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Abstract. In this article, the Gershgorin disk theorem in complex interval matrices is proposed for enclosing interval eigenvalues.
This is a non-iterative method for finding eigenvalue bounds for both real and imaginary parts. Moreover, we are able to find
gaps between the clusters of interval eigenvalues and have compared the results with the previous theorems for interval eigenvalue
bounds for complex interval matrices. These results can be decisive for checking Hurwitz and Schur stability of complex interval
matrices that appear in uncertain dynamical systems. Further bounds obtained from the present formulae can be considered as the
initial bounds for iterative methods.
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1. INTRODUCTION

Finding eigenvalues of matrices is a fundamental problem in linear algebra, and it concerns numerous issues
of engineering computations. In practical situations, the bounded uncertain error appears and influences
us to calculate interval eigenvalues of interval matrices. Computing exact eigenvalue bounds for interval
matrices is a challenging task. Therefore, we compute outer eigenvalue bounds.

Checking the stability of interval matrices is an NP-hard problem. To determine the stability of the
uncertain dynamical systems, we need to compute tighter interval eigenvalue bounds of interval matrices that
appear in uncertain dynamical systems [1]. Hurwitz and Schur stability of interval matrices, studied in [1,2],
can be determined by computing the eigenvalues of vertex matrices. Stability analysis of a fractional-order
linear time-invariant uncertain system can be performed by calculating eigenvalues of Hermitian complex
interval matrix as shown by Ahn et al. [3]. Other applications of computing tighter eigenvalue bounds
of interval matrices correlated to the problems with bounded uncertainty are a spring-mass system [4,5], a
nine-bar truss [4], etc.

As regards the theorems proposed by Deif [6] for exact eigenvalues of both symmetric and general in-
terval matrices with the condition of sign invariance of eigenvectors computed at the centre matrix, it is
difficult to ensure the sign invariance of the eigenvectors of the centre matrix, and this restricts the applica-
bility of the theorems. Hertz [1] exactly enclosed the interval eigenvalues of symmetric interval matrices by
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calculating the eigenvalues of vertex matrices, which is an exponential method. Rohn [7] further proposed
a theorem for a cheap bound of symmetric interval matrices. Based on Weyl’s and Gershgorin’s theorems,
Leng and He [4] gave accessible eigenvalue bounds for symmetric interval matrices. One drawback of these
two methods is that the width of each eigenvalue bound is the same. In addition, Hladı́k et al. [8] provided
eigenvalue bounds of symmetric interval matrices by using Cauchy’s interlacing property.

The bounds for both real and imaginary parts of eigenvalues of general interval matrices can be obtained
by the Rohn formulae [9], although it is overestimated. Continuity property of characteristic polynomial al-
lows us to calculate tighter eigenvalue bounds for interval matrices [5]. Hladı́k et al. [8] produced bounds for
the real part of all eigenvalues of interval matrices by manipulating the Bauer–Fike theorem [10,11]. They
also proposed [12] a filtering algorithm that can give a tight real eigenvalue bound. Mayer [13] presented
the enclosure for eigenvalues of real and complex interval matrices from Taylor expansion. The eigenvalue
bounds for complex interval matrices are presented in [14]. Hladı́k [15] gave formulae for bounding both
real and imaginary parts of eigenvalues of complex interval matrices, which need to compute eigenvalue
bounds of a double dimensional symmetric interval matrix. The tightness of the bound depends on the
solver for the symmetric interval matrix. Two different approaches for bounding eigenvalues of complex
interval matrices are presented in [16]. Sufficient conditions for regularity of complex interval matrices were
derived, and using those conditions, iterative processes were developed for bounding eigenvalues [17].

Our goal is to compute tighter enclosures for eigenvalues of complex interval matrices. Gershgorin
disks of small radius become helpful for tighter enclosures of eigenvalues of complex interval matrices.
Moreover, disjoint Gershgorin disks can separate the eigenvalue clusters of complex interval matrices. We
have proposed theorems based on the Gershgorin disk theorem that can bound separately real and imaginary
parts of eigenvalues of complex interval matrices. Also, these bounds may be able to find the gaps between
the eigenvalue clusters.

In Section 2, we recall the preliminaries of interval computations. Section 3 introduces different ap-
proaches for getting eigenvalue bounds of symmetric, non-symmetric, and complex interval matrices. In
Section 4 we derive eigenvalue bounds for complex interval matrices. In Section 5, different examples are
presented and their eigenvalue bounds are compared. In Section 6 an application is demonstrated.

