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Abstract. This paper simplifies the existing necessary and sufficient conditions for transformability of state equations into the
observer form by state transformation.
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For nonlinear control systems that are transformable via state transformation into the observer form, which
is a linear system appended with nonlinear input-output injection terms that depend only on measured input
and output, observers with linear error dynamics can be easily constructed unlike in the general case. This
explains the huge popularity of this research topic for different system classes, which have been addressed
via different mathematical tools under different assumptions for more than 30 years; see for instance [1–9].

In [10], necessary and sufficient conditions are given to transform the state equations of discrete-time
nonlinear control system

x
h1i = F(x,u), y = h(x) (1)

by state transformation X = Y(x) into the classical observer form

X
h1i
i

= Xi+1 +ji(y,u), i = 1, ...,n�1,

X
h1i
n

= jn(y,u), y = X1. (2)

The aim of this note is to improve the main result (Theorem 6) from [10] in two aspects: to simplify the
set of necessary and sufficient transformability conditions and simplify the sufficiency part of the proof. We
refer the reader to [10] for preliminaries we do not repeat here, except for the material that is absolutely
necessary for understanding the new proof.

In [10], x
h1i means the first-order forward shift of the state variable. The higher order forward and

backward shifts (also of other variables as well as vector fields and 1-forms) are denoted by upper index hki,
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where k 2 Z. The state transition map F in (1) is supposed to be analytic and such that it can be extended to
the map F= [FT

,cT ]T , having the global analytic inverse. Introduce the additional variable z by z= c(x,u).
The system (1) defines the inversive difference field K of meromorphic functions in a finite number of
variables {x, u

hki, k� 0, z
h�li, l � 1} as well as the vector spaces of the 1-forms and the vector fields over K ;

see [10] for more details. Recall the vector spaces Y := spanK {dy
hli, l � 0}, U := spanK {du

h ji, j � 0},
X := spanK {dx} [10]. The subspace O = X \ (Y +U ) is called the observable space of system (1).

Assumption 1. The system (1) satisfies the generic observability condition dimK O = n.

Define the set of 1-forms:

wk :=
n

Â
i=1

∂y
hki

∂xi

dxi, k = 0, ...,n�1. (3)

Assumption 1 is equivalent to the condition that the 1-forms wk, k = 0, ...,n�1, are linearly independent:

dimK (spanK {wk, k = 0, ...,n�1}) = n.

Define the vector field X 2 spanK {∂/∂x} such that

hwk,Xi⌘ dk,n�1, k = 0, ...,n�1, (4)

where by dk,n�1 is denoted the Kronecker delta. As shown in [10], under Assumption 1 the vector field X is
uniquely determined. By the definition of X and Lemma 1 in [10], the vector fields Xh�li, l = 0, ...,n, belong
to spanK {∂/∂x, ∂/∂ z

h�1i, ..., ∂/∂ z
h�li}. However, for l < n one can consider all such vector fields as the

elements of a larger dimensional space spanK {∂/∂x, ∂/∂ z
h�1i, ....∂/∂ z

h�ni}. In a similar manner one can
consider all the 1-forms wk and dy

hki, k = 0, ...,n�1, as the elements of the space spanK {dx,du, ....,du
hn�2i}

and write

dy = w0, dy
hki = wk +

k�1

Â
j=0

∂y
hki

∂uh ji du
h ji, k = 1, ...,n�1. (5)

Let

Xh�lip =
n

Â
i=1

D
dxi,Xh�li

E ∂
∂xi

2 spanK

⇢
∂
∂x

�

be the projection of Xh�li. Note that for k = 0, ...,n�1, l = 0, ...,n, the following holds from [10]:

D
dy

hki,Xh�li
E
=

*
wk +

k�1

Â
j=0

∂y
hki

∂uh ji du
h ji,Xh�lip +

l

Â
q=1

D
dz

h�qi,Xh�li
E ∂

∂ zh�qi

+
=
D

wk,Xh�lip
E
. (6)

Under Assumption 1 the vector fields Xh�lip , l = 0, ...,n�1, are linearly independent over K [10]. There-
fore, from Lemma 3 in [11] one can conclude that the lemma below holds.

Lemma 2. If the vector fields Xh�lip
, l = 0, ...,n� 1, commute and their coefficients depend only on x,

then, generically, one can define the state transformation Xi = Yi(x), Yi 2 K , i = 1, ...,n, such that

hdYi,Xh�lipi= di,n�l .

