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Abstract. In this paper we define a function that allows us to calculate all symmetric homogeneous bivariate means. We also
provide examples for this function in case of 17 means.
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1. INTRODUCTION

Means and bivariate means have been studied by several mathematicians during the last 20 years (see
[1,2,7]). Different means appear in case of 17 means in mathematical analysis, statistics, elementary mathe-
matics, etc. Therefore, it is good to have a single formula that would describe simultaneously many means in
order to give a possibility of proving something for a whole class of different means with just a single proof.
The search for this kind of a unique descriptive function has led mathematicians to different formulas, using
integrals (see [6] or [5]) or integrals and measure (see [2]). However, there are actually more elementary
formulas for describing the class of all symmetric homogeneous bivariate means, as we will show in the
present paper.

In [6], the bivariate map m f : R+×R+→ R was defined for every function f : R+→ R by the formula

m f (a,b) =

{ 2(a−b)
f ( a

b )− f ( b
a )
, a 6= b

a, a = b
.

The authors of [6] found also some necessary and sufficient conditions under which the map m f satisfies the
conditions

min(a,b)6 m f (a,b)6 max(a,b)

of a bivariate mean (see [6], Theorem 3.1, pp. 242–243).
In the same paper, some functions f described are such that m f (a,b) presents some symmetric homoge-

neous bivariate means. The process of finding f such that m f will coincide with some given mean is given
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through the selection of some suitable function u ∈C([0,∞)) such that e−x 6 u(x)6 ex for every x ∈ [0,∞),
integrating it and composing with the logarithmic function (for details, see [6], Corollary 3.2 and Example
3.1, pp. 244–245). The authors start with u (without any explanation why this u was chosen) and show that
after integrating and composing, the resulting function f will force m f to be some known mean. However,
it is not very clearly explained how to find the function f when one wants to present some specific mean in
a form m f .

While working on his thesis and trying to complete the proofs, the author of [3] found a simpler method,
which does not include any integration or composing and which is suitable for finding f for any symmetric
homogeneous bivariate mean M such that m f = M. This method was used in [3] succesfully for finding
f for 17 different symmetric homogeneous bivariate means. The present paper gives first an overview of
this method with some necessary results. As an application, the functions f for the 17 different means are
provided.

In addition to the context of [3] and [6], we show that the function m f could be used for describing not
just some but all symmetric homogeneous bivariate means and for no other means. Actually, for a symmetric
homogeneous bivariate mean M there are infinitely many different maps f : R+→R such that m f = M. We
finish the paper by giving a complete description of all maps f that satisfy the condition m f = M for any
fixed symmetric homogeneous bivariate mean M.

2. DEFINITIONS AND PRELIMINARY RESULTS

In this paper we deal only with maps that are defined on the set R+ of positive real numbers or on the set
R+×R+ of pairs of positive real numbers but can take values in the whole set R of real numbers.

First, we remind that a map M : R+×R+→ R+ is said to be
(a) bivariate mean if min(a,b)6 M(a,b)6 max(a,b) for all a,b ∈ R+;
(b) symmetric if M(a,b) = M(b,a) for all a,b ∈ R+;
(c) homogeneous if M(ca,cb) = cM(a,b) for all a,b,c ∈ R+.

In the present paper, the following bivariate means will be used:
(1) minimum, which is defined as

min(a,b) =

{
a, a 6 b
b, a > b

;

(2) maximum, which is defined as

max(a,b) =

{
a, a > b
b, a < b

;

(3) arithmetic mean, which is defined as A(a,b) = a+b
2 ;

(4) harmonic mean, which is defined as H(a,b) = 2ab
a+b ;

(5) geometric mean, which is defined as G(a,b) =
√

ab;

(6) root mean square, which is defined as RMS(a,b) =
√

a2+b2

2 ;
(7) logarithmic mean, which is defined as

L(a,b) =

{
a−b

lna−lnb , a 6= b
a, a = b

;