2. PRELIMINARIES

An interval is denoted by a and defined by a closed interval [a,a] in R. The arithmetic of two intervals
a= [a,a] and b= [b,b] is defined as follows:
• a+b= [a+b,a+b],
• −a= [−a,−a],
• a . b= [min(ab,ab,ab,ab),max(ab,ab,ab,ab)],
• 1/a= [1/a,1/a], provided 0 /∈ a.

The centre, radius, and absolute of an interval a are denoted by ac, a#, and |a| and defined by (a+a)/2,
(a−a)/2, and max{|a|, |a|}, respectively [18].

An interval matrix is defined as A = {A : A ≤ A ≤ A} = (a jk), where A and A are the lower and upper
matrices and inequalities are taken componentwise. The centre matrix, radius matrix, and absolute matrices
of an interval matrix are denoted by Ac, A#, and |A| and defined by (A+A)/2, (A−A)/2, and (|a jk|),
respectively. As = {A ∈A|A = AT} is the symmetric interval matrix corresponding to an interval matrix A.
The matrices A = {(a jk) : a jk = a jk or a jk} in this form are called vertex matrices in A. We denote the set
of all vertex matrices in A by V (A).

For real interval matrices A and B we can define complex interval matrix as A+iB = {A+ iB : A ∈A
and B ∈B}. For a complex interval matrix, the eigenvalue set Λ = {λ + iµ ∈C : (A+ iB)z = (λ + iµ)z and
z ∈ (Cn)∗,A ∈A and B ∈B}. The centre, radius, and absolute matrices of the complex interval matrices
A+iB are defined as Ac + iBc, A∆ +B∆, |A|+ |B|.
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3. COMPLEX INTERVAL EIGENVALUE PROBLEM

Computing the exact eigenvalue set Λ is a challenging task. In this context we can find outer bounds of the
set Λ corresponding to the complex interval matrix A+ iB.

Hladı́k [15] used the following eigenvalue bounds of symmetric interval matrices given by Rohn and
Hertz for enclosing eigenvalues of complex interval matrices. In the symmetric eigenvalue problem, all the
eigenvalues are real, so the imaginary part of the eigenvalues is zero.

Theorem 1. [7] Let As = {A ∈ A | A = AT} be a symmetric interval matrix corresponding to an interval
matrix A. Then

λi(A
s)⊆ [λi(Ac)−ρ(A#),λi(Ac)+ρ(A#)], (1)

for i = 1, . . . ,n.

Exact eigenvalue bounds for symmetric interval matrices can be obtained by calculating the eigenvalues
of vertex matrices. The computational cost of this method is exponential.

Let Bn = {x ∈ Rn : ‖x‖= 1}. Bi = Bn ∩Oi for i = 1, . . . ,2n−1, where Oi are the orthants of Rn. Here we
need to consider 2n−1 orthants which are symmetric about the origin.

By the Rayleigh quotient we have

λ (As) = max
A∈As

(max
‖x‖=1

(xT Ax)), (2)

which can be easily computed by using the following theorem.

Theorem 2. [1] λ (As) = max
1≤i≤2n−1

λ i
, where λ i

= max
x∈Bn

xT Aix, Ai = [ai
kl] ∈V (A),

ai
kl =






akk i f k = l,
akl i f xkxl ≥ 0∧ k += l,
akl i f xkxl < 0∧ k += l,

(3)

for i = 1, . . . ,2n−1.

Similarly,
λ (As) = min

A∈As
( min
‖x‖=1

(xT Ax)) (4)

and it can be easily computed by using the following theorem.

Theorem 3. [1] λ (As) = min
1≤i≤2n−1

λ i, where λ i = min
x∈Bn

xT Aix, Ai = [ai
kl] ∈V (A),

ai
kl =






akk i f k = l,
akl i f xkxl ≥ 0∧ k += l,
akl i f xkxl < 0∧ k += l,

(5)

for i = 1, . . . ,2n−1.