Note that because the vector fields Xh�lip , l = 0, ...,n� 1, span the vector space spanK {∂/∂x}, the total
differentials of Yi(x) are uniquely defined.

Theorem 6 in [10] has three solvability conditions. Theorem 3 below demonstrates that actually the
claim of the theorem holds under the first two conditions, meaning that the third condition is not independent.
Note also that the new proof is more transparent and much shorter.
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Theorem 3. (Revision of Theorem 6 in [10]) Under Assumption 1 the equations (1) can be transformed via
state transformation into the observer form (2) if and only if the following two conditions are satisfied:
(i) the vector fields Ξ〈−l〉π commute:

[
Ξ〈−l〉π ,Ξ〈− j〉π

]
≡ 0, l, j = 0, ...,n−1,

(ii) the coefficients of Ξ〈−l〉π , l = 0, ...,n−1, depend only on the variable x:
[

∂
∂u〈 j〉 ,Ξ

〈−l〉π
]
≡ 0,

[
∂

∂ z〈−k〉 ,Ξ
〈−l〉π

]
≡ 0, j = 0, ...,n−2, k = 1, ...,n−1.

Proof. Sufficiency. If (i) and (ii) hold, then by Lemma 2 one can define the state transformation

Xi = Ψi(x) :
〈

dΨi,Ξ〈−l〉π
〉
≡ δi,n−l, i = 1, ...,n, l = 0, ...,n−1. (7)

Note that computing the total differentials of the both sides of (2), we get, replacing dXi by dΨi,

dΨ〈1〉
i =

∂ϕi(X1,u)
∂X1

∣∣∣∣
X1=Ψ1(x)

dΨ1 +dΨi+1 +
∂ϕi(X1,u)

∂u

∣∣∣∣
X1=Ψ1(x)

du, i = 1, ...,n−1,

dΨ〈1〉
n =

∂ϕn(X1,u)
∂X1

∣∣∣∣
X1=Ψ1(x)

dΨ1 +
∂ϕn(X1,u)

∂u

∣∣∣∣
X1=Ψ1(x)

du.
(8)

Consequently, we need to show that if (i) and (ii) hold, then the total differentials of the forward shift of
Ψi(x), defined by (7), have the form (8).

Since the functions Ψi(x) defined by (7) are linearly independent and their number is n, then

spanK {dΨi, i = 1, ...,n}= spanK {dx}. (9)

Obviously dΨ〈1〉
i ∈ spanK {dx,du}, therefore due to (9) one has

dΨ〈1〉
i =

n

∑
j=1

αi j(x,u)dΨ j +βi(x,u)du. (10)

Note that because the left-hand side of (10) is a total differential, then also its right-hand side must be a total
differential. This is possible if and only if there exist some functions φi(X ,u), i = 1, ...,n, such that

αi j =
∂φi(X ,u)

∂Xj

∣∣∣∣
X=Ψ(x)

, βi =
∂φi(X ,u)

∂u

∣∣∣∣
X=Ψ(x)

. (11)

Compare (8) and (10). We need to prove that if (i) and (ii) are satisfied, then the coefficients (11) on the
right side of (10) have the following form:

αi1 =
∂ϕi(X1,u)

∂X1

∣∣∣∣
X1=Ψ1(x)

, βi =
∂ϕi(X1,u)

∂u

∣∣∣∣
X1=Ψ1(x)

, (12)

αi j = δi, j−1, i = 1, ...,n, j = 2, ...,n. (13)

Show first the validity of (13), multiplying both sides of (10) by Ξ〈−l〉π , l = 0, ...,n−2:

〈
dΨ〈1〉

i ,Ξ〈−l〉π
〉
=

n

∑
j=1

αi j

〈
dΨ j,Ξ〈−l〉π

〉
+βi

〈
du,Ξ〈−l〉π

〉
,

dΨ〈1〉
n =

∂ϕn(X1,u)
∂X1

∣∣∣∣
X1=Ψ1(x)

dΨ1 +
∂ϕn(X1,u)

∂u

∣∣∣∣
X1=Ψ1(x)

du.
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which, taking into account (7) and the definition of Kronecker delta, obtains the following form:

