a pair $\left(1_{A}, 1_{B}\right)$ of identity maps.

First categorical properties of the category $\mathbf{S e g}$ were studied in [3] and [4]. The paper [3] also provides some historical overview of Segal topological algebras.

The aim of this research is to study whether there exists a coproduct of a family $\left(A_{\lambda}, f_{\lambda}, B_{\lambda}\right)_{\lambda \in \Lambda}$ of Segal topological algebras in the category Seg.

2. TENSOR PRODUCT ALGEBRA

Let Λ be an index set (which can be finite or infinite) and let $\left(A_{\lambda}, \tau_{\lambda}\right)_{\lambda \in \Lambda}$ be a family of topological algebras. Equip the direct product $\prod_{\lambda \in \Lambda} A_{\lambda}$ with the box topology $\tau_{\lambda \in \Lambda} A_{\lambda}$, the base of which consists of sets in the form $\left\{\prod_{\lambda \in \Lambda} U_{\lambda}: U_{\lambda} \in \tau_{\lambda}\right\}$.

Then we can consider the topological tensor product algebra $\left(\underset{\lambda \in \Lambda}{\otimes} A_{\lambda}, \tau_{\lambda \in \Lambda}^{\otimes A_{\lambda}}\right)$, where the topology $\tau_{\lambda \in \Lambda}^{\otimes A_{\lambda}}$ is the topology in which the map $l: \prod_{\lambda \in \Lambda} A_{\lambda} \rightarrow \underset{\lambda \in \Lambda}{\otimes} A_{\lambda}$, defined by $l\left(\prod_{\lambda \in \Lambda} a_{\lambda}\right)=\underset{\lambda \in \Lambda}{\otimes} a_{\lambda}$ for each $\prod_{\lambda \in \Lambda} a_{\lambda} \in \prod_{\lambda \in \Lambda} A_{\lambda}$, is continuous. This means that $\tau_{\lambda \in \Lambda}^{\otimes A_{\lambda}}=\left\{l(W): W \in \tau_{\lambda \in \Lambda} A_{\lambda}\right\}$. In this topology on the tensor product, for each neighbourhood O of zero in $\underset{\lambda \in \Lambda}{\otimes} A_{\lambda}$, there exist neighbourhoods $\left(O_{\lambda}\right)_{\lambda \in \Lambda}$ of zero in algebras $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$, such that $\underset{\lambda \in \Lambda}{\otimes} O_{\lambda} \subseteq O$. The topology $\underset{\lambda \in \Lambda}{\otimes A_{\lambda}}$ is called the tensor product topology on $\underset{\lambda \in \Lambda}{\otimes} A_{\lambda}, \tau_{\lambda \in \Lambda}^{\otimes} A_{\lambda}$.

Notice that the general form of an element a of $\underset{\lambda \in \Lambda}{\otimes} A_{\Lambda}$ is $a=\sum_{i=1}^{k} \otimes_{\lambda \in \Lambda}^{\otimes} a_{(\lambda, i)}$, where $k \in \mathbb{Z}^{+}$, i.e. every element of the tensor product is a finite sum of simple tensors $\underset{\lambda \in \Lambda}{\otimes} a_{\lambda}$.

We start this paper with a result about the density of images of maps between tensor products.
Lemma 1. Let Λ be an index set, $\left(A_{\lambda}, \tau_{\lambda}\right)_{\lambda \in \Lambda},\left(B_{\lambda}, \sigma_{\lambda}\right)_{\lambda \in \Lambda}$ two families of topological algebras and $\left(f_{\lambda}: A_{\lambda} \rightarrow B_{\lambda}\right)_{\lambda \in \Lambda}$ a family of maps. Let $\left(\underset{\lambda \in \Lambda}{\otimes} A_{\lambda}, \tau_{\lambda \in \Lambda}^{\otimes} A_{\lambda}\right),\left(\underset{\lambda \in \Lambda}{\otimes} B_{\lambda}, \tau_{\lambda \in \Lambda}^{\otimes} B_{\lambda}\right)$ be the respective topological tensor product algebras and $f: \underset{\lambda \in \Lambda}{\otimes} A_{\lambda} \rightarrow \underset{\lambda \in \Lambda}{\otimes} B_{\lambda}$ be a map, which is given by

If $f_{\lambda}\left(A_{\lambda}\right)$ is dense in B_{λ} for each $\lambda \in \Lambda$, then the set $f\left(\underset{\lambda \in \Lambda}{\otimes} A_{\lambda}\right)$ is dense in $\underset{\lambda \in \Lambda}{\otimes} B_{\lambda}$.
Proof. Take any $b \in \underset{\lambda \in \Lambda}{\otimes} B_{\lambda}$. Then there exist $k \in \mathbb{Z}^{+}$, and for each $\lambda \in \Lambda$, elements $b_{(\lambda, 1)}, \ldots, b_{(\lambda, k)}$ such that $b=\sum_{i=1}^{k}{\underset{\lambda}{\lambda \in \Lambda}}_{\otimes} b_{(\lambda, i)}$. Set $K=\{(\lambda, i): \lambda \in \Lambda, i \in\{1, \ldots, k\}\}$ and let U be any neighbourhood of b in $\underset{\lambda \in \Lambda}{\otimes} B_{\lambda}$. Then there exists a neighbourhood O of zero in $\underset{\lambda \in \Lambda}{\otimes} B_{\lambda}$ such that $b+O \subseteq U$. As the addition is continuous in $\underset{\lambda \in \Lambda}{\otimes} B_{\lambda}$, then there exists a neighbourhood V of zero in $\underset{\lambda \in \Lambda}{\otimes} B_{\lambda}$ such that $\underbrace{V+\cdots+V}_{k \text { times }} \subseteq O$.

Now, for each $\lambda \in \Lambda$, there exists a neighbourhood V_{λ} of zero in B_{λ} such that $\underset{\lambda \in \Lambda}{\otimes} V_{\lambda} \subseteq V$, and for every $(\lambda, i) \in K, b_{(\lambda, i)}+V_{\lambda} \in b_{(\lambda, i)}+\underset{\lambda \in \Lambda}{\otimes} V_{\lambda}$. As the general element of a tensor product is some finite sum of simple tensors, then it is clear that, for each $i \in\{1, \ldots, k\}$, we have

For each $(\lambda, i) \in K$, set $U_{(\lambda, i)}=b_{(\lambda, i)}+V_{\lambda}$. Then, for each $(\lambda, i) \in K, U_{(\lambda, i)}$ is a neighbourhood of $b_{(\lambda, i)}$ and

$$
\sum_{i=1}^{k} \otimes \otimes_{\in \Lambda}^{\otimes} U_{(\lambda, i)} \subseteq \sum_{1=1}^{k}\left(\underset{\lambda \in \Lambda}{\otimes} b_{(\lambda, i)}+\underset{\lambda \in \Lambda}{\otimes} V_{\lambda}\right)=\sum_{i=1}^{k} \otimes_{\lambda \in \Lambda}^{\otimes} b_{(\lambda, i)}+\sum_{i=1}^{k} \underset{\lambda \in \Lambda}{\otimes} V_{\lambda} \subseteq b+\sum_{i=1}^{k} V \subseteq b+O \subseteq U .
$$

Since $f_{\lambda}\left(A_{\lambda}\right)$ is dense in B_{λ} for each $\lambda \in \Lambda$, then there exist partially ordered sets $\left(I_{\lambda}, \succ_{\lambda}\right)_{\lambda \in \Lambda}$, and for each $(\lambda, i) \in K$, the family $\left(a_{\zeta_{(\lambda, i)}}\right) \zeta_{(\lambda, i)} \in I_{\lambda}$ of elements of A_{λ} such that $\left(f\left(a_{\zeta(\lambda, i)}\right)\right)_{\zeta(\lambda, i)} \in I_{\lambda}$ converges to $b_{(\lambda, i)}$. This means that, for every $(\lambda, i) \in K$, there exists an element $\eta_{(\lambda, i)} \in I_{\lambda}$ such that from $\zeta_{(\lambda, i)} \succ_{\lambda} \eta_{(\lambda, i)}$ it follows that $f_{\lambda}\left(a_{\zeta(\lambda, i)}\right) \in U_{(\lambda, i)}$.

Define the multi-index set $\prod_{\lambda \in \Lambda} I_{\lambda}$ and consider on it the partial order \succ defined by $\left(\phi_{(\lambda, i)}\right)_{\lambda \in \lambda} \succ\left(\psi_{(\lambda, i)}\right)_{\lambda \in \Lambda}$ if and only if $\phi_{(\lambda, i)} \succ_{\lambda} \psi_{(\lambda, i)}$ for each $\lambda \in \Lambda$. Then $\left(\prod_{\lambda \in \Lambda} I_{\lambda}, \succ\right)$ becomes a partially ordered set of multi-indices.