Other easily computable eigenvalue bounds for symmetric interval matrices can be obtained from the
following theorem.
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Theorem 4. [4] Let As = ([ai j,ai j]) be an n×n real symmetric interval matrix. For A ∈As, the eigenvalue
of Ax = λx is ordered as λn ≤ · · ·≤ λ1 and Ai j = max

j +=i
{|ai j|, |ai j|} for i, j = 1, . . . ,n. Then

λ1 ≤ max
i=1,...,n

(∑
j +=i

Ai j +Aii), (6)

− max
i=1,...,n

(∑
j +=i

Ai j +Aii)≤ λn. (7)

In the following theorem, Rohn enclosed complex eigenvalues of a real interval matrix by computing
eigenvalues of the matrices formed by the interval matrix’s centre and radius matrices.

Theorem 5. [9] Let A = [A, A] be an n×n interval matrix. Consider Az = (λ + iµ)z, where A ∈ A and z
∈ (Cn)∗. Then

λmin(Ac)−ρ(A#)≤ λ ≤ λmax(A′
c)+ρ(A′

#), (8)
λmin(A′′

c )−ρ(A′′
#)≤ µ ≤ λmax(A′′

c )+ρ(A′′
#), (9)

where
Ac = 1

2 (A+A) and A# = 1
2 (A−A),

A′
c = 1

2 (Ac + AT
c ) and A′

# = 1
2 (A# + AT

#),

A′′
c =

(
0 1

2(Ac −AT
c )

1
2(A

T
c −Ac) 0

)
,

A′′
# =

(
0 A′

#
A′
# 0

)
.

Hertz bounded complex eigenvalues of complex interval matrices with the following formulae of the
below theorem.

Theorem 6. [14] Let A+ iB be a complex interval matrix. Then for each eigenvalue λ + iµ , we have

λ ≤ λ1(
1
2
(Ac +AT

c ))+ρ(1
2
(A#+AT

#))+λ1

(
0 1

2 (B
T
c −Bc)

1
2 (Bc −BT

c ) 0

)
+ρ(

(
0 1

2 (B
T
#+B#)

1
2 (B#+BT

#) 0

)
), (10)

λ ≥ λn(
1
2
(Ac +AT

c ))−ρ(1
2
(A#+AT

#))+λn

(
0 1

2 (B
T
c −Bc)

1
2 (Bc −BT

c ) 0

)
−ρ(

(
0 1

2 (B
T
#+B#)

1
2 (B#+BT

#) 0

)
), (11)

and

µ ≤ λ1(
1
2
(Bc +BT

c ))+ρ(1
2
(B#+BT

#))+λ1

(
0 1

2 (Ac −AT
c )

1
2 (A

T
c −Ac) 0

)
+ρ(

(
0 1

2 (A#+AT
#)

1
2 (A

T
#+A#) 0

)
), (12)

µ ≥ λn(
1
2
(Bc +BT

c ))−ρ(1
2
(B#+BT

#))+λn

(
0 1

2 (Ac −AT
c )

1
2 (A

T
c −Ac) 0

)
−ρ(

(
0 1

2 (A#+AT
#)

1
2 (A

T
#+A#) 0

)
). (13)

Using the Courant–Fischer theorem [19,20], Hladı́k proposed the following theorem to enclose the com-
plex eigenvalues of a complex interval matrix. The efficiency of this theorem depends on the solver for the
symmetric interval matrices given by different authors.

Theorem 7. [15] Let A, B ∈ IRn×n. Then for every eigenvalue λ + iµ ∈ Λ(A + iB), we have

λ n

( 1
2(A+AT ) 1

2(B
T −B)

1
2(B−BT ) 1

2(A+AT )

)s

≤ λ ≤ λ 1

( 1
2(A+AT ) 1

2(B
T −B)

1
2(B−BT ) 1

2(A+AT )

)s

, (14)

λ n

( 1
2(B+BT ) 1

2(A−AT )
1
2(A

T −A) 1
2(B+BT )

)s

≤ µ ≤ λ 1

( 1
2(B+BT ) 1

2(A−AT )
1
2(A

T −A) 1
2(B+BT )

)s

. (15)

λ ≤ λ1(
1
2
(Ac +AT

c ))+ρ(1
2
(A#+AT

#))+λ1

(
0 1

2 (B
T
c −Bc)

1
2 (Bc −BT

c ) 0

)
+ρ(

(
0 1

2 (B
T
#+B#)

1
2 (B#+BT

#) 0

)
),

λ ≥ λn(
1
2
(Ac +AT

c ))−ρ(1
2
(A#+AT

#))+λn

(
0 1

2 (B
T
c −Bc)

1
2 (Bc −BT

c ) 0

)
−ρ(

(
0 1

2 (B
T
#+B#)