(8) first Seiffert mean, which is defined as

SF(a,b) =

{
a−b

2arcsin a−b
a+b

, a 6= b

a, a = b
;
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(9) second Seiffert mean, which is defined as

SS(a,b) =

{
a−b

2arctan a−b
a+b

, a 6= b

a, a = b
;

(10) Neuman–Sándor mean, which is defined as

NS(a,b) =

{
a−b

2arcsinh a−b
a+b

, a 6= b

a, a = b
;

(11) identric mean, which is defined as

I(a,b) =

1
e

(
aa

bb

) 1
a−b

, a 6= b

a, a = b
;

(12) centroidal mean, which is defined as C(a,b) = 2(a2+ab+b2)
3(a+b) ;

(13) contraharmonic mean, which is defined as CH(a,b) = a2+b2

a+b ;

(14) Heron mean, which is defined as HE(a,b) = a+
√

ab+b
3 ;

(15) Lehmer mean, which is defined as LE(a,b) = ap+bp

ap−1+bp−1 for some fixed p ∈ R;

(16) Hölder mean (for some p ∈ R\{0}), which is defined as

HÖ(a,b) =
(ap +bp

2

) 1
p

;

(17) Stolarsky mean (for some p,q ∈ R\{0} with p 6= q), which is defined as

S(a,b) =


(

q(ap−bp)
p(aq−bq)

) 1
p−q

, a 6= b

a, a = b
;

(18) weighted arithmetic mean (for some p,q ∈ R+), which is defined as WA(a,b) = pa+qb
p+q ;

(19) weighted harmonic mean (for some p,q ∈ R+), which is defined as WH(a,b) = p+q
p
a +

q
b
;

(20) weighted root mean square (for some p,q ∈ R+), which is defined as WRMS(a,b) =
√

pa2+qb2

p+q .
It is straightforward to check that the first 17 means are symmetric homogeneous bivariate means and

that the last 3 means are not symmetric if p 6= q. Examples of bivariate means that are not homogeneous are
given in [4], Theorem 1, p. 158.

Following the notation of [6], we denote

F− = {g = µ ◦ ln; µ : R→ R is an odd function}, F+ = {g = ν ◦ ln; ν : R→ R is an even function}.

In [6], the following two results (we present them here in a slightly different form) are given with short
proofs or hints for a proof (the complete proofs of these results are given in [3]):

Lemma 1 ([6], Lemma 2.1, p. 240; [3], Lemma 2.1, p. 5.). Let g : R+ → R. Then the following two
assertions are equivalent:
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(i) For all x > 0 we have g(1
x ) =−g(x) (respectively, g(1

x ) = g(x)).
(ii) There exists an odd (respectively, an even) function µ : R→ R such that g(x) = (µ ◦ ln)(x) for every

x ∈ R+.

Lemma 2 ([6], Lemma 2.3, p. 242; [3], Lemma 2.4, p. 9.). Let g ∈ F− and f : R+→R. Then the following
two assertions are equivalent:
(i) f is a solution of the functional equation

f (x)− f

(
1
x

)
= 2g(x) for every x ∈ R+;

(ii) there exists h ∈ F+ such that f = g+h.
We will use these results in the following section.

3. THE FUNCTION MF AND SYMMETRIC HOMOGENEOUS BIVARIATE MEANS

All bivariate means M that were expressed via the map m f (defined as m f (a,b) =
2(a−b)

f ( a
b )− f ( b

a )
for all a,b∈R+,

with f : R+ → R) in [6] were symmetric and homogeneous. Although the authors of [6] do not give any
reason for considering only symmetric homogeneous bivariate means, Proposition 1 will show that other
types of bivariate means M can not be expressed in the form M = m f for any f : R+→ R. Moreover, the
authors of [6] do not mention either that if M = m f , then the map f : R+ → R will have to satisfy the
condition f (x)> f (1

x ) for every x > 1.

Proposition 1. Let M : R+×R+→ R+ be a bivariate mean. If there exists f : R+→ R such that M = m f ,
then f (x)> f (1

x ) for every x > 1 and M is both symmetric and homogeneous.