Take any $\left(a_{\zeta(\lambda, i)}\right)_{\lambda \in \Lambda} \in \underset{\lambda \in \Lambda}{\otimes} A_{\lambda}$ with $\left(\zeta_{(\lambda, i)}\right)_{\lambda \in \Lambda} \succ\left(\eta_{(\lambda, i)}\right)_{\lambda \in \Lambda}$ and $i \in\{1, \ldots, k\}$ fixed. Then $\zeta_{(\lambda, i)} \succ_{\lambda} \eta_{(\lambda, i)}$ for each $\lambda \in \Lambda$ and we have that $f_{\lambda}\left(a_{\zeta(\lambda, i)}\right) \in U_{(\lambda, i)}$. This means that

$$
f\left(\sum_{i=1}^{k} \underset{\lambda \in \Lambda}{\otimes} a_{\zeta(\lambda, i)}\right)=\sum_{i=1}^{k} \otimes \underset{\lambda \in \Lambda}{\otimes} f_{\lambda}\left(a_{\zeta(\lambda, i)}\right) \in \sum_{i=1}^{k} \underset{\lambda \in \Lambda}{\otimes} U_{(\lambda, i)} \subseteq U
$$

for all $\left(\zeta_{(\lambda, i)}\right)_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} I_{\lambda}$ with $\left(\zeta_{(\lambda, i)}\right)_{\lambda \in \Lambda} \succ\left(\eta_{(\lambda, i)}\right)_{\lambda \in \Lambda}$. Hence, the family $\left.\left(f\left(\sum_{i=1}^{k} \otimes \otimes_{\lambda \in \Lambda} a_{\zeta(\lambda, i)}\right)\right)_{(\zeta(\lambda, i)}\right)_{\lambda \in \Lambda} \in \prod_{\lambda \in \Lambda} I_{\lambda}$ converges to b.

As b is an arbitrary element of $\underset{\lambda \in \Lambda}{\otimes} B_{\lambda}$, then the set $f\left(\underset{\lambda \in \Lambda}{\otimes} A_{\lambda}\right)$ is dense in $\underset{\lambda \in \Lambda}{\otimes} B_{\lambda}$.
Remark 1. Notice that Lemma 1 is also true in case we have families $\left(A_{\lambda}, \tau_{\lambda}\right)_{\lambda \in \Lambda}$ and $\left(B_{\lambda}, \sigma_{\lambda}\right)_{\lambda \in \Lambda}$ of topological linear spaces instead of topological algebras. Moreover, the map f, given in Lemma 1 , is continuous, and if all the maps $\left(f_{\lambda}\right)_{\lambda \in \Lambda}$ are algebra homomorphisms, then the map f is also an algebra homomorphism.

3. SOME PROPERTIES OF THE FREE PRODUCT OF ALGEBRAS

Remember (see [2], p. 203) that for a collection $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ of algebras, their tensor algebra is an algebra

$$
T=\left(\bigoplus_{\lambda \in \Lambda} A_{\lambda}\right) \oplus\left(\underset{\lambda, \mu \in \Lambda}{\bigoplus}\left(A_{\lambda} \otimes A_{\mu}\right)\right) \oplus\left(\underset{\lambda, \mu, v \in \Lambda}{\bigoplus_{\lambda}}\left(A_{\lambda} \otimes A_{\mu} \otimes A_{\nu}\right)\right) \oplus \ldots
$$

and every element $t \in T$ is in the form

$$
t=\bigoplus_{l=1}^{k}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right)
$$

for some $k, p_{l}, r_{m, l} \in \mathbb{Z}^{+}$and $t_{q, m, 1}, \ldots, t_{q, m, i_{l}} \in \bigcup_{\lambda \in \Lambda} A_{\lambda}$.
In [2], pp. 203-205, we defined the algebraic operations in T as follows. If $\rho \in \mathbb{K}$,

$$
t=\bigoplus_{l=1}^{k_{t}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right) \in T
$$

and

$$
s=\bigoplus_{f=1}^{k_{s}}\left(\bigoplus_{g=1}^{u_{f}}\left(\sum_{h=1}^{v_{g, f}} s_{h, g, 1} \otimes \ldots \otimes s_{h, g, j_{f}}\right)\right) \in T
$$

then

$$
\begin{aligned}
& \rho t=\bigoplus_{l=1}^{k_{t}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}}\left(\rho t_{q, m, 1}\right) \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right), \\
& t+s=\bigoplus_{l=1}^{k_{t}+k_{s}}\left(\bigoplus_{m=1}^{w_{l}}\left(\sum_{q=1}^{x_{m, l}} z_{q, m, 1} \otimes \ldots \otimes z_{q, m, L_{l}}\right)\right),
\end{aligned}
$$

where

$$
\begin{gather*}
L_{l}=\left\{\begin{array}{l}
i_{l}, \text { if } 1 \leqslant l \leqslant k_{t} \\
j_{l-k_{t}}, \text { if } k_{t}<l \leqslant k_{t}+k_{s}
\end{array}, \text { w }=\left\{\begin{array}{l}
p_{l}, \text { if } 1 \leqslant l \leqslant k_{t} \\
u_{l-k_{t}}, \text { if } k_{t}<l \leqslant k_{t}+k_{s}
\end{array}\right.\right. \tag{3.1}\\
x_{m, l}=\left\{\begin{array}{l}
r_{m, l}, \text { if } 1 \leqslant l \leqslant k_{t} \\
v_{m, l-k_{t}}, \text { if } k_{t}<l \leqslant k_{t}+k_{s}
\end{array} \text { and } z_{q, m, d}=\left\{\begin{array}{l}
t_{q, m, d}, \text { if } 1 \leqslant l \leqslant k_{t} \\
s_{q, m, d},
\end{array} \text { if } k_{t}<l \leqslant k_{t}+k_{s}\right.\right. \tag{3.2}
\end{gather*} .
$$

The multiplication of elements had to satisfy the rule
where
and

$$
X_{6}=y-\left(X_{5}-1\right) v_{X_{4}, X_{2}}=y-\left\lfloor\frac{y-1}{v_{X_{4}, X_{2}}}\right\rfloor+1
$$

$$
\left.=y-\left\lfloor\frac{y-1}{v_{\delta-\left\lfloor\frac{\delta-1}{{ }^{p}\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor+1}\right\rfloor^{p}\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor+1}, \varepsilon\left\lfloor\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor k_{s}\right.}\right\rfloor v_{\delta-\left\lfloor\frac{\delta-1}{{ }^{p}\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor+1}\right\rfloor}\right\rfloor \frac{\varepsilon_{-1}-1++1}{k_{s}}, \varepsilon-\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor k_{s} .
$$

Suppose that we have two collections of algebras, $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ and $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$, indexed by the same set Λ. We can consider the algebras $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ disjoint by setting $a=(a, \lambda)$ for every $a \in A_{\lambda}$. Similarily, we can consider the algebras $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$ disjoint. We need the disjointness of these families of algebras in order to be able to choose for every $a \in \underset{\lambda \in \Lambda}{\cup} A_{\lambda}$ and every $b \in \underset{\lambda \in \Lambda}{\cup} B_{\lambda}$ unique indices $\lambda_{a} \in \Lambda$ and $\lambda_{b} \in \Lambda$ such that $a \in A_{\lambda_{a}}$ and $b \in B_{\lambda_{b}}$. Thus, in what follows, for $\lambda, \mu \in \Lambda$ with $\lambda \neq \mu$ we have $A_{\lambda} \cap A_{\mu}=\emptyset=B_{\lambda} \cap B_{\mu}$. Morever, for

$$
\begin{aligned}
& X_{1}=\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor+1, \quad X_{2}=\varepsilon-X_{1} k_{s}=\varepsilon-\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor k_{s}, \\
& X_{3}=\left\lfloor\frac{\delta-1}{p_{X_{1}}}\right\rfloor+1=\left\lfloor\frac{\delta-1}{\left.p_{\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor+1}\right\rfloor+1, \quad X_{4}=\delta-X_{3} p_{X_{1}}=\delta-\left\lfloor\frac{\delta-1}{p_{\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor+1}}\right\rfloor p_{\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor+1}, ~, ~, ~, ~, ~}\right. \\
& X_{5}=\left\lfloor\frac{y-1}{v_{X_{4}, X_{2}}}\right\rfloor+1=\left\lfloor\frac{y-1}{\left.v_{\delta-\left\lfloor\frac{\delta-1}{{ }^{〔}\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor+1}\right\rfloor}\right\rfloor p_{\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor+1}, \varepsilon-\left\lfloor\frac{\varepsilon-1}{k_{s}}\right\rfloor k_{s}}\right\rfloor+1
\end{aligned}
$$

any $a \in \underset{\lambda \in \Lambda}{\cup} A_{\lambda}$ and every $b \in \underset{\lambda \in \Lambda}{\cup} B_{\lambda}$ we will denote by λ_{a} the unique index from Λ such that $a \in A_{\lambda_{a}}$ and by λ_{b} the unique index from Λ such that $b \in B_{\lambda_{b}}$. Notice that in some places we need to write μ_{a} instead of λ_{a} and μ_{b} instead of λ_{b}.