1
2 (B#+BT

#) 0

)
),

µ ≤ λ1(
1
2
(Bc +BT

c ))+ρ(1
2
(B#+BT

#))+λ1

(
0 1

2 (Ac −AT
c )

1
2 (A

T
c −Ac) 0

)
+ρ(

(
0 1

2 (A#+AT
#)

1
2 (A

T
#+A#) 0

)
),

µ ≥ λn(
1
2
(Bc +BT

c ))−ρ(1
2
(B#+BT

#))+λn

(
0 1

2 (Ac −AT
c )

1
2 (A

T
c −Ac) 0

)
−ρ(

(
0 1

2 (A#+AT
#)

1
2 (A

T
#+A#) 0

)
).

Using the Courant–Fischer theorem [19,20], Hladı́k proposed the following theorem to enclose the com-
plex eigenvalues of a complex interval matrix. The efficiency of this theorem depends on the solver for the
symmetric interval matrices given by different authors.

Theorem 7. [15] Let A, B ∈ IRn×n. Then for every eigenvalue λ + iµ ∈ Λ(A + iB), we have

λ n

( 1
2(A+AT ) 1

2(B
T −B)

1
2(B−BT ) 1

2(A+AT )

)s

≤ λ ≤ λ 1

( 1
2(A+AT ) 1

2(B
T −B)

1
2(B−BT ) 1

2(A+AT )

)s

, (14)

λ n

( 1
2(B+BT ) 1

2(A−AT )
1
2(A

T −A) 1
2(B+BT )

)s

≤ µ ≤ λ 1

( 1
2(B+BT ) 1

2(A−AT )
1
2(A

T −A) 1
2(B+BT )

)s

. (15)

(10) 

(11) 

(12) 

(13) 

and

where
Ac = 1

2 (A+A) and A# = 1
2 (A−A),

A′′
c =

(
0 1

2(Ac −AT
c )

1
2(A

T
c −Ac) 0

)
,

A′′
# =

(
0 A′

#
A′
# 0

)
.



S. Maiti and S. Chakraverty: Gershgorin disk in complex interval matrix 69

There are few iterative methods [16,17] for computing eigenvalue bounds of complex interval matrices.
The computational time of these algorithms depends on the initial bounds of the eigenvalues. Here we
propose theorems for eigenvalue bounds of complex interval matrices which can be used as initial bounds
for iterative methods.

Let A = (a jk) be an n×n complex matrix. For j ∈ {1, . . . ,n}, let R j = ∑
k += j

|a jk| be the sum of the absolute

values of the non-diagonal entries in the jth row. Each D(a j j,R j) ⊆ C is a closed disk centred at a j j with
radius R j called a Gershgorin disk.

Theorem 8 (Gershgorin Disk Theorem). [21] Every eigenvalue of a matrix A = (a jk) lies within at least
one of the Gershgorin disks D(a j j,R j).

Now, we have extended the Gershgorin disk theorem to complex interval matrices for enclosing the
eigenvalue set, and consequently derived Theorem 9 and Theorem 10. Their advantages can be seen by the
examples provided in the next section.

4. GERSHGORIN DISK THEOREM IN COMPLEX INTERVAL MATRICES

Theorem 9. Let A+ iB be a complex interval matrix, where A= [A,A] and B= [B,B] are two real interval
matrices. Then for every eigenvalue λ + iµ of A+ iB, we have

a j j − ∑
k += j

√
|[a jk,a jk]|2 + |[b jk,b jk]|2 ≤ λ ≤ a j j + ∑

k += j

√
|[a jk,a jk]|2 + |[b jk,b jk]|2, (16)

b j j − ∑
k += j

√
|[a jk,a jk]|2 + |[b jk,b jk]|2 ≤ µ ≤ b j j + ∑

k += j

√
|[a jk,a jk]|2 + |[b jk,b jk]|2, (17)

for j ∈ {1, . . . ,n}.

Proof. For j ∈ {1, . . . ,n} and A+ iB ∈ A+ iB, from Theorem 8 we have
|(λ + iµ)− (a j j + ib j j)|≤ ∑

k += j

√
a2

jk +b2
jk,

i.e.
√

(λ −a j j)2 +(µ −b j j)2 ≤ ∑
k += j

√
a2

jk +b2
jk.