Proof. Suppose that the function m f , defined in the introductory part, coincides with some bivariate mean
M. Then 0 < min(a,b)6 m f (a,b)6 max(a,b) for every a,b ∈ R+. Hence, m f (a,b)> 0 for all a,b ∈ R+.
Take any x > 1 and choose a = x,b = 1. Then a,b ∈ R+ with a > b and m f (a,b) =

2(x−1)
f (x)− f ( 1

x )
. We see that

from M(x,1) = m f (x,1) > 0 it follows that f (x) > f (1
x ). As x > 1 was chosen arbitrarily, we must have

f (x)> f (1
x ) for every x > 1.

Take any a,b,c ∈ R+. Notice that since M = m f , then

M(a,b) = m f (a,b) =
2(a−b)

f (a
b)− f (b

a)
=

2(b−a)
f (b

a)− f (a
b)

= m f (b,a) = M(b,a)

and

M(ca,cb) = m f (ca,cb) =
2(ca− cb)

f ( ca
cb)− f ( cb

ca)
= c

2(a−b)
f (a

b)− f (b
a)

= cm f (a,b) = cM(a,b).

Hence, M is both symmetric and homogeneous.

Therefore, in what follows, we need to study only these functions f : R+→ R for which f (x) > f (1
x )

for every x > 1.
In [3], the following modification of Theorem 3.1 from pp. 242–243 in [6] was proved:

Theorem 1 ([3], Theorem 3.2, pp. 11–12).
(i) Let f : R+→ R be such that f (x)> f (1

x ) for every x > 1. If m f coincides with some bivariate mean,
then there exist g ∈ F− and h ∈ F+ such that f = g+h and 1− 1

x 6 g(x)6 x−1 for every x > 1.
(ii) Let h ∈ F+ and g ∈ F− be such that 1− 1

x 6 g(x)6 x−1 for every x > 1. Then f = g+h is such that
f (x)> f (1

x ) for every x > 1 and m f coincides with some bivariate mean.
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Remark 1. In (i) in [6], it is demanded that f should be a monotonic function on (0,∞) and claimed that
then 1− 1

x 6 g(x) 6 x− 1 for every x > 1. Actually, the monotonic function could be also decreasing,
which does not give us the necessary condition f (x) > f (1

x ). In [3], the monotonicity is replaced by the
condition f (x) > f (1

x ) for every x > 1, which guarantees the condition m f (a,b) > 0 for all a,b ∈ R+. The
condition 1− 1

x 6 g(x) 6 x− 1 for x = 1 gives us g(1) = 0, which is automatically fulfilled if one defines
g(x) = 1

2( f (x)− f (1
x )) for every x > 0, as it is actually done in the proof both in [6] and [3].

In the proof of part (ii) of Theorem 1, one just has to notice that since g ∈ F− and h ∈ F+, then, by
Lemma 1, g(x) = −g(1

x ) and h(x) = h(1
x ), which gives us f (x)− f (1

x ) = 2g(x) > 2(1− 1
x ) > 0 for any

x > 1. Hence, f (x)> f (1
x ) for every x > 1, as desired.

The following result gives a formula how to find for a given symmetric homogeneous bivariate mean M
a map f such that m f = M. This map f is certainly not the unique map for which M = m f , but all other
suitable maps f ′, with m f ′ = M, are of the form f ′ = f + h, where h ∈ F+ (as will be shown later on in
Theorem 2).

Proposition 2 ([3], Lemma 4.1, p. 14.). Let M : R+×R+→ R+ be a symmetric homogeneous bivariate
mean and let f : R+→ R be a map defined by f (x) = x−1

M(1,x) for every x ∈ R+. Then f ∈ F−, m f = M and

f (x)> f (1
x ) for every x > 1.