Let T be the tensor algebra of algebras $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ and S the tensor algebra of algebras $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$.
Suppose that there are also algebra homomorphisms $f_{\lambda}: A_{\lambda} \rightarrow B_{\lambda}$ for all $\lambda \in \Lambda$. Define a map $\widetilde{h_{T}}: \cup_{\lambda \in \Lambda} A_{\lambda} \rightarrow \underset{\lambda \in \Lambda}{\cup} B_{\lambda}$ by $\widetilde{h_{T}}(a)=f_{\lambda_{a}}(a)$. Now, define a map $h_{T}: T \rightarrow S$ by setting

$$
h_{T}(t)=\bigoplus_{l=1}^{k} \bigoplus_{m=1}^{p_{l}} \sum_{q=1}^{r_{m, l}} \widetilde{h_{T}}\left(t_{q, m, 1}\right) \otimes \cdots \otimes \widetilde{h_{T}}\left(t_{q, m, i_{l}}\right)
$$

for every element

$$
t=\bigoplus_{l=1}^{k}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right)
$$

of T. Modifying the ideas of [2], pp. 208-209, we can show that h_{T} is an algebra homomorphism. Indeed, using the symbols given in (3.1)-(3.2), we obtain that for $\rho \in \mathbb{K}$,

$$
t=\bigoplus_{l=1}^{k_{t}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right) \in T
$$

and

$$
s=\bigoplus_{f=1}^{k_{s}}\left(\bigoplus_{g=1}^{u_{f}}\left(\sum_{h=1}^{v_{g, f}} s_{h, g, 1} \otimes \ldots \otimes s_{h, g, j_{f}}\right)\right) \in T
$$

and we have

$$
\begin{aligned}
& h_{T}(t)+h_{T}(s)= \bigoplus_{l=1}^{k_{t}} \bigoplus_{m=1}^{p_{l}} \sum_{q=1}^{r_{m, l}} \bigotimes_{u=1}^{i_{l}} \widetilde{h_{T}}\left(t_{q, m, u}\right)+\bigoplus_{f=1}^{k_{s}} \bigoplus_{g=1}^{u_{f}} \sum_{h=1}^{v_{g, f}} \bigotimes_{v=1}^{j_{f}} \widetilde{h_{T}}\left(s_{h, g, v}\right) \\
&=\bigoplus_{l=1}^{k_{t}+k_{s}} \bigoplus_{m=1}^{w_{l}} \sum_{q=1}^{x_{m}, l} \bigotimes_{d=1}^{L_{l}} \widetilde{h_{T}}\left(z_{q, m, d}\right) \\
&= h_{T}\left(\bigoplus_{l=1}^{k_{t}+k_{s}}\left(\bigoplus_{m=1}^{w_{l}}\left(\sum_{q=1}^{x_{m, l}} z_{q, m, 1} \otimes \ldots \otimes z_{q, m, L_{l}}\right)\right)\right)=h_{T}(t+s) \\
& h_{T}(\rho t)=\bigoplus_{l=1}^{k} \bigoplus_{m=1}^{p_{l}} \sum_{q=1}^{r_{m, l}} \widetilde{h_{T}}\left(\rho t_{q, m, 1}\right) \otimes \ldots \otimes \widetilde{h_{T}}\left(t_{q, m, i_{l}}\right) \\
&=\bigoplus \bigoplus_{l=1}^{k} \bigoplus_{m=1}^{p_{l}} \sum_{q=1}^{r_{m, l}}\left(\rho \widetilde{h_{T}}\left(t_{q, m, 1}\right)\right) \otimes \ldots \otimes \widetilde{h_{T}}\left(t_{q, m, i_{l}}\right)=\rho(\bigoplus_{l=1}^{k} \bigoplus_{m=1}^{p_{l}} \sum_{q=1}^{r_{m, l}} \bigotimes_{q_{l}}^{i_{l}} \widetilde{\overbrace{i=1}}\left(t_{q, m, u}\right))=\rho h_{T}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
h_{T}(t \cdot s) & =h_{T}\left(\bigoplus_{l=1}^{k_{t}} \bigoplus_{f=1}^{k_{s}}\left(\bigoplus_{m=1}^{p_{l}} \bigoplus_{g=1}^{u_{f}} \sum_{y=1}^{r_{m, l} v_{g, f}} \bigotimes_{u=1}^{i_{l}} t_{\left\lfloor\frac{y-1}{v_{g, f}}\right\rfloor+1, m, u} \otimes \bigotimes_{d=1}^{j_{f}} s_{y-\left\lfloor\frac{y-1}{v_{g, f}}\right\rfloor v_{g, f}, g, d}\right)\right) \\
& =\bigoplus_{l=1}^{k_{t}} \bigoplus_{f=1}^{k_{s}}\left(\bigoplus_{m=1}^{p_{l}} \bigoplus_{g=1}^{u_{f}} \sum_{y=1}^{r_{m, l} v_{g, f}} \bigotimes_{u=1}^{i_{l}} \widetilde{h_{T}}\left(t_{\left\lfloor\frac{y-1}{v_{g, f}}\right\rfloor+1, m, u}\right) \otimes \bigotimes_{d=1}^{j_{f}} \widetilde{h_{T}}\left(s_{y-\left\lfloor\frac{y-1}{v_{g, f}}\right\rfloor v_{g, f}, g, d}\right)\right)
\end{aligned}
$$

$$
=\left(\bigoplus_{l=1}^{k_{t}} \bigoplus_{m=1}^{p_{l}} \sum_{q=1}^{r_{m, l}} \bigotimes_{u=1}^{i_{l}} \widetilde{h_{T}}\left(t_{q, m, u}\right)\right) \cdot\left(\bigoplus_{f=1}^{k_{s}} \bigoplus_{g=1}^{u_{f}} \sum_{h=1}^{v_{g, f}} \bigotimes_{d=1}^{j_{f}} \widetilde{h_{T}}\left(s_{h, g, d}\right)\right)=h_{T}(t) \cdot h_{T}(s) .
$$

Hence, h_{T} is indeed an algebra homomorphism.
Suppose that, for every $\lambda \in \Lambda, f_{\lambda}\left(A_{\lambda}\right)$ is a left (right or two-sided) ideal of B_{λ}. It is natural to ask whether it is then true that $h_{T}(T)$ is a left (right or two-sided) ideal of S. Actually, we will show that the answer to the question "Whether $h_{T}(T)$ is a left (right or two-sided) ideal of S " does not depend on the fact whether $f_{\lambda}\left(A_{\lambda}\right)$ is or is not a left (right or two-sided) ideal of B_{λ} for every $\lambda \in \Lambda$.

As h is an algebra homomorphism, then $\rho h(t)=h(\rho t) \in h(T)$ and $h(t)+h(s)=h(t+s) \in h(T)$ for every $t, s \in T$ and every $\rho \in \mathbb{K}$. What concerns the multiplication of elements of $h_{T}(T)$ with elements of S, then it is not always true that $v \cdot h_{T}(t), h_{T}(t) \cdot v \in h_{T}(T)$ for arbitrary $t \in T$ and $v \in S$.

Indeed, suppose that there exist $\lambda_{0}, \lambda_{1} \in \Lambda$ such that $A_{\lambda_{0}}$ is a proper subalgebra ${ }^{1}$ of $B_{\lambda_{0}}$, $f_{\lambda_{0}}$ is the identity map on $A_{\lambda_{0}}$ (i.e. $f_{\lambda_{0}}$ is an inclusion), $A_{\lambda_{1}}=B_{\lambda_{1}}=\mathbb{K}$, where $B_{\lambda_{0}}$ is an algebra over the field \mathbb{K} and $f_{\lambda_{1}}$ is the identity map on \mathbb{K}.

As $A_{\lambda_{0}}$ is a proper subalgebra of $B_{\lambda_{0}}$, then there exists $b \in B_{\lambda_{0}}$ such that $b \notin A_{\lambda_{0}}$. Now, take the unit element $e_{\mathbb{K}}$ of the field \mathbb{K}. Then $e_{\mathbb{K}} \in A_{\lambda_{1}} \subset T$. Hence, $f_{\lambda_{1}}\left(e_{\mathbb{K}}\right)=e_{\mathbb{K}} \in h_{T}(T)$ and $b \in B_{\lambda_{0}} \subset S$. Therefore, we can consider the product $b \cdot e_{\mathbb{K}}=b \otimes e_{\mathbb{K}} \in S h_{T}(T) \subset S$. As the algebras $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$ are considered pairwise disjoint, then we obtain $b \otimes e_{\mathbb{K}} \in B_{\lambda_{0}} \otimes B_{\lambda_{1}}$.

Suppose that $b \otimes e_{\mathbb{K}} \in h_{T}(T)$. Then $b \otimes e_{\mathbb{K}} \in f_{\lambda_{0}}\left(A_{\lambda_{0}}\right) \otimes f_{\lambda_{1}}\left(A_{\lambda_{1}}\right)$. Hence, there exist $m \in \mathbb{Z}^{+}$and elements $b_{1}, \ldots, b_{m} \in A_{\lambda_{0}}, k_{1}, \ldots, k_{m} \in A_{\lambda_{1}}=\mathbb{K}$ such that $b \otimes e_{\mathbb{K}}=\sum_{i=1}^{m} b_{i} \otimes k_{i}$. Thus, for every bilinear map $g: B_{\lambda_{0}} \otimes B_{\lambda_{1}} \rightarrow B_{\lambda_{0}}$, we must have $g\left(b \otimes e_{\mathbb{K}}\right)=g\left(\sum_{i=1}^{m} b_{i} \otimes k_{i}\right)$.