Now, |λ −a j j|≤
√
(λ −a j j)2 +(µ −b j j)2 ≤ ∑

k += j

√
a2

jk +b2
jk,

i.e. − ∑
k += j

√
a2

jk +b2
jk ≤ λ −a j j ≤ ∑

k += j

√
a2

jk +b2
jk,

i.e. a j j − ∑
k += j

√
a2

jk +b2
jk ≤ λ ≤ a j j + ∑

k += j

√
a2

jk +b2
jk.

Therefore, making use of the fact that a jk ∈ [a jk,a jk], we get

a j j − ∑
k += j

√
|[a jk,a jk]|2 + |[b jk,b jk]|2 ≤ λ ≤ a j j + ∑

k += j

√
|[a jk,a jk]|2 + |[b jk,b jk]|2,

for j ∈ {1, . . . ,n}.
Similarly for the imaginary part, we have
b j j − ∑

k += j

√
|[a jk,a jk]|2 + |[b jk,b jk]|2 ≤ µ ≤ b j j + ∑

k += j

√
|[a jk,a jk]|2 + |[b jk,b jk]|2,

for j ∈ {1, . . . ,n}.
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Theorem 10. Let A+ iB be a complex interval matrix, where A = [A,A] and B = [B,B] are two real
interval matrices. Then for every eigenvalue λ + iµ of A+ iB, we have

akk − ∑
j +=k

√
|[a jk,a jk]|2 + |[b jk,b jk]|2 ≤ λ ≤ akk + ∑

j +=k

√
|[a jk,a jk]|2 + |[b jk,b jk]|2, (18)

bkk − ∑
j +=k

√
|[a jk,a jk]|2 + |[b jk,b jk]|2 ≤ µ ≤ bkk + ∑

j +=k

√
|[a jk,a jk]|2 + |[b jk,b jk]|2, (19)

for k ∈ {1, . . . ,n}.

Proof. Making use of the phenomenon that the eigenvalues of A and AT are the same, for k ∈ {1, . . . ,n}
and A+ iB ∈ A+ iB from Theorem 8, we have

|(λ + iµ)− (akk + ibkk)|≤ ∑
j +=k

√
a2

jk +b2
jk,

i.e.
√

(λ −akk)2 +(µ −bkk)2 ≤ ∑
j +=k

√
a2

jk +b2
jk.

Now, |λ −akk|≤
√
(λ −akk)2 +(µ −bkk)2 ≤ ∑

j +=k

√
a2

jk +b2
jk,

i.e. − ∑
j +=k

√
a2

jk +b2
jk ≤ λ −akk ≤ ∑

j +=k

√
a2

jk +b2
jk,

i.e. akk − ∑
j +=k

√
a2

jk +b2
jk ≤ λ ≤ akk + ∑

j +=k

√
a2

jk +b2
jk.

Therefore, making use of the fact that a jk ∈ [a jk,a jk], we get

akk − ∑
j +=k

√
|[a jk,a jk]|2 + |[b jk,b jk]|2 ≤ λ ≤ akk + ∑

j +=k

√
|[a jk,a jk]|2 + |[b jk,b jk]|2,

for k ∈ {1, . . . ,n}.
Similarly, for the imaginary part we have,
bkk − ∑

j +=k

√
|[a jk,a jk]|2 + |[b jk,b jk]|2 ≤ µ ≤ bkk + ∑

j +=k

√
|[a jk,a jk]|2 + |[b jk,b jk]|2,

for k ∈ {1, . . . ,n}.

Corollary 1. The common bound produced by Theorem 9 and Theorem 10 would be the optimal bounds of
the eigenvalues for a complex interval matrix.

5. EXAMPLES

In the following examples the interval eigenvalue enclosures are given by Rohn (Theorem 5) and Hladı́k
(Theorem 7), and compared with the proposed Theorem 9. In Figs 1–5 we plot approximation of the set of
the eigenvalues by using Monte Carlo (MC) simulation, as well as different enclosures of eigenvalues.

Example 1. Let us consider the interval matrix

A=

(
[1,2] [0.01,0.1]

[0.001,0.01] [6,8]

)
.

By the Rohn theorem [9] we have λ ∈ [0.4986,8.0014] and µ ∈ [−1.0260, 1.0260].
Using the present theorems, we have λ ∈ [0.9,2.1]∪ [5.99,8.01] and µ ∈ [−0.01,0.01].
Hladı́k et. al. [8] produced λ ∈ [0.4904,2.5094]∪ [5.9906,8.0096].
Hladı́k [15] and Rohn [7] produced the same bound as the Rohn formulae [9]. Combining all, we have
λ ∈ [0.9,2.1]∪ [5.99,8.0014] and µ ∈ [−0.01,0.01]. The bounds are illustrated in Fig. 1.
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Fig. 1. Eigenvalue set and enclosures of Example 1.