Proof. As M is homogeneous and symmetric, then M(1,x) = xM(1
x ,1) = xM(1, 1

x ) for every x ∈ R+. Thus,

f
(1

x

)
=

1
x −1

M(1, 1
x )

=
1− x

xM(1, 1
x )

=− x−1
M(1,x)

=− f (x)

for every x ∈ R+. By Lemma 1, f ∈ F−.
If a = b > 0, then, by the definitions of m f and the bivariate mean, we see that m f (a,b) = a = M(a,b).
Let a,b ∈ R+ be such numbers that a 6= b. As M is homogeneous and symmetric, then

bM(1, a
b) = M(b,a) = M(a,b) = aM(1, b

a). Therefore,

m f (a,b) =
2(a−b)

f (a
b)− f (b

a)
=

2(a−b)
a
b−1

M(1, a
b )
−

b
a−1

M(1, b
a )

=
2(a−b)

a−b
bM(1, a

b )
+ a−b

aM(1, b
a )

= M(a,b).

Hence, m f (a,b) = M(a,b) for all a,b ∈ R+. Thich means that m f = M.
By Proposition 1, f (x)> f (1

x ) for every x > 1.

From Propositions 1 and 2 we obtain the following result.

Corollary 1. Let M : R+×R+→ R+ be an arbitrary bivariate mean. Then the following are equivalent:
(i) there exists f : R+→ R such that m f = M;
(ii) M is homogeneous and symmetric.
Moreover, in both cases the map f , mentioned in (i), satisfies condition
(iii) f (x)> f (1

x ) for every x > 1.

Proof. Proposition 1 tells us that if there exists f : R+→ R such that m f = M, then f (x)> f (1
x ) for every

x > 1 and M is both symmetric and homogeneous. Hence, (ii) follows from (i) and condition (iii) is also
fulfilled.

Proposition 2 gives us the existence of a map f with f (x) > f (1
x ) for every x > 1 such that m f = M.

Hence, from (ii) follows (i) and condition (iii) is also fulfilled.
Thus, claims (i) and (ii) are really equivalent and condition (iii) follows from any of conditions (i) and

(ii).



M. Abel and R. Marmor: About a function that allows calculation of all symmetric homogeneous bivariate means 351

With Proposition 2, we have obtained a scheme for finding the maps f for given M such that m f coincides

with M:

Step 0: Check that M is a symmetric homogeneous bivariate mean.

Step 1: Define f (x) = x−1
M(1,x) for every x ∈ R

+.

Step 2: Using the technique given in the proof of Proposition 1, check that m f (a,b) = M(a,b) for all

a,b ∈ R
+.

Using these steps, the maps f for 17 different symmetric homogeneous means were obtained in [3]. The

results are given in Table 1. The easy calculations (which are similar to the calculations made in the proof

of Proposition 1 and could be found in [3]) are left for the reader.

Table 1. Maps f for different means

Mean Value of M(a, b) Value of f (x)
Minimum min(a,b) x−1

min(1,x)
Maximum max(a,b) x−1

max(1,x)

Arithmetic mean a+b
2

2(x−1)
x+1

Harmonic mean 2ab
a+b

x2−1
2x

Geometric mean
√

ab x−1√
x

Root mean square

√
a2+b2

2

√
2(x−1)√
1+x2

Logarithmic mean

{
a−b

lna−lnb , a �= b
a, a = b

lnx

First Seiffert mean

{
a−b

2arcsin a−b
a+b

, a �= b

a, a = b
2arcsin x−1

x+1

Second Seiffert mean

{
a−b

2arctan a−b
a+b

, a �= b

a, a = b
2arctan x−1

x+1

Neuman–Sándor mean

{
a−b

2arcsinh a−b
a+b

, a �= b

a, a = b
2arcsinh x−1

x+1

Identric mean

⎧⎨
⎩

1
e

(
aa

bb

) 1
a−b

, a �= b

a, a = b

{
e(x−1)x

x
x−1 , x �= 1

0, x = 1

Centroidal mean
2(a2+ab+b2)

3(a+b)
3(x2−1)

2(1+x+x2)