Let $g: B_{\lambda_{0}} \otimes B_{\lambda_{1}} \rightarrow B_{\lambda_{0}}$ be a map, for which $g\left(\sum_{j=1}^{n} c_{j} \otimes l_{j}\right)=\sum_{j=1}^{n} l_{j} c_{j}$ for every $\sum_{j=1}^{n} c_{j} \otimes l_{j} \in B_{\lambda_{0}} \otimes B_{\lambda_{1}}$. Then it is easy to see that g is well defined and is a bilinear map. Moreover, $g\left(b \otimes e_{\mathbb{K}}\right)=b$ and $g\left(\sum_{i=1}^{m} b_{i} \otimes k_{i}\right)=\sum_{i=1}^{m} k_{i} b_{i}$. As $A_{\lambda_{0}}$ is a subalgebra of $B_{\lambda_{0}}$, then $\sum_{i=1}^{m} k_{i} b_{i} \in A_{\lambda_{0}}$, while $b \notin A_{\lambda_{0}}$. Hence, $g\left(b \otimes e_{\mathbb{K}}\right) \neq g\left(\sum_{i=1}^{m} b_{i} \otimes k_{i}\right)$. This is a contradiction, which shows that $b \otimes e_{\mathbb{K}} \notin h(T)$. Therefore, $S \cdot h_{T}(T) \not \subset h_{T}(T)$.

Similarly, we can show that $h_{T}(T) \cdot S \not \subset h_{T}(T)$ in general. Thus, we have shown that $h_{T}(T)$ is not always a left (right or two-sided) ideal of S.

With that we have given a proof (in case of left ideals, the other cases are similar) of the following Lemma.

Lemma 2. Let $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ and $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$ be two collections of disjoint algebras indexed by the same set Λ. Let $\left(f_{\lambda}: A_{\lambda} \rightarrow B_{\lambda}\right)_{\lambda \in \Lambda}$ be a collection of algebra homomorphisms, T be the tensor algebra of algebras $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ and S the tensor algebra of algebras $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$. Let $\widetilde{h_{T}}: \cup_{\lambda \in \Lambda} A_{\lambda} \rightarrow \underset{\lambda \in \Lambda}{\cup} B_{\lambda}$ be the map, defined by $\widetilde{h_{T}}(a)=f_{\lambda_{a}}(a)$, where $\lambda_{a} \in \Lambda$ is the unique index such that $a \in A_{\lambda_{a}}$. Let $h_{T}: T \rightarrow S$ be the map, defined by

$$
h_{T}(t)=\bigoplus_{l=1}^{k} \bigoplus_{m=1}^{p_{l}} \sum_{q=1}^{r_{m, l}} \widetilde{h_{T}}\left(t_{q, m, 1}\right) \otimes \cdots \otimes \widetilde{h_{T}}\left(t_{q, m, i_{l}}\right)
$$

for every element

$$
t=\bigoplus_{l=1}^{k}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right)
$$

of T. Then $h_{T}(T)$ is a left (right or two-sided) ideal of S if and only if $S \cdot h_{T}(T) \subseteq h_{T}(T)$ (respectively, $h_{T}(T) \cdot S \subseteq h_{T}(T)$ or $S \cdot h_{T}(T) \cdot S \subseteq h_{T}(T)$).

1 This situation is possible, for example, when $B_{\lambda_{0}}$ is a topological algebra, which has a maximal ideal $A_{\lambda_{0}}$ that is not closed in
the topology of B. the topology of $B_{\lambda_{0}}$.

Consider the two-sided ideals I of T and J of S, generated by the sets

$$
\left\{x \otimes y-x y: x, y \in A_{\lambda}, \lambda \in \Lambda\right\} \text { and }\left\{z \otimes w-z w: z, w \in B_{\lambda}, \lambda \in \Lambda\right\},
$$

respectively. As h_{T} is an algebra homomorphism, then, for every fixed $\lambda \in \Lambda$ and $x, y \in A_{\lambda}$, we have

$$
\begin{aligned}
h_{T}(x \otimes y-x y) & =h_{T}(x \otimes y)-h_{T}(x y)=\widetilde{h_{T}}(x) \otimes \widetilde{h_{T}}(y)-\widetilde{h_{T}}(x y) \\
& =f_{\lambda}(x) \otimes f_{\lambda}(y)-f_{\lambda}(x y)=f_{\lambda}(x) \otimes f_{\lambda}(y)-f_{\lambda}(x) f_{\lambda}(y) \in J,
\end{aligned}
$$

which means that $h_{T}(I) \subseteq J$.
Consider the free product T / I of algebras $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ and the free product S / J of algebras $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$.
Let

$$
\kappa_{I}: T \rightarrow T / I, \quad \kappa_{J}: S \rightarrow S / J
$$

be the respective quotient maps. Define a map $h: T / I \rightarrow S / J$ by $h\left(\kappa_{I}(t)\right)=\kappa_{J}\left(h_{T}(t)\right)$ for every $t \in T$. This map is well defined because $h_{T}(I) \subseteq J$. Moreover, h is an algebra homomorphism because the maps h_{T}, κ_{I} and κ_{J} are algebra homomorphisms.

Lemma 3. Let $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ and $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$ be two collections of disjoint algebras indexed by the same set, $\left(f_{\lambda}: A_{\lambda} \rightarrow B_{\lambda}\right)_{\lambda \in \Lambda}$ a collection of algebra homomorphisms, T the tensor algebra of algebras $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ and S the tensor algebra of algebras $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$. Consider the two-sided ideals I of T and J of S, generated by the sets

$$
\left\{x \otimes y-x y: x, y \in A_{\lambda}, \lambda \in \Lambda\right\} \text { and }\left\{z \otimes w-z w: z, w \in B_{\lambda}, \lambda \in \Lambda\right\},
$$

respectively, the free product T / I of algebras $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ and the free product S / J of algebras $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$. Define a map $h: T / I \rightarrow S / J$ by $h\left(\kappa_{I}(t)\right)=\kappa_{J}\left(h_{T}(t)\right)$ for every $t \in T$, where h_{T} is defined as in Lemma 2. If $S \cdot h_{T}(T) \subseteq h_{T}(T)\left(h_{T}(T) \cdot S \subseteq h_{T}(T)\right.$ or $S \cdot h_{T}(T) \cdot S \subseteq h_{T}(T)$), then $h(T / I)$ is a left (respectively, right or two-sided) ideal of S / J.

Proof. We will prove the claim for left ideals. The other cases are similar.
As h is an algebra homomorphism and T / I is an algebra, then $h(T / I)+h(T / I) \in h(T / I)$ and $\lambda h(T / I) \subseteq h(T / I)$ for every $\lambda \in \mathbb{K}$.

Take any $a \in h(T / I)$ and any $b \in S / J$. Then $a \in h\left(\kappa_{I}(T)\right)=\kappa_{J}\left(h_{T}(T)\right)$ and $b \in \kappa_{J}(S) . \quad$ As $S \cdot h_{T}(T) \subseteq h_{T}(T)$ and κ_{J} is an algebra homomorphism, then

$$
b \cdot a \in \kappa_{J}(S) \cdot \kappa_{J}\left(h_{T}(T)\right) \subseteq \kappa_{J}\left(S \cdot h_{T}(T)\right) \subseteq \kappa_{J}\left(h_{T}(T)\right)=h\left(\kappa_{I}(T)\right)=h(T / I) .
$$

With that we have proved that $S / J \cdot h(T / I) \subseteq h(T / I)$, i.e. that $h(T / I)$ is a left ideal of S / J.
Open question 1. Is the condition $S \cdot h_{T}(T) \subseteq h_{T}(T)\left(h_{T}(T) \cdot S \subseteq h_{T}(T)\right.$ or $\left.S \cdot h_{T}(T) \cdot S \subseteq h_{T}(T)\right)$ necessary for $h(T / I)$ to be a left (respectively, right or two-sided) ideal of S / J ?

4. SOME PROPERTIES OF TENSOR ALGEBRA OF TOPOLOGICAL ALGEBRAS

Let $\left(i_{\mu}: A_{\mu} \rightarrow T\right)_{\mu \in \Lambda}$ be a family of inclusion maps sending elements of A_{μ} into the direct summand A_{μ} of T, respectively, i.e. $i_{\mu}(a)=a \in A_{\mu} \subset T$ for every $a \in A_{\mu}$ and every $\mu \in \Lambda$. Then the map i_{μ} is an algebra homomorphism for every $\mu \in \Lambda$. Moreover, the quotient map κ_{I} is an algebra homomorphism. Hence, all maps of the family $\left(\alpha_{\mu}=\kappa_{I} \circ i_{\mu}: A_{\mu} \rightarrow T / I\right)_{\mu \in \Lambda}$ are algebra homomorphisms.

