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Abstract. In the current study, the higher order Haar wavelet method based formulation is developed for the analysis of the free 
vibrations of the tapered Timoshenko beam. The clamped-clamped and clamped-pinned boundary conditions are explored and the 
results with the 4th order and the 6th order of convergence are presented. The results are found to be in good agreement with the 
corresponding results of the Ritz method. The proposed approach can be considered as the principal improvement of the widely used 
Haar wavelet method providing the same accuracy with the several magnitudes lower mesh. Thus, the higher order Haar wavelet 
method has reduced the computational cost in comparison with the widely used Haar wavelet method since the computational 
complexity of both methods is determined by the mesh used. In the case of the fixed equal mesh used for both methods, the higher 
order Haar wavelet method results in the several magnitudes lower absolute error without a remarkable increase in computational 
complexity. The cost needed to pay for higher accuracy is hidden in a certain increase in the implementation complexity compared 
with the widely used Haar wavelet method.  
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1. INTRODUCTION 
 
Development and adaptation of computational methods and mathematical modelling techniques are rapidly 
evolving research areas with the main focus on finding more accurate, less time-consuming, and simpler 
approximations.   

The Haar wavelet method (HWM) was first introduced in [1–2]. According to Chen and Hsiao’s approach, 
the highest order of derivatives included in a differential equation is expanded into a series of Haar functions 
[1–2]. This method is applied to solving differential and integro-differential equations covering applications 
in various research areas such as engineering, natural sciences, etc. [3–9]. Furthermore, this method is used 
as a numerical solution to linear and nonlinear delay differential equations [10], and space derivatives are 
obtained through the Haar wavelet collocation method to solve 1D and 2D cubic nonlinear Schrodinger 
equations [11]. In [12] the accuracy and convergence results of the HWM are presented. Based on the obtained 
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results, it can be concluded that despite its simple implementation, the HWM needs refinement in order to 
compete with such widely used numerical methods as the finite difference method and the differential 
quadrature method.    

Recently, the higher order Haar wavelet method (HOHWM) was introduced in [13] in order to improve 
the accuracy and convergence of the previously proposed Haar wavelet method. The HOHWM has been 
applied with success to solving differential equations, vibration, and buckling response of beams [14–18]. 
Theoretical and numerical analyses of the free and forced vibration of homogeneous and functionally graded 
Timoshenko beams have been performed [19–22]. In the case of tapered beams, many approaches have been 
used for analysing the Timoshenko beam that has a non-uniform cross-section [23–26].  

The HOHWM is applied with success to the analysis of plate and shell structures using Euler–Bernoulli 
and zig-zag theories. In this paper the HOHWM approach is adapted to the Timoshenko beam theory.     
 
 
2. HOHWM  APPROACH  TO  FREE  VIBRATION  ANALYSIS  OF  THE  TIMOSHENKO  BEAM  
 
In this section, the formulation of the free vibration of the tapered Timoshenko beam and boundary conditions 
are introduced. 
 
2.1. Free  vibration  of  the  Timoshenko  beam 
 
A schematic view of the Timoshenko beam with a non-uniform cross-section along the length, x-direction, 
is shown in Fig. 1. 

Herein, free vibration of homogeneous tapered Timoshenko beams has been investigated. The material 
properties of the beams are assumed to be constant. Firstly, the cross-sectional area 𝐴(𝑥) and the moment of 
inertia 𝐼(𝑥) are presented as   
 

 
 
 where 𝐴0 and 𝐼0 are the area and the moment of inertia at the base of the beam, respectively. L is the length 
of the beam, E denotes Young’s modulus, G refers to shear modulus, ρ represents mass density, and k is the 
shear correction factor which is chosen to be 5/6. For the described Timoshenko beam, the basic governing 
differential equations for transverse vibration of the tapered beam can be presented as 
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Fig. 1. Schematic view of a tapered beam. 
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where 𝑤 and φ are the transverse deflection and rotation of the cross-section, respectively. The bending 
moment M and the shear force Q at any cross-section can be read as 
 
 
 

The boundary conditions for the beam can be expressed 
 
                                         for the clamped edge as: 𝑤 = 0,     φ = 0, 
                                         for the pinned edge as: 𝑤 = 0,     𝑀 = 0. 
 
2.2. Higher  order  Haar  wavelet  method 
 
The higher order Haar wavelet method (HOHWM) is developed as an improvement of the widely used Haar 
wavelet method (HWM) [13]. 