Contraharmonic mean a2+b2

a+b
x2−1
x2+1

Heron mean a+
√

ab+b
3

3(x−1)
1+

√
x+x

Lehmer mean ap+bp

ap−1+bp−1

(x−1)(1+xp−1)
1+xp

Hölder mean
(

ap+bp

2

) 1
p (x−1)2

1
p

(1+xp)
1
p

Stolarsky mean

⎧⎨
⎩
(

q(ap−bp)
p(aq−bq)

) 1
p−q

, a �= b

a, a = b
,

⎧⎪⎨
⎪⎩

x−1(
q(1−xp)
p(1−xq)

) 1
p−q

, x �= 1

0, x = 1

We would like to remark here that for the identric mean and the Stolarsky mean we have

lim
x→1

f (x) = 0.

Table 1. Maps f for different means

Mean Value of M(a, b) Value of f (x)
Minimum min(a,b) x−1

min(1,x)
Maximum max(a,b) x−1

max(1,x)

Arithmetic mean a+b
2

2(x−1)
x+1

Harmonic mean 2ab
a+b

x2−1
2x

Geometric mean
√

ab x−1√
x

Root mean square

√
a2+b2

2

√
2(x−1)√
1+x2

Logarithmic mean

{
a−b

lna−lnb , a �= b
a, a = b

lnx

First Seiffert mean

{
a−b

2arcsin a−b
a+b

, a �= b

a, a = b
2arcsin x−1

x+1

Second Seiffert mean

{
a−b

2arctan a−b
a+b

, a �= b

a, a = b
2arctan x−1

x+1

Neuman–Sándor mean

{
a−b

2arcsinh a−b
a+b

, a �= b

a, a = b
2arcsinh x−1

x+1

Identric mean

⎧⎨
⎩

1
e

(
aa

bb

) 1
a−b

, a �= b

a, a = b

{
e(x−1)x

x
x−1 , x �= 1

0, x = 1

Centroidal mean
2(a2+ab+b2)

3(a+b)
3(x2−1)

2(1+x+x2)

Contraharmonic mean a2+b2

a+b
x2−1
x2+1

Heron mean a+
√

ab+b
3

3(x−1)
1+

√
x+x

Lehmer mean ap+bp

ap−1+bp−1

(x−1)(1+xp−1)
1+xp

Hölder mean
(

ap+bp

2

) 1
p (x−1)2

1
p

(1+xp)
1
p

Stolarsky mean

⎧⎨
⎩
(

q(ap−bp)
p(aq−bq)

) 1
p−q

, a �= b

a, a = b
,

⎧⎪⎨
⎪⎩

x−1(
q(1−xp)
p(1−xq)

) 1
p−q

, x �= 1

0, x = 1

We would like to remark here that for the identric mean and the Stolarsky mean we have

lim
x→1

f (x) = 0.

x+
Harmonic mean 2ab

a+b
x2−1

2x
Geometric mean

√
ab x−1√

x

Root mean square

√
a2+b2

2

√
2(x−1)√
1+x2

Logarithmic mean

{
a−b

lna−lnb , a �= b
a, a = b

lnx

First Seiffert mean

{
a−b

2arcsin a−b
a+b

, a �= b

a, a = b
2arcsin x−1

x+1

Second Seiffert mean

{
a−b

2arctan a−b
a+b

, a �= b

a, a = b
2arctan x−1

x+1

Neuman–Sándor mean

{
a−b

2arcsinh a−b
a+b

, a �= b

a, a = b
2arcsinh x−1

x+1

Identric mean

⎧⎨
⎩

1
e

(
aa

bb

) 1
a−b

, a �= b

a, a = b

{
e(x−1)x

x
x−1 , x �= 1

0, x = 1

Centroidal mean
2(a2+ab+b2)

3(a+b)
3(x2−1)

2(1+x+x2)

Contraharmonic mean a2+b2

a+b
x2−1
x2+1

Heron mean a+
√

ab+b
3

3(x−1)
1+

√
x+x

Lehmer mean ap+bp

ap−1+bp−1

(x−1)(1+xp−1)
1+xp

Hölder mean
(

ap+bp

2

) 1
p (x−1)2

1
p

(1+xp)
1
p

Stolarsky mean

⎧⎨
⎩
(

q(ap−bp)
p(aq−bq)

) 1
p−q

, a �= b

a, a = b
,

⎧⎪⎨
⎪⎩

x−1(
q(1−xp)
p(1−xq)

) 1
p−q

, x �= 1

0, x = 1

We would like to remark here that for the identric mean and the Stolarsky mean we have

lim
x→1

f (x) = 0.