Similarly, let $\left(j_{\mu}: B_{\mu} \rightarrow S\right)_{\mu \in \Lambda}$ be a family of inclusion maps, which are also algebra homomorphisms, and $\left(\beta_{\mu}=\kappa_{J} \circ j_{\mu}: B_{\mu} \rightarrow S / J\right)_{\mu \in \Lambda}$ be respective algebra homomorphisms. Notice that $h \circ \alpha_{\lambda}=\beta_{\lambda} \circ f_{\lambda}$ for each $\lambda \in \Lambda$. Indeed, fix any $\lambda \in \Lambda$ and take $a \in A_{\lambda}$. Then

$$
\begin{aligned}
\left(h \circ \alpha_{\lambda}\right)(a) & =h\left(\kappa_{I}\left(i_{\lambda}(a)\right)\right)=h\left(\kappa_{I}(a)\right)=\kappa_{J}\left(h_{T}(a)\right)=\kappa_{J}\left(f_{\lambda}(a)\right) \\
& =\kappa_{J}\left(j_{\lambda}\left(f_{\lambda}(a)\right)\right)=\left(\left(\kappa_{J} \circ j_{\lambda}\right) \circ f_{\lambda}\right)(a)=\left(\beta_{\lambda} \circ f_{\lambda}\right)(a) .
\end{aligned}
$$

If all algebras $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ are topological algebras, set

$$
\begin{aligned}
F= & \{v: T / I \rightarrow C: C \text { is a topological algebra, } v \text { is an algebra } \\
& \text { homomorphism such that } \left.v \circ \alpha_{\mu} \text { is continuous for each } \mu \in \Lambda\right\} .
\end{aligned}
$$

On the tensor algebra T, consider the direct sum topology

$$
\tau_{T}=\left\{O \subseteq \underset{i \in \mathbb{Z}^{+}}{\oplus} X_{i}: f_{i}^{-1}(O) \in \tau_{i} \text { for each } i \in \mathbb{Z}^{+}\right\}
$$

where

$$
X_{i}=\underset{\lambda_{1}, \ldots, \lambda_{i} \in \Lambda}{\oplus}\left(A_{\lambda_{1}} \otimes \cdots \otimes A_{\lambda_{i}}\right)
$$

and τ_{i} is the tensor product topology on X_{i}. It is known that the topology τ_{T} is the final topology defined by the inclusion maps $f_{i}: X_{i} \rightarrow T$. Hence, all inclusion maps are continuous in the topology τ_{T}. The topology τ_{T} on tensor algebra T is also called the tensor algebra topology.

Equip T / I with the topology $\tau_{\lambda \in \Lambda}^{A_{\lambda} A_{\lambda}}$, in which all maps $v \in F$ are continuous. Then $\left(T / I, \tau_{\lambda \in \Lambda}^{\sqcup_{\lambda} A_{\lambda}}\right)$ is a topological algebra (see [2], pp. 210-212).

If all algebras $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$ are topological algebras, we consider on S the tensor algebra topology τ_{S} and take the quotient topology

$$
\tau_{S / J}=\left\{U \subseteq S / J:\left\{s \in S, \kappa_{J}(s) \in U\right\} \in \tau_{S}\right\}
$$

on S / J. Then the quotient algebra $\left(S / J, \tau_{S / J}\right)$ is a topological algebra and $\kappa_{J}: S \rightarrow S / J$ is a continuous map. Since the inclusion map j_{μ} is continuous with respect to the topology τ_{S}, then $\beta_{\mu}=\kappa_{J} \circ f_{\mu}$ is also continuous for each $\mu \in \Lambda$.

Suppose now that the maps $\left(f_{\lambda}\right)_{\lambda \in \Lambda}$ are also continuous. With respect to topologies $\tau_{\sqcup_{\lambda \in \Lambda} A_{\lambda}}$ and $\tau_{S / J}$, the map h becomes continuous, because from the fact that $h \circ \alpha_{\lambda}=\kappa_{J} \circ f_{\lambda}$ is a continuous map for each $\lambda \in \Lambda$, it follows that $h \in F$.

Using the symbols defined above, we obtain another result.
Proposition 1. Let T and S be tensor algebras of two collections of topological algebras, $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ and $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$, indexed by the same set Λ, respectively, and let I and J be the two-sided ideals of T and S, generated by the sets

$$
\left\{x \otimes y-x y: x, y \in A_{\lambda}, \lambda \in \Lambda\right\} \text { and }\left\{z \otimes w-z w: z, w \in B_{\lambda}, \lambda \in \Lambda\right\},
$$

respectively. Suppose that there are also maps $f_{\lambda}: A_{\lambda} \rightarrow B_{\lambda}$ for all $\lambda \in \Lambda$ such that $f_{\lambda}\left(A_{\lambda}\right)$ is dense in B_{λ} for all $\lambda \in \Lambda$. Then $h(T / I)$ is also dense in S / J.

Proof. Take any $w \in S / J$ and any neighbourhood W of w in S / J. Then there exist some element

$$
v=\bigoplus_{l=1}^{k_{v}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} v_{q, m, 1} \otimes \ldots \otimes v_{q, m, i_{l}}\right)\right) \in S
$$

and a neighbourhood V of v in S such that $w=\kappa_{J}(v)$ and $\kappa_{J}(V) \subseteq W$. Let

$$
K=\left\{\mu=(\kappa, v, \rho): l \in\left\{1, \ldots, k_{v}\right\}, v \in\left\{1, \ldots, p_{l}\right\}, \kappa \in\left\{1, r_{v, l}\right\}, \rho \in\left\{1, \ldots, i_{l}\right\}\right\} .
$$

Notice that the set K is a finite set. Now, for every $\mu \in K$, there exists unique $\lambda_{\mu}=\lambda_{\nu_{\mu}} \in \Lambda$ such that $v_{\mu}:=v_{\kappa, v, \rho} \in B_{\lambda_{\mu}}$. Similarly to the proof of Lemma 1, we can find for each $\mu \in K$ a neighbourhood $V_{\lambda_{\mu}}$ of v_{μ} in $B_{\lambda_{\mu}}$ such that

$$
\bigoplus_{l=1}^{k_{v}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} V_{\lambda_{(q, m, 1)}} \otimes \ldots \otimes V_{\lambda_{\left(q, m, i_{l}\right)}}\right)\right) \subseteq V
$$

Since $f_{\lambda}\left(A_{\lambda}\right)$ is dense in B_{λ} for every $\lambda \in \Lambda$, then there exist partially ordered sets $\left(I_{\lambda}, \succ_{\lambda}\right)_{\lambda \in \Lambda}$ and for each $\mu \in K$ a family $\left(a_{\zeta_{\mu}}\right)_{\zeta_{\mu} \in I_{\lambda_{\mu}}}$ of elements of $A_{\lambda_{\mu}}$ such that $\left(f_{\lambda_{\mu}}\left(a_{\zeta_{\mu}}\right)\right)_{\zeta_{\mu} \in I_{\lambda_{\mu}}}$ converges to v_{μ}. This means that, for every $\mu \in K$, there exists an element $\eta_{\mu} \in I_{\mu}$ such that from $\zeta_{\mu} \succ_{\lambda_{\mu}} \eta_{\mu}$ it follows that $f_{\lambda_{\mu}}\left(a_{\zeta_{\mu}}\right) \in V_{\lambda_{\mu}}$.

Define the multi-index set $\prod_{\mu \in K} I_{\lambda_{\mu}}$ and consider on it the partial order \succ, defined by $\left(\phi_{\mu}\right)_{\mu \in K} \succ\left(\psi_{\mu}\right)_{\mu \in K}$ if and only if $\phi_{\mu} \succ_{\lambda_{\mu}} \psi_{\mu}$ for each $\mu \in K$. Then ($\prod_{\mu \in K} I_{\lambda_{\mu}}, \succ$) becomes a partially ordered set of multi-indices.