Fig. 2. Eigenvalue set and enclosures of Example 2.

Example 2. Consider the interval matrix [15, Example 2]

A=




0 −1 −1
2 [−1.399,−0.001] 0
1 0.5 −1



.

By the Rohn bounds [9] we have λ ∈ [−1.9068,0.9702] and µ ∈ [−2.5191,2.5191].
Using the proposed theorems, we have λ ∈ [−3.399,2] and µ ∈ [−2,2].
Although the real bound is not good, it produces a better bound for the imaginary part. Moreover, the
imaginary bound is better than the one produced by the exponential method by Hladı́k [15] and Hertz [1].
The bounds are given in Fig. 2.

Example 3. Consider the complex interval matrix A+ iB, where

A=

(
[1,2] [0.5,0.7]

[−0.9,−0.7] [5,8]

)
andB =

(
[3,4] [0.3,0.4]

[0.8,0.9] [6,8]

)
.

By the Hertz theorem [14] we have λ ∈ [−1.2669,9.2669] and µ ∈ [0.1852,10.3149].
Hladı́k [15] and Rohn [7] gave λ ∈ [−1.0294,9.0294] and µ ∈ [0.7571,9.7429].
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Fig. 3. Eigenvalue set and enclosures of Example 3.

Fig. 4. Eigenvalue set and enclosures of Example 4.

By the present theorems we have λ ∈ [0.1938,2.8062]∪ [3.7272,9.2728] and µ ∈ [2.1938,4.8062]∪ [4.7272,
9.2728].
The Hertz theorem cannot determine gaps between the interval eigenvalues but the present theorem can.
The bounds are depicted in Fig. 3.

Example 4. Let us consider the interval matrix

A=





[0,1] [0.1,0.2] [0.11,0.15] [−0.3,−0.2]
[0.13,0.16] [−3,−2] [0.4,0.5] [−0.4,−0.2]
[0.14,0.17] [0.22,0.28] [6,9] [−0.7,−0.5]
[0.3,0.5] [−0.1,−0.01] [0.2,0.3] [10,12]



.

By Rohn [9] we have λ ∈ [−4.0357,12.5264] and µ ∈ [−2.0689,2.0689]. Hladı́k [15] and Rohn [7] pro-
duced the same bound as the Rohn formulae [9].
Using the proposed theorems, we have λ ∈ [−3.58,−1.42]∪ [−0.83,1.83]∪ [5.05,9.95]∪ [8.6,13.4] and
µ ∈ [−1.4,1.4]. The bounds are shown in Fig. 4.
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Fig. 5. Eigenvalue set and enclosures of Example 5.

Example 5. Consider the 3-by-3 complex interval matrix A+ iB, where

A=




[3,4] [0.2,0.3] [−0.2,−0.1]

[0.11,0.19] [−10,−4] [−0.5,0.4]
[0.3,0.4] [−0.1,0.4] [10,13]



andB =




[−10,3] [−0.1,0.2] [0.19,0.23]
[0.3,0.6] [5,10] [−0.4,−0.2]

[−0.39,−0.21] [0.4,0.45] [−8,−6]



.

By Hertz [14] we have λ ∈ [−17.0752,21.5727] and µ ∈ [−16.8598,17.3649].
Hladı́k [15] and Rohn [7] gave λ ∈ [−14.0455,18.5467] and µ ∈ [−14.0497,14.5374].
By the present theorems we have λ ∈ [−11.2697,−2.7303]∪ [2.3346,4.6654]∪ [8.8393,14.1607] and µ ∈
[−10.6654,3.6654]∪ [−9.1607,−4.8393]∪ [3.7303,11.2697]. The bounds are pictured in Fig. 5.

It can be seen from the previous examples that Theorem 9 is giving better results than Rohn and Hladı́k.
The applications of this phenomenon are discussed in the next section.