( ) ( )

Contraharmonic mean a2+b2

a+b
x2−1
x2+1

Heron mean a+
√

ab+b
3

3(x−1)
1+

√
x+x

( )( 1)

√

Lehmer mean ap+bp

ap−1+bp−1

(x−1)(1+xp−1)
1+xp

1 1ap +bp 1+x

Hölder mean
(

ap+bp

2

) 1
p (x−1)2

1
p

(1+xp)
1
p

Stolarsky mean

⎧⎨
⎩
(

q(ap−bp)
p(aq−bq)

) 1
p−q

, a �= b

a, a = b
,

⎧⎪⎨
⎪⎩

x−1(
q(1−xp)
p(1−xq)

) 1
p−q

, x �= 1

0, x = 1⎩
,

We would like to remark here that for the identric mean and the Stolarsky mean we have

lim
x→1

f (x) = 0.
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Comparison of our table with the table given in [6] (see Table 1.1 Fitted standard means, p. 240) shows
that the maps fR (we use the subindex R to distinguish the maps given in [6] from the maps f given in Table 1
in the present paper) for constructing m f are in some cases different from the maps f in the present paper.
More precisely, in [6] they offer for the harmonic mean fR(x) = x or fR(x) = −1

x , for the arithmetic mean
fR(x) =− 4

x+1 , for the geometric mean fR(x) = 2
√

x, for the first Seiffert mean fR(x) = 4arctan
√

x, and for
the second Seiffert mean fR(x) = 2arctanx. For the logarithmic mean and the Neuman–Sándor mean the
values of fR(x) given in [6] coincide with the ones presented in the table above.

Notice that the difference d = f − fR of the map f given in the present paper and fR given in [6] is a map
from F+, which, by Lemma 1, is equivalent to the fact that d(x) = d(1

x ) for every x ∈R+. We will show that
d ∈ F− by checking that d(x) = d(1

x ) for every x ∈ R+.
For the harmonic mean, we have two possible differences with

d1(x) =
x2−1

2x
− x =−1

2

(
x+

1
x

)
=−1

2

(
1
x
+ x

)
=

(
1
x

)2
−1

2 · 1
x

− 1
x
= d1

(
1
x

)

and

d2(x) =
x2−1

2x
−

(
−1

x

)
=

1
2

(
x+

1
x

)
=

1
2

(
1
x
+ x

)
=

(
1
x

)2
−1

2 · 1
x

−

(
− 1

1
x

)
= d2

(
1
x

)
for every x ∈ R+.

For the arithmetic mean, we have

d(x) =
2(x−1)

x+1
−

(
− 4

x+1

)
=

2x+2
x+1

= 2

for every x ∈ R+. Hence, d(x) = 2 = d(1
x ) for every x ∈ R+.

For the geometric mean, we have

d(x) =
x−1√

x
−2
√

x =−

(
√

x+
1√
x

)
=−

(
1√
x
+
√

x

)
=

1
x −1√

1
x

−2

√
1
x
= d

(
1
x

)

for every x ∈ R+.
Let us recall some trigonometric identities that hold for all w ∈ [−1,1] and for all u,v ∈ R:

arcsinw = 2arctan
w

1+
√

1−w2
; arctanu− arctanv = arctan

u− v
1+uv

.