Take any $\left(a_{\zeta_{\mu}}\right)_{\mu \in K} \in \underset{\mu \in K}{\otimes} A_{\lambda_{\mu}}$ with $\left(\zeta_{\mu}\right)_{\mu \in K} \succ\left(\eta_{\mu}\right)_{\mu \in K}$. Then $\zeta_{\mu} \succ_{\lambda_{\mu}} \eta_{\mu}$ for each $\mu \in K$ and we have $f_{\lambda_{\mu}}\left(a_{\zeta_{\mu}}\right) \in V_{\mu}$. As $h\left(\kappa_{I}(t)\right)=\kappa_{J}\left(h_{T}(t)\right)$ for each $t \in T$, then this means that

$$
\begin{gathered}
h\left(\kappa_{I}\left(\bigoplus_{l=1}^{k_{v}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} a_{\zeta_{(q, m, 1)}} \otimes \ldots \otimes a_{\zeta_{\left(q, m, i_{l}\right)}}\right)\right)\right)\right) \\
=\kappa_{J}\left(\bigoplus_{l=1}^{k_{v}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} f_{\lambda_{(q, m, 1)}}\left(a_{\zeta_{(q, m, 1)}}\right) \otimes \ldots \otimes f_{\lambda_{\left(q, m, i_{l}\right)}}\left(a_{\zeta_{\left(q, m, i_{l}\right)}}\right)\right)\right)\right) \\
\in \kappa_{J}\left(\bigoplus_{l=1}^{k_{v}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} V_{\lambda_{(q, m, 1)}} \otimes \ldots \otimes V_{\lambda_{\left(q, m, i_{l}\right)}}\right)\right)\right) \subseteq \kappa_{J}(V) \subseteq W
\end{gathered}
$$

for every

$$
t=\bigoplus_{l=1}^{k_{v}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} a_{\zeta_{(q, m, 1)}} \otimes \ldots \otimes a_{\zeta_{\left(q, m, i_{l}\right)}}\right)\right) \in T
$$

with $\left(\zeta_{\mu}\right)_{\mu \in K} \succ\left(\eta_{\mu}\right)_{\mu \in K}$. Hence, the family

$$
\left(t_{\left(\zeta_{\mu}\right)_{\mu \in K}}\right)_{\left(\zeta_{\mu}\right)_{\mu \in K} \in \prod_{\mu \in K} I_{\mu}}=\left(h\left(\kappa_{I}\left(\bigoplus_{l=1}^{k_{v}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} a_{\zeta_{(q, m, 1)}} \otimes \ldots \otimes a_{\zeta_{\left(q, m, i_{l}\right)}}\right)\right)\right)\right)\right)_{\left(\zeta_{\mu}\right)_{\mu \in K} \in \prod_{\mu \in K} I_{\mu}}
$$

of elements of $h(T / I)$ converges to w.
As w is an arbitrary element of S / J, then the set $h(T / I)$ is dense in S / J.
Corollary 1. Let $\left(A_{\lambda}\right)_{\lambda \in \Lambda}$ and $\left(B_{\lambda}\right)_{\lambda \in \Lambda}$ be two sets of disjoint topological algebras, indexed by the same set Λ. For every $\lambda \in \Lambda$, let $f_{\lambda}: A_{\lambda} \rightarrow B_{\lambda}$ be a continuous algebra homomorphism such that $f_{\lambda}\left(A_{\lambda}\right)$ is dense in B_{λ}. Define a map $h: T / I \rightarrow S / J$ by $h\left(\kappa_{I}(t)\right)=\kappa_{J}\left(h_{T}(t)\right)$ for every $t \in T$, where h_{T} is defined as in Lemma 2. If $S \cdot h_{T}(T) \subseteq h_{T}(T)\left(h_{T}(T) \cdot S \subseteq h_{T}(T)\right.$ or $\left.S \cdot h_{T}(T) \cdot S \subseteq h_{T}(T)\right)$, then $h(T / I)$ is a dense left (respectively, right or two-sided) ideal of S / J.

Proof. The claim follows from Lemma 3 and Proposition 1.
Corollary 2. Let $\left(A_{\lambda}, f_{\lambda}, B_{\lambda}\right)_{\lambda \in \Lambda}$ be a family of Segal topological algebras, T the tensor algebra of algebras $\left(A_{\lambda}\right)_{\lambda \in \Lambda}, S$ the tensor algebra of algebras $\left(B_{\lambda}\right)_{\lambda \in \Lambda}, I$ and J two-sided ideals of T and S, generated by the sets

$$
\left\{x \otimes y-x y: x, y \in A_{\lambda}, \lambda \in \Lambda\right\} \quad \text { and } \quad\left\{z \otimes w-z w: z, w \in B_{\lambda}, \lambda \in \Lambda\right\}
$$

respectively, and $h: T / I \rightarrow S / I$ a map, defined in Lemma 3. If $S \cdot h_{T}(T) \subseteq h_{T}(T)\left(h_{T}(T) \cdot S \subseteq h_{T}(T)\right.$ or $S \cdot h_{T}(T) \cdot S \subseteq h_{T}(T)$), then $(T / I, h, S / I)$ is a left (respectively, right or two-sided) Segal topological algebra.

Remark 2. Notice that the result in Corollary 2 does not depend on whether some particular Segal topological algebra $\left(A_{\lambda_{0}}, f_{\lambda_{0}}, B_{\lambda_{0}}\right)$ from the family $\left(A_{\lambda}, f_{\lambda}, B_{\lambda}\right)_{\lambda \in \Lambda}$ is left, right or two-sided Segal topological algebra.

5. COPRODUCTS IN THE CATEGORY SEG

Definition 1. The coproduct of the family $\left(A_{\lambda}, f_{\lambda}, B_{\lambda}\right)_{\lambda \in \Lambda}$ of Segal topological algebras in the category Seg is an ordered pair $\left(\left(\cup_{\lambda \in \Lambda} A_{\lambda}, h, \sqcup_{\lambda \in \Lambda} B_{\lambda}\right),\left(\left(\alpha_{\mu}, \beta_{\mu}\right)\right)_{\mu \in \Lambda}\right)$, consisting of a Segal topological algebra $\left(\underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}, h, \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}\right)$ and a family $\left(\left(\alpha_{\mu}, \beta_{\mu}\right):\left(A_{\mu}, f_{\mu}, B_{\mu}\right) \rightarrow\left(\sqcup_{\lambda \in \Lambda}^{\sqcup} A_{\lambda}, h, \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}\right)\right)_{\mu \in \Lambda}$ of morphisms in Seg such that for any object (C, g, D) of Seg and every family $\left(\left(\gamma_{\mu}, \delta_{\mu}\right):\left(A_{\mu}, f_{\mu}, B_{\mu}\right) \rightarrow(C, g, D)\right)_{\mu \in \Lambda}$ of morphisms in Seg, there exists a unique morphism $(\theta, \omega):\left(\sqcup_{\lambda \in \Lambda} A_{\lambda}, h, \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}\right) \rightarrow(C, g, D)$ in Seg such that the diagram

commutes.
Thus, to have a coproduct $\left(\left(\sqcup_{\lambda \in \Lambda}^{\sqcup} A_{\lambda}, h, \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}\right),\left(\left(\alpha_{\mu}, \beta_{\mu}\right)\right)_{\mu \in \Lambda}\right)$ in $\mathbf{S e g}$, it is equivalent to having the following conditions fulfilled:
(1) there exists $\left(\underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}, h, \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}\right) \in \mathrm{Ob}(\mathbf{S e g})$;
(2) there exist two families $\left(\alpha_{\mu}: A_{\mu} \rightarrow \underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}\right)_{\mu \in \Lambda}$ and $\left(\beta_{\mu}: B_{\mu} \rightarrow \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}\right)_{\mu \in \Lambda}$ of continuous algebra homomorphisms such that $h \circ \alpha_{\mu}=\beta_{\mu} \circ f_{\mu}$ for each $\mu \in \Lambda$;
(3) for any $(C, g, D) \in \mathrm{Ob}(\mathbf{S e g})$ and families $\left(\gamma_{\mu}: A_{\mu} \rightarrow C\right)_{\mu \in \Lambda},\left(\delta_{\mu}: B_{\mu} \rightarrow D\right)_{\mu \in \Lambda}$ of continuous algebra homomorphisms such that $g \circ \gamma_{\mu}=\delta_{\mu} \circ f_{\mu}$ for each $\mu \in \Lambda$, there exist continuous algebra homomorphisms $\theta: \underset{\lambda \in \Lambda}{\sqcup} A_{\lambda} \rightarrow C$ and $\omega: \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda} \rightarrow D$ such that
(3a) $\theta \circ \alpha_{\mu}=\gamma_{\mu}$ for each $\mu \in \Lambda$;
(3b) $\omega \circ \beta_{\mu}=\delta_{\mu}$ for each $\mu \in \Lambda$;
(3c) $g \circ \theta=\omega \circ h$;
(3d) if $\bar{\theta}: \underset{\lambda \in \Lambda}{\sqcup} A_{\lambda} \rightarrow C$ and $\bar{\omega}: \sqcup_{\lambda \in \Lambda}^{\sqcup} B_{\lambda} \rightarrow D$ are continuous algebra homomorphisms such that $g \circ \bar{\theta}=\bar{\omega} \circ h, \gamma_{\mu}=\bar{\theta} \circ \alpha_{\mu}$ and $\delta_{\mu}=\bar{\omega} \circ \beta_{\mu}$ for each $\mu \in \Lambda$, then $\bar{\theta}=\theta$ and $\bar{\omega}=\omega$.