The 𝑛-th order ordinary differential equation, in general, can be presented as 
 
                                                                               
 
where 𝑛 represents the order of the highest derivative involved in the differential equation. In the HOHWM, 
in comparison to the Haar wavelet method, the order of expansion is increased by 2s, Eq. (6). Based on the 
Haar wavelet, the expansion is presented as 
 

 
 
 
in which ℎ𝑖(𝑥) is the Haar function [18] 
 
  
 
 
 
where 𝑖 = 𝑚 + 𝑘 + 1, 𝑚 = 2𝑗 is a maximum number of square waves arranged in the interval [𝐴,𝐵] and the 
parameter 𝑘 indicates the location of the particular square wave [18] 
 
 
 
 The integrals of the Haar functions (7) of order n can be expressed as [13] 

 
 
 
 

 
 
 
 
The differential equation can be satisfied in selected uniform grid points 
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where L and R are the added collocation points on the left and right boundary, respectively. Then the numerical 
order of the convergence of the method can be estimated by 
 

 
 
 
where 𝐹𝑅𝑒𝑓 is the existing solution, which in the current solution is obtained from the Ritz method [21]. 
 
 3. NUMERICAL  RESULTS  
 
In order to showcase the accuracy of the formulation proposed above, the values of natural frequencies of 
the Timoshenko beam under two arbitrary boundary conditions are presented. Table 1 presents the effect of 
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 N HWM  HOHWM 4th HOHWM 6th 

Frequency A. error Conv. 
rate 

Frequency A. error Conv. 
rate 

Frequency A. error Conv. 
rate 

c = 0      4 13.96275845 1.28e-01  13.84197845 7.22e-03  13.83477975 2.13e-05  

     8 13.86655612 3.18e-02  2.0091 13.83519214 4.34e-04 4.0576 13.83476001 1.56e-06 5.4358 

   16 13.84269132 7.93e-03  2.003 13.83478525 2.68e-05 4.0146 13.83475854 8.43e-08 5.7522 

   32 13.83674066 1.98e-03  2.0007 13.83476012 1.67e-06 4.0036 13.83475846 1.51e-09 5.9467 

   64 13.83525392 4.95e-04  2.00019 13.83475856 1.04e-07 4.0009 13.83475846 7.71e-10 5.9955 

 128 13.83488232 1.24e-04  2.00004 13.83475846 6.53e-09 4.0002 13.83475845 4.08e-11 5.9999 

 256 13.83478942 3.10e-05  2.00001 13.83475845 4.08e-10 4.0000 13.83475845 1.40e-13 6.0000 

  Existing result = 13.834758 

c = 0.4      4 13.38213007 9.60E-01  12.42216412 3.56E-02  12.42216313 4.40E-03  

     8 12.51071171 8.85E-02  2.0154 12.45779287 7.62E-03 4.3451 12.42655937 7.71E-04 6.0527 

   16 12.43177774 9.61E-03  2.0095 12.42293499 7.72E-04 4.0623 12.42217245 9.32E-06 6.0129 

   32 12.42292193 7.59E-04  2.0037 12.42221943 5.63E-05 4.0103 12.42216313 4.41E-07 6.0099 

   64 12.42223492 7.18E-05  2.0018 12.42978489 9.92E-07 4.0096 12.42293432 4.36E-09 6.0042 

 128 12.42218071 1.76E-05  2.0008 12.42216317 4.02E-08 4.0073 12.42216357 7.28E-10 6.0017 

 256 12.42216626 3.13E-06  2.0003 12.42216313 4.39E-09 4.0023 12.42216313 2.71E-11 6.0009 

 Existing result = 12.422163 

c = 0.8      4  10.7701461  1.04E+00  9.738846102 1.17E-02  9.727997702 8.52E-04  

     8  10.2871461  5.60E-01  2.0994 9.727886102 7.40E-04 4.0807 9.727181202 3.51E-05 6.0698 

   16    9.782096102  5.50E-02  2.0848 9.727219602 7.35E-05 4.0713 9.727147068 9.66E-07 6.0695 

   32    9.728230102  1.08E-03  2.0631 9.727157102 1.10E-05 4.0466 9.727146185 8.28E-08 6.0606 

   64    9.727253202  1.07E-04  2.0480 9.727151332 5.23E-06 4.0402 9.727146103 6.74E-10 6.0326 

 128    9.727156532  1.04E-05  2.0279 9.727146886 7.84E-07 4.0198 9.727146102 4.75E-11 6.0050 

 256    9.727147652  1.55E-06  2.0051 9.727146151 4.90E-08 4.0074 9.727146102 6.84E-12 6.0007 

 Existing result = 9.727146 

Table 1. Effect of taper ratio on non-dimensional natural frequencies of the C-C Timoshenko beam 

A. error – Absolute error 



taper ratio (c) for the beam under clamped-clamped (C-C) boundary conditions. The results are compared 
with the existing results obtained from the Ritz method and alternative methods employed in [22,25]. 

As expected, for the beam with the taper ratio other than c = 0, the non-dimensional natural frequency 
decreases for the higher value of c. Moreover, as it can be observed, the results of the higher order Haar 
wavelet method prove that in the case of the 4th and the 6th order of convergence, the absolute error reduces 
much faster by increasing the number of terms in the Haar wavelet method. This matter could be essential in 
the case of more complex problems, thus the accurate result can be obtained faster and with a smaller number 
of terms. 