We will use these identities in the calculations for the first Seiffert mean and the second Seiffert mean.
For the first Seiffert mean, we obtain

d(x) = 2arcsin
x−1
x+1

−4arctan
√

x = 4arctan
x−1
x+1

1+
√

1− ( x−1
x+1)

2
−4arctan

√
x

= 4

(
arctan

x−1

(
√

x+1)2 − arctan
√

x

)
= 4arctan

x−1
(
√

x+1)2 −
√

x

1+ x−1
(
√

x+1)2

√
x
= 4arctan(−1) = 4

(
−π

4

)
=−π

for every x ∈ R+. Hence, d(x) =−π = d(1
x ) for every x ∈ R+.
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For second Seiffert mean, we have

d(x) = 2arctan
x−1

x+1
−2arctanx = 2arctan

x−1
x+1

− x

1+ x−1
x+1

x
= 2arctan(−1) = 2

(
−π

4

)
=−π

2

for every x ∈ R
+. Hence, d(x) =−π

2
= d( 1

x ) for every x ∈ R
+.

To sum this all up, we have the following theorem, which describes all functions f for a given symmetric

homogeneous bivariate mean M for which M = m f .

Theorem 2. Let M be a symmetric homogeneous bivariate mean and f ′ : R+ → R. Then m f ′ = M if and
only if there exists h ∈ F+ such that f ′ = f +h, where f (x) = x−1

M(1,x) for every x ∈ R
+.

Proof. Suppose that m f ′ = M. By Proposition 2, we already know that M = m f . Hence, for all a,b ∈ R
+,

2(a−b)
f ′( a

b)− f ′(b
a)

= m f ′ = m f =
2(a−b)

f (a
b)− f (b

a)
.

From this we obtain that f ′(a
b)− f ′(b

a) = f (a
b)− f (b

a), which gives us f ′(a
b)− f (a

b) = f ′(b
a)− f (b

a) for all

a,b ∈ R
+. Set h = f ′ − f and take any x ∈ R

+. Put a = x,b = 1. Then

h(x) = ( f ′ − f )(x) = f ′(x)− f (x) = f ′
(

a
b

)
− f

(
a
b

)
= f ′

(
b
a

)
− f

(
b
a

)

= f ′
(

1

x

)
− f

(
1

x

)
= ( f ′ − f )

(
1

x

)
= h

(
1

x

)
.

Since this holds for every x ∈ R
+, then h ∈ F+. Hence, there exists h ∈ F+ such that f ′ = f +h.

To prove the converse implication, take any h ∈ F+ and set f ′ = f +h. Then, by Lemma 1, h(x) = h( 1
x )

for every x ∈ R
+. Hence, h( a

b) = h(b
a) for every a,b ∈ R

+. By Proposition 2, we know that M = m f .

Therefore, we obtain

m f ′(a,b)=
2(a−b)

( f +h)(a
b)− ( f +h)(b

a)
=

2(a−b)
( f (a

b)− f (b
a))+(h( a

b)−h(b
a))

=
2(a−b)

f (a
b)− f (b

a)
=m f (a,b)=M(a,b)

for every a,b ∈ R
+. Hence, for all m f ′ = M.

4. CONCLUSION

In the present paper we found a simple formula that allows us to represent all symmetric homogeneous

bivariate means in a similar form without too much use of technical calculations.
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= f ′
(

1

x

)
− f

(
1

x

)
= ( f ′ − f )

(
1

x

)
= h

(
1

x

)
.
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5. Raïssouli, M. and Rezgui, A. Characterization of homogeneous symmetric monotone bivariate means. J. Inequal. Appl., 2016,

Paper No. 217.
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Funktsioonist, mis võimaldab arvutada kõiki sümmeetrilisi homogeenseid kahe
muutuja keskmisi

Mart Abel ja Raido Marmor

On sisse toodud üsna lihtsal kujul olev funktsioon, mis võimaldab samaaegselt kirjeldada kõiki sümmeetrilisi

homogeenseid kahe muutuja keskmisi. On uuritud ja tõestatud selle funktsiooni mõningaid omadusi ning

toodud näiteid selle funktsiooni konkreetsest kujust 17 erineva keskmise korral.

Raïssouli,

Raïssouli,
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