Theorem 1. Let $\left(A_{\lambda}, f_{\lambda}, B_{\lambda}\right)_{\lambda \in \Lambda}$ be a family of left (right or two-sided) Segal topological algebras, T the tensor algebra of algebras $\left(A_{\lambda}\right)_{\lambda \in \Lambda}, S$ the tensor algebra of algebras $\left(B_{\lambda}\right)_{\lambda \in \Lambda}, I$ and J two-sided ideals of T and S, generated by the sets

$$
\left\{x \otimes y-x y: x, y \in A_{\lambda}, \lambda \in \Lambda\right\} \text { and }\left\{z \otimes w-z w: z, w \in B_{\lambda}, \lambda \in \Lambda\right\},
$$

respectively, and $h: T / I \rightarrow S / I$ a map, defined in Lemma 3. If $S \cdot h_{T}(T) \subseteq h_{T}(T)$ (respectively, $h_{T}(T) \cdot S \subseteq h_{T}(T)$ or $\left.S \cdot h_{T}(T) \cdot S \subseteq h_{T}(T)\right)$, then the coproduct of the family $\left(A_{\lambda}, f_{\lambda}, B_{\lambda}\right)_{\lambda \in \Lambda}$ exists and is in the form $\left(\left(\sqcup_{\lambda \in \Lambda} A_{\lambda}, h, \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}\right),\left(\left(\alpha_{\mu}, \beta_{\mu}\right)\right){ }_{\mu \in \Lambda}\right)$, where $\underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}=T / I, \sqcup_{\lambda \in \Lambda} B_{\lambda}=S / J, \alpha_{\mu}=\kappa_{I} \circ i_{\mu}$ and $\beta_{\mu}=\kappa_{J} \circ j_{\mu}$ for each $\mu \in \Lambda$.
Proof. We follow the steps (1)-(3d), as described after the definition of a coproduct in Seg, in order to prove the present theorem.
(1) By Corollary 2, we know that $\left(\underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}, h, \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}\right) \in \mathrm{Ob}(\mathbf{S e g})$.
(2) In the beginning of Section 4 we already checked that $h \circ \alpha_{\mu}=\beta_{\mu} \circ f_{\mu}$ for every $\mu \in \Lambda$.
(3) Take any $(C, g, D) \in \mathrm{Ob}(\mathbf{S e g})$ and families $\left(\gamma_{\mu}: A_{\mu} \rightarrow C\right)_{\mu \in \Lambda},\left(\delta_{\mu}: B_{\mu} \rightarrow D\right)_{\mu \in \Lambda}$ of continuous algebra homomorphisms such that $g \circ \gamma_{\mu}=\delta_{\mu} \circ f_{\mu}$ for each $\mu \in \Lambda$.

Remember that $\underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}=T / I$ and $\underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}=S / J$, which means that every element of $\underset{\lambda \in \Lambda}{\sqcup_{\lambda}} A_{\lambda}$ is of the form $\kappa_{l}(t)$ for some

$$
t=\bigoplus_{l=1}^{k_{t}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right) \in T
$$

and every element of $\sqcup_{\lambda \in \Lambda} B_{\lambda}$ is of the form $\kappa_{J}(v)$ for some

$$
v=\bigoplus_{o=1}^{k_{v}}\left(\bigoplus_{p=1}^{u_{o}}\left(\sum_{n=1}^{w_{p, o}} v_{n, p, 1} \otimes \ldots \otimes v_{n, p, i_{o}}\right)\right) \in S
$$

Define maps $\theta: \underset{\lambda \in \Lambda}{\sqcup} A_{\lambda} \rightarrow C$ and $\omega: \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda} \rightarrow D$ as follows:

$$
\theta\left(\kappa_{l}(t)\right)=\sum_{l=1}^{k_{l}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}} \tilde{\gamma}\left(t_{q, m, d}\right)\right)\right),
$$

where $\tilde{\gamma}\left(t_{q, m, d}\right)=\gamma_{\mu}\left(t_{q, m, d}\right)$ for $t_{q, m, d} \in A_{\mu}\left(\right.$ here $\left.\mu=\lambda_{t_{q, m, d}}\right)$ and

$$
\omega\left(\kappa_{J}(v)\right)=\sum_{o=1}^{k_{v}}\left(\sum_{p=1}^{u_{o}}\left(\sum_{n=1}^{w_{p, o}} \prod_{d=1}^{i_{o}} \tilde{\delta}\left(v_{n, p, d}\right)\right)\right)
$$

where $\tilde{\delta}\left(v_{n, p, d}\right)=\delta_{\mu}\left(v_{n, p, d}\right)$ for $v_{n, p, d} \in B_{\mu}$ (here $\left.\mu=\lambda_{v_{n, p, d}}\right)$.
Take any $u \in T$ such that $\kappa_{I}(u)=\kappa_{I}(t)$. Then $s=u-t \in I$, which means that s has the form

$$
s=\bigoplus_{f=1}^{k_{s}}\left(\bigoplus_{g=1}^{u_{f}}\left(\sum_{h=1}^{v_{g, f}} s_{h, g, 1} \otimes \ldots \otimes s_{h, g, j_{f}}\right)\right)
$$

where, for all possible values of q, m, d, we have $s_{q, m, d}=x_{s_{q, m, d}} \otimes y_{s_{q, m, d}}-x_{s_{q, m, d}} y_{s_{q, m, d}}$ for some $x_{s_{q, m, d},}, y_{s_{q, m, d}} \in A_{\lambda_{s_{q, m, d}}}$ and $u=t+s$ has the form

$$
u=\bigoplus_{l=1}^{k_{l}+k_{s}}\left(\bigoplus_{m=1}^{w_{l}}\left(\sum_{q=1}^{x_{m, l}} z_{q, m, 1} \otimes \ldots \otimes z_{q, m, L_{l}}\right)\right)
$$

where $L_{l}, w_{l}, x_{m, l}$ and $z_{q, m, d}$ are defined as in (3.1)-(3.2). Notice that, for all possible values of q, m, d, we have

$$
\begin{aligned}
\theta\left(\kappa_{l}\left(s_{q, m, d}\right)\right) & =\theta\left(\kappa_{l}\left(x_{s_{q, m, d}} \otimes y_{s_{q, m, d}}-x_{s_{q, m, d}} y_{s_{q, m, d}}\right)\right)=\tilde{\gamma}\left(x_{s_{q, m, d}} \tilde{\gamma}\left(y_{s_{q, m, d}}\right)-\tilde{\gamma}\left(x_{s_{q, m, d}} y_{s_{q, m, d}}\right)\right. \\
& =\gamma_{\lambda_{s_{q, m, d}}}\left(x_{s_{q, m, d}}\right) \gamma_{s_{s_{q, m, d}}}\left(y_{s_{q, m, d}}\right)-\gamma_{s_{q, m, d}}\left(x_{s_{q, m, d}} y_{s_{q, m, d}}\right)=\theta_{C},
\end{aligned}
$$

because $\gamma_{\lambda_{q, m, d}}$ is an algebra homomorphism.
This means that $\theta\left(\kappa_{I}(s)\right)=\theta_{C}$ and $\theta\left(\kappa_{I}(u)\right)=\theta\left(\kappa_{I}(s+t)\right)=\theta\left(\kappa_{I}(s)\right)+\theta\left(\kappa_{I}(t)\right)=\theta\left(\kappa_{I}(t)\right)$. Hence, θ is correctly defined. Similarly, we can also check that ω is correctly defined, i.e. if $\kappa_{J}\left(v_{1}\right)=\kappa_{J}\left(v_{2}\right)$, then also $\omega\left(\kappa_{J}\left(v_{1}\right)\right)=\omega\left(\kappa_{J}\left(v_{2}\right)\right)$.

As the maps $\left(\gamma_{\mu}: A_{\mu} \rightarrow C\right)_{\mu \in \Lambda},\left(\delta_{\mu}: B_{\mu} \rightarrow D\right)_{\mu \in \Lambda}$ were continuous algebra homomorphisms, then the maps θ and ω are also continuous algebra homomorphisms.
(3a) Fix any $\mu \in \Lambda$ and any $a \in A_{\mu}$. Then $\alpha_{\mu}(a)=\left(\kappa_{I} \circ i_{\mu}\right)(a)=\kappa_{I}\left(i_{\mu}(a)\right)=\kappa_{I}(a)$. Hence, $\left(\theta \circ \alpha_{\mu}\right)(a)=\theta\left(\kappa_{I}(a)\right)=\gamma_{\mu}(a)$. Thus, $\theta \circ \alpha_{\mu}=\gamma_{\mu}$ for each $\mu \in \Lambda$.
(3b) Fix any $\mu \in \Lambda$ and any $b \in B_{\mu}$. Then $\beta_{\mu}(b)=\left(\kappa_{J} \circ j_{\mu}\right)(b)=\kappa_{J}\left(j_{\mu}(b)\right)=\kappa_{J}(b)$. Hence, $\left(\omega \circ \beta_{\mu}\right)(b)=\omega\left(\kappa_{J}(b)\right)=\delta_{\mu}(b)$. Thus, $\omega \circ \beta_{\mu}=\delta_{\mu}$ for each $\mu \in \Lambda$.
(3c) Take any $x \in \underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}$. Then there exists

$$
t=\bigoplus_{l=1}^{k_{t}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right) \in T
$$

such that $x=\kappa_{l}(t)$.
Notice that, for any $a \in \underset{\lambda \in \Lambda}{\cup} A_{\lambda}$, we have

$$
(g \circ \tilde{\gamma})(a)=\left(g \circ \gamma_{\mu_{a}}\right)(a)=\left(\delta_{\mu_{a}} \circ f_{\mu_{a}}\right)(a)=(\tilde{\delta} \circ \tilde{f})(a),
$$

where $\tilde{f}: \cup_{\lambda \in \Lambda} A_{\lambda} \rightarrow \underset{\lambda \in \Lambda}{\cup} B_{\lambda}$ is defined as $\tilde{f}(a)=f_{\mu_{a}}(a)$ for each $a \in \underset{\lambda \in \Lambda}{\cup} A_{\lambda}$ and $\tilde{\delta}: \cup_{\lambda \in \Lambda}^{\cup} B_{\lambda} \rightarrow D$ is defined as $\tilde{\delta}(b)=\delta_{\mu_{b}}(b)$ for each $b \in \underset{\lambda \in \Lambda}{\cup} B_{\lambda}$. Hence, $g \circ \tilde{\gamma}=\tilde{\delta} \circ \tilde{f}$.