The effect of boundary conditions is shown in Table 2. For the tapered Timoshenko beam (c = 0.2), the 
results of two boundary conditions – clamped-clamped (C-C) and clamped-pinned (C-P) – are produced, 
which prove the above-mentioned point for the higher order Haar wavelet method. In the future study, the 
HOHWM is planned to be applied to design optimization of plate and shell structures [27–31]. 
 
 
4. CONCLUSIONS  
 
During the last two years, the HOHWM has been applied with success to the analysis of plate and shell 
structures by using Euler–Bernoulli and zig-zag theories. In the current study, the HOHWM is extended to the 
vibration analysis of Timoshenko beams. The solution has been used to analyse the beam under two boundary 
conditions, clamped-clamped and clamped-pinned. The results for beams with different taper ratios prove that 
the higher order Haar wavelet method is accurate, and for the versions with the higher order of convergence 
(4th and 6th order) the absolute error drops extremely fast. These results can be translated to a faster, simpler, 
and more accurate solution for other structural analyses where the analytical solution is difficult to obtain.   
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 N HWM  HOHWM 4th HOHWM 6th 

Frequency A. error Conv. 
rate 

Frequency A. error Conv. 
rate 

Frequency A. error Conv. 
rate 

C-P      4 12.48688739 1.80E+00   11.05355589 3.67E-01   10.77030682 8.34E-02  

     8 11.05808739 3.70E-01 2.3120  10.73676607 6.99E-02 4.8521  10.68746912 5.82E-04 7.6790 

   16 10.75601079 6.91E-02 2.0624  10.6877406 8.53E-03 4.0629  10.68692751 4.01E-05 6.6293 

   32 10.69501206 8.12E-03 2.0039  10.6869284 4.10E-04 4.0132  10.68688961 2.22E-06 6.0872 

   64 10.68781264 9.25E-04 2.0007  10.68688976 2.37E-05 4.0083  10.6868877 3.06E-07 6.0034 

 128 10.68715151 2.64E-04 2.0003  10.68688778 3.94E-06 4.0019  10.6868874 9.28E-09 6.0012 

 256 10.68695081 6.30E-05 2.00002  10.6868874 7.31E-07 4.0005  10.68688739 2.79E-10 6.0008 

  Existing result = 10.68689 

C-C      4 14.32226684 1.10E+00  13.26456684 4.23E-02  13.22543684 3.17E-03  

     8 13.95226684 7.30E-01 2.0906 13.22523684 2.97E-03 4.1523 13.22233484 6.80E-05 6.0228 

   16 13.28756684 6.53E-02 2.0746 13.22246484 1.98E-04 4.0945 13.22226727 4.35E-07 6.0197 

   32 13.22697684 4.71E-03 2.0595 13.22227401 7.17E-06 4.0840 13.22226686 1.76E-08 6.0131 

   64 13.22245884 1.92E-04 2.0164 13.22226732 4.83E-07 4.0570 13.22226684 6.23E-09 6.0109 

 128 13.22232314 5.63E-05 2.0117 13.22226737 5.34E-07 4.0338 13.22226684 6.31E-10 6.0072 

 256 13.22227227 5.43E-06 2.0021 13.22226684 4.85E-09 4.0013 13.22226684 5.02E-11 6.0020 

 Existing result = 13.222267 

Table 2. Effect of boundary conditions on non-dimensional natural frequencies of the tapered Timoshenko beam (c = 0.2) 
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Muutuva  ristlõikega  Timoshenko  tala  vabavõnkumiste  analüüs  kõrgemat  järku   
Haari  lainikute  meetodi  abil  

 
Marmar Mehrparvar, Jüri Majak, Kristo Karjust ja Mustafa Arda 

 
Viimase kahe aasta jooksul on rakendatud kõrgemat järku Haari lainikute meetodit plaatide ja koorikute analüüsiks, 
kasutades peamiselt Euler-Bernoulli teooriat, ühes artiklis ka zig-zag teooriat. Käesolevas töös on laiendatud kõrgemat 
järku Haari lainikute meetod Timoshenko tala vabavõnkumiste analüüsiks. Töös on kasutatud jäik-jäik ja jäik-vaba 
(vaba toetus) rajatingimusi. Analüüsitud on erivate ristlõike muutumise koefitsentidele vastavaid lahendusi. Kõrgemat 
järku Haari lainikute meetod osutus täpseks ja kiireks nii 4. kui 6. järku koonduvuse korral (koonduvuse järk on määratud 
meetodi parameetriga). Saadud tulemused on üldistatavad laiema plaatide/koorikute vabavõnkumisi käsitlevate ülesan-
nete klassi jaoks, kattes ka juhtusid, kus analüütiline lahend puudub. Saadud tulemused on kooskõlas laiemalt kasutatava 
Haari lainikute meetodi ja Ritzi meetodi abil saadud tulemustega.  Kõrgemat järku Haari lainikute meetodit võib vaadelda 
kui Haari lainikute meetodi edasiarendust, mis tagab kõrgemat järku koonduvuskiiruse ja väiksema absoluutse vea.  
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