αi,n−l =
〈

dΨ〈1〉
i ,Ξ〈−l〉π

〉
, i = 1, ...,n, l = 0, ...,n−2. (14)

Note that due to the definition of the projection of the vector field

Ξ〈−l〉 = Ξ〈−l〉π +
l

∑
k=1

〈
dz〈−k〉,Ξ〈−l〉

〉 ∂
∂ z〈−k〉 . (15)

From dΨ〈1〉
i ∈ spanK {dx,du} and (15) one can rewrite (14) as αi,n−l = 〈dΨ〈1〉

i ,Ξ〈−l〉〉 = 〈dΨi,Ξ〈−l−1〉〉〈1〉.
Since dΨi has no components in the directions of dz〈−k〉, k ≥ 1, and du〈 j〉, j ≥ 0, one can, in the expressions
of αi,n−l , replace the vector fields by their projections:

αi,n−l =
〈

dΨi,Ξ〈−l−1〉π
〉〈1〉

, i = 1, ...,n, l = 0, ...,n−2. (16)

From (7), 〈dΨi,Ξ〈−l−1〉π〉 ≡ δi,n−l−1, i = 1, ...,n, l = 0, ...,n−2, and since the value of a constant is invariant
with respect to shifting, one may write αi,n−l = 〈dΨi,Ξ〈−l−1〉π〉〈1〉 ≡ δi,n−l−1, i = 1, ...,n, l = 0, ...,n− 2.
Using notation j := n− l, one gets αi j = δi, j−1, i = 1, ...,n, j = 2, ...,n, meaning that (13) holds.

To show the validity of (12), note that the 1-form (10) can be rewritten by (11) and (13) as

dΨ〈1〉
i =

∂φi(X ,u)
∂X1

∣∣∣∣
X=Ψ(x)

dΨ1 +dΨi+1 +
∂φi(X ,u)

∂u

∣∣∣∣
X=Ψ(x)

du, i = 1, ...,n−1,

dΨ〈1〉
n =

∂φn(X ,u)
∂X1

∣∣∣∣
X=Ψ(x)

dΨ1 +
∂φn(X ,u)

∂u

∣∣∣∣
X=Ψ(x)

du.
(17)

The right-hand sides of (17) are total differentials if and only if there exist the functions ϕi(X1,u) such that

φi(X ,u) = ϕi(X1,u)+Xi+1, i = 1, ...,n−1,
φn(X ,u) = ϕn(X1,u).

(18)

Then also (12) is valid, and (17) takes the form (8), meaning that in the new coordinates X , defined by (7),
the forward shifts of the new coordinates X have the form (2). It remains to be proved that dX1 = dy, or
alternatively, taking into account (7), that

〈
dy,Ξ〈−l〉π

〉
≡ δ1,n−l, l = 0, ...,n−1. (19)

Due to (5) and the fact that Ξ ∈ spanK {∂/∂x}, the definition formula (4) can be rewritten as
〈

dy〈k〉,Ξ
〉
≡ δk,n−1, k = 0, ...,n−1. (20)

Shifting (20) backward k steps results in 〈dy,Ξ〈−k〉〉 ≡ δk,n−1, which is equivalent to 〈dy,Ξ〈−k〉π〉 ≡ δk,n−1
due to (6). Since the addition of the same number 1− k to both indices of δk,n−1 does not change its value,
the last equality is equivalent to 〈dy,Ξ〈−k〉π〉= δ1,n−k, k = 0, ...,n−1, which is (19) for k = l.

Necessity. The necessity part of this theorem is proved in [10]. !
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dΨ〈1〉
n =

∂φn(X ,u)
∂X1

∣∣∣∣
X=Ψ(x)

dΨ1 +
∂φn(X ,u)

∂u

∣∣∣∣
X=Ψ(x)

du.

φn(X ,u) = ϕn(X1,u).
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11. Mullari, T. and Kotta, Ü. Linearization of discrete-time control systems by state transformation. Proc. Estonian Acad. Sci.,
2021, 70(1), 62–79.

Mittelineaarsete diskreetsete olekuvõrrandite teisendamine vaatlejakujule: täiustamine

Tanel Mullari ja Ülle Kotta

Artiklis lihtsustatakse varem leitud tarvilikke ja piisavaid tingimusi olekuvõrrandite vaatlejakujule viidavuseks
olekuteisenduste abil.