Define maps $\alpha: \underset{\lambda \in \Lambda}{\cup} A_{\lambda} \rightarrow \underset{\lambda \in \Lambda}{\cup} A_{\lambda}$ and $\beta: \underset{\lambda \in \Lambda}{\cup} B_{\lambda} \rightarrow \underset{\lambda \in \Lambda}{\cup} B_{\lambda}$ by $\alpha(a)=\alpha_{\mu_{a}}(a)$ and $\beta(b)=\beta_{\mu_{b}}(b)$, respectively. Then $\tilde{\delta}=\omega \circ \beta, \tilde{\gamma}=\theta \circ \alpha$ and $\beta \circ \tilde{f}=h \circ \alpha$.

Notice that, for every $\mu \in \Lambda$ and every $a \in A_{\mu}$, we have $\left(h \circ \alpha_{\mu}\right)(a)=\left(h \circ \kappa_{I}\right)(a)$.
Now, because of the definitions of addition and multiplication via direct sums and tensor products in T,

$$
\begin{aligned}
(g \circ \theta)(x) & =g\left(\theta\left(\kappa_{l}(t)\right)\right)=g\left(\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}} \tilde{\gamma}\left(t_{q, m, d}\right)\right)\right)\right) \\
& =\sum_{l=1}^{k_{l}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}(g \circ \tilde{\gamma})\left(t_{q, m, d}\right)\right)\right)=\sum_{l=1}^{k_{l}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}(\tilde{\delta} \circ \tilde{f})\left(t_{q, m, d}\right)\right)\right) \\
& =\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}((\omega \circ \beta) \circ \tilde{f})\left(t_{q, m, d}\right)\right)\right)=\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}(\omega \circ(h \circ \alpha))\left(t_{q, m, d}\right)\right)\right) \\
& =\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}\left(\omega \circ\left(h \circ \kappa_{I}\right)\right)\left(t_{q, m, d}\right)\right)\right)=(\omega \circ h) \sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \kappa_{I}\left(\prod_{d=1}^{i_{l}} t_{q, m, d}\right)\right)\right) \\
& =(\omega \circ h)\left(\kappa_{l}\left(\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}}\left(t_{q, m, l} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right)\right)\right)\right.
\end{aligned}
$$

$$
=(\omega \circ h)\left(\kappa_{l}\left(\bigoplus_{l=1}^{k_{t}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right)\right)\right)=(\omega \circ h)\left(\kappa_{l}(t)\right)=(\omega \circ h)(x)
$$

for each $x \in \underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}$. Hence, $g \circ \theta=\omega \circ h$.
(3d) Suppose that $\bar{\theta}: \underset{\lambda \in \Lambda}{\sqcup} A_{\lambda} \rightarrow C$ and $\bar{\omega}: \sqcup_{\lambda \in \Lambda} B_{\lambda} \rightarrow D$ are continuous algebra homomorphisms such that $g \circ \bar{\theta}=\bar{\omega} \circ h, \gamma_{\mu}=\bar{\theta} \circ \alpha_{\mu}$ and $\delta_{\mu}=\bar{\omega} \circ \beta_{\mu}$ for each $\mu \in \Lambda$. Take any $x \in \underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}$. Then there exists

$$
t=\bigoplus_{l=1}^{k_{t}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right) \in T
$$

such that $x=\kappa_{I}(t)$.
Now, because of the definitions of addition and multiplication via direct sums and tensor products in T and since $\bar{\theta}, \kappa_{I}, \theta$ are algebra homomorphisms, we obtain

$$
\begin{aligned}
& \overline{\boldsymbol{\theta}}(x)=\left(\overline{\boldsymbol{\theta}} \circ \kappa_{l}\right)\left(\bigoplus_{l=1}^{k_{t}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right)\right) \\
& =\left(\bar{\theta} \circ \kappa_{I}\right)\left(\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}} t_{q, m, d}\right)\right)\right)=\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m}} \prod_{d=1}^{i_{l}}\left(\bar{\theta} \circ \kappa_{I}\right)\left(t_{q, m, d}\right)\right)\right) \\
& =\sum_{l=1}^{k_{l}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}\left(\bar{\theta} \circ \kappa_{l}\right)\left(i_{\mu_{q,, m, d}}\left(t_{q, m, d}\right)\right)\right)\right)=\sum_{l=1}^{k_{l}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}\left(\bar{\theta}\left(\kappa_{I} \circ i_{\mu_{q,, m, d}}\right)\right)\left(t_{q, m, d}\right)\right)\right) \\
& \left.=\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}\left(\bar{\theta} \circ \alpha_{\mu_{q,, m, d}}\right)\left(t_{q, m, d}\right)\right)\right)=\sum_{l=1}^{k_{l}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}\left(\gamma_{\mu_{q, m, d}}\right)\left(t_{q, m, d}\right)\right)\right)\right) \\
& =\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m}} \prod_{d=1}^{i_{l}}\left(\theta \circ \alpha_{\mu_{q, m, d}}\right)\left(t_{q, m, d}\right)\right)\right)=\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}\left(\theta\left(\kappa_{l} \circ i_{\mu_{q, m, d}}\right)\right)\left(t_{q, m, d}\right)\right)\right) \\
& =\sum_{l=1}^{k_{l}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}\left(\theta \circ \kappa_{l}\right)\left(i_{\mu_{q, m, d}}\left(t_{q, m, d}\right)\right)\right)\right)=\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}}\left(\theta \circ \kappa_{l}\right)\left(t_{q, m, d}\right)\right)\right) \\
& =\left(\theta \circ \kappa_{I}\right)\left(\sum_{l=1}^{k_{t}}\left(\sum_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} \prod_{d=1}^{i_{l}} t_{q, m, d}\right)\right)\right)=\left(\theta \circ \kappa_{l}\right)\left(\bigoplus_{l=1}^{k_{t}}\left(\bigoplus_{m=1}^{p_{l}}\left(\sum_{q=1}^{r_{m, l}} t_{q, m, 1} \otimes \ldots \otimes t_{q, m, i_{l}}\right)\right)\right)=\theta(x)
\end{aligned}
$$

for each $x \in \underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}$. Using similar arguments for $\tilde{\omega}, \omega, \kappa_{J}$ and the definitions of addition and multiplication in S, we can show that $\tilde{\omega}(y)=\omega(y)$ for each $y \in \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}$. As it holds for each $x \in \underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}$ and each $y \in \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}$, then we have $\tilde{\theta}=\theta$ and $\tilde{\omega}=\omega$.

With this we have proved our claim that $\left(\underset{\lambda \in \Lambda}{\sqcup} A_{\lambda}, h, \underset{\lambda \in \Lambda}{\sqcup} B_{\lambda}\right)$ is the coproduct of the family $\left(A_{\lambda}, f_{\lambda}, B_{\lambda}\right)_{\lambda \in \Lambda}$ of Segal topological algebras. Hence, the coproduct exists in the category Seg.

Open question 2. Is the condition $S \cdot h_{T}(T) \subseteq h_{T}(T)\left(h_{T}(T) \cdot S \subseteq h_{T}(T)\right.$ or $S \cdot h_{T}(T) \cdot S \subseteq h_{T}(T)$) necessary for the existence of a coproduct?

6. CONCLUSIONS

In the present research we have found a sufficient condition for the existence of coproducts in the category Seg and stated some open problems.

ACKNOWLEDGEMENTS

The research was supported by the institutional research funding PRG1204 of the Estonian Ministry of Education and Research. The publication costs of this article were covered by the Estonian Academy of Sciences.

REFERENCES

1. Abel, M. About some categories of Segal topological algebras. Poincare J. Anal. Appl., 2019, 1, 1-14.
2. Abel, M. Coproducts in the category $\mathscr{S}(B)$ of Segal topological algebras, revisited. Period. Math. Hung., 2020, 81(2), $201-216$.
3. Abel, M. Initial objects, terminal objects, zero objects and equalizers in the category Seg of Segal topological algebras. Proc. Estonian Acad. Sci., 2020, 69(4), 361-367.
4. Abel, M. Coequalizers and pullbacks in the category Seg of Segal topological algebras. Proc. Estonian Acad. Sci., 2021, 70(2), 155-162.

Kokorrutised Segali topoloogiliste algebrate kategoorias Seg

Mart Abel

On leitud piisav tingimus kokorrutiste leidumiseks kategoorias Seg ja sõnastatud mõned lahtised probleemid.