6. DISCUSSION

If we observe the behavioural changes of the Gershgorin disk theorem on complex interval matrices for
enclosing complex interval eigenvalues, we can see that for diagonal interval matrices Rohn [9], Hertz [14],
and the Gershgorin disk theorem have provided the same interval eigenvalue bounds. Now, if we start
making the non-principal diagonal entries from zero intervals to nonzero intervals, then Theorem 9 will
enclose interval eigenvalues better than Rohn [9] and Hertz [14]. Furthermore, if we increase more the
width of non-principal diagonal entries, then Rohn [9] and Hertz [14] will become beneficial.
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Fig. 6. Schur stability.
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Fig. 7. Spring-mass system.

6.1. Applications

Schur stability: maA attrix A+ iB eigenis called Schur stable if all the nvvalues lie in the open unit disk centred
at the origin. Now, consider the linear time-invariant dynamical system with uncertainty x′(t) = (A+ iB)x(t),
where A+ iB ∈A+ iB with

A=

(
[−0.5,0.26] [0.17,0.23]
[−0.21,0.16] [−0.2,0.2]

)
and B =

(
[0,0] [−0.1,0.3]

[−0.1,0.2] [0,0]

)
.

The Hertz formulae [14] gave λ ∈ [−0.7963,0.6763] and µ ∈ [−0.7928, 0.7928]. From this bound one
cannot conclude that the matrix A+ iB is Schur stable. On the other hand, Theorem 9 produces bounds as
λ ∈ [−0.8780,0.6380] and µ ∈ [−0.3780,0.3780] eigen, i.e. each nvvalue lies in the open unit disk centred at
the origin, concluding that A+ iB is Schur stable. The pictorial depiction is provided in Fig. 6.
Spring-mass system: WWee know that the characteristics of spring-mass systems (Fig. 7) can be determined

stifby the eigenvalues of mass and fffness matrices of that system.
For an uncertain spring-mass system we consider the mass matrix as Mcc = diag(1,1,1,1) with mass

uncertainty M∆∆ = diag(0,0,0,0) stifand fffness matrix

Kcc =





3000 −0.1 0 0
−0.1 5000 −0.15 0

0 −0.15 7000 −0.3
0 0 −0.3 9000





stifwith fffness uncertainty

K∆∆ =





25 0.2 0 0
0.2 35 0.17 0
0 0.17 45 0.1
0 0 0.1 55





corresponding to a spring-mass system with four degrees of freedom in Fig. 7.



Now, by computing the interval eigenvalue bounds by different methods and according to the present 
method, we can see the tightness of our result. Consequently, we are able to get a tighter solution for the 
uncertain spring-mass system. 

 
By the Rohn formulae [9] we have λ ∈ [2944.9989, 3.055.0010] ∪ [4944.9989, 5055.0010] ∪ [6944.9989, 
7.055.0010] ∪ [8944.9990, 9055.0011].  
By Leng and He [4] one has λ ∈ [2944.8999, 3055.0100] ∪ [4944. 8999, 5055.0100] ∪ [6944.8999, 
7.055.0100] ∪ [8944.9000, 9055.1001].  
By the present formulae we have λ ∈ [2974.7, 3025.3] ∪ [4964.5613, 5035.4387] ∪ [6954.4877, 7045.5123] 
∪ [8944.6, 9055.4]. 
 
 
7. CONCLUSIONS 
 
The enclosures of the eigenvalue set of complex interval matrices given by the present Gershgorin disk 
theorem may be considered as initial bounds. Then different algorithms [12,17] can be used for further better 
approximations of the eigenvalue set.  

Although direct application of the above approach is not beneficial for the interval matrices whose non- 
principle diagonal entries have a large width, one can investigate the behaviours of direct application of the 
Gershgorin disk theorem on interval matrices for bounding eigenvalues through translations. 
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Gershgorini  ringiteoreem  komplekssete  intervallmaatriksite  käsitlemisel 
 

Suman Maiti ja Snehashish Chakraverty 
 
Artiklis pakutakse välja kasutada komplekssete maatriksite omaväärtuste intervallide leidmiseks Gershgorini ringi -
teoreemi. Tegemist on mitteiteratiivse meetodiga, mis võimaldab leida omaväärtuste reaal- ja imaginaarosade alam- ja 
ülemrajasid. Peale selle käsitletakse omaväärtuste inervallide klastrite vaheliste kauguste määramist. Saadud tulemusi 
võrreldakse eelnevatega, mis on saadud komplekssete maatriksite omaväärtuste intervallide leidmisel. Väljatöötatud 
meetodid omavad rakendusi dünaamiliste süsteemide stabiilsuse uurimisel. 
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