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Abstract. An inverse problem to determine a space-dependent diffusivity coefficient in a one-dimensional generalized time frac-
tional diffusion equation from final data is considered. The global uniqueness and local existence and stability of the solution to
this problem is proved. Proof of these statements is based on the fixed-point principle and previously obtained results regarding an
inverse source problem for a generalized subdiffusion equation.
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1. INTRODUCTION

Equations with time fractional derivatives (containing power-type kernels) are used to model subdiffusion
processes in self-similar media [1,3,13]. However, in many cases a medium under consideration is self-
similar, which means that the character of the process changes when the time is rescaled. In such cases
generalized fractional derivatives (containing more general kernels) are introduced to the equations [2,10,
20]. Generalized fractional derivatives involve more degrees of freedom and enable to better fit the models
with real situations.

Often the medium parameters are a priori unknown and determined via solution to inverse problems
that involve measurements of states of the processes. The states may be measured at final time moments.
Final data are suitable for determination of space-dependent paramaters of the equations for two reasons: 1)
unknown quantities and data are functions of the same type; 2) the resulting inverse problems are moderately
ill-posed.

Problems to reconstruct space-dependent factors of source terms of subdiffusion equations containing
usual or generalized fractional derivatives from final data have been studied in several papers [8,9,11,14,18,
21]. The analysis of such problems uses the Fourier expansion or positivity principles with the Fredholm
alternative. A more general approach in a Hilbert space setting is presented in the recent paper [15].

Problems to recover reaction coefficents (potentials) from final data can be handled by means of the
fixed-point principles on the basis of results obtained for inverse source problems [9]. Another approach
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to inverse coefficient problems for subdiffusion equations with usual fractional derivatives is based on Car-
leman estimates [17,23]. In case the interior of the domain is not accessible, boundary data can be used
instead of the final measurements in order to recover space-dependent coefficients [7].

In the present paper we consider a problem to identify a space-dependent diffusivity coefficient in a
one-dimensional subdiffusion equation containing a generalized time fractional derivative from the final
data. We will prove the global uniqueness and local existence and stability for that problem. The analysis is
based on previously obtained results regarding an inverse source problem for such an equation [9].

A surprising result is that the inverse diffusivity problem is less ill-posed than the corresponding inverse
source problem: the solution to the former one depends continuously on the 1st derivative of the final
measurement uT whereas the solution to the latter one depends continuously on the 2nd derivative of uT .

2. PHYSICAL BACKGROUND AND FORMULATION OF INVERSE PROBLEM

In the derivation of a differential equation to be considered in this paper we follow the approach presented
in [16]. We assume the following constitutive relation with memory:

Q(t,x) =−a(x)
∂

∂ t

∫ t

0
M(t− τ)ux(τ,x)dτ, (1)

where t is the time, x ∈ R denotes a space variable, Q represents the flux, u is the state of the diffusion
process, M refers to a memory kernel and a is the diffusivity. Plugging this relation into the conserva-
tion equation ut +Qx = F , where F is the source function, we obtain the following generalized fractional
diffusion equation:

ut(t,x) =
∂

∂ t
M ∗ (a(x)ux(t,x))x +F(t,x), (2)

where ∗ denotes the time convolution, e.g. z1 ∗ z2(t) =
∫ t

0 z1(t− τ)z2(τ)dτ .
Another method to derive the equation (2) is based on the continuous time random walk. Details can be

found, e.g., in [2].
Suppose that there exists a time-dependent function k such that k∗M(t)≡ 1. Then, applying the operator

k∗ to (2), we transform it to the following form that contains the explicit elliptic operator at the right-hand
side:

k ∗ut(t,x) = (a(x)ux(t,x))x + f (t,x), f = k ∗F.

The term k ∗ ut(t,x) can be rewritten in a form that does not contain the first order time derivative of u:
k ∗ut(t,x) = ∂

∂ t k ∗ [u(t,x)−u(0,x)]. Thus, we obtain

∂

∂ t
k ∗ [u(t,x)−u(0,x)] = (a(x)ux(t,x))x + f (t,x). (3)

The operators k∗ ∂

∂ t and ∂

∂ t k∗ are the generalized fractional derivatives of Caputo and Riemann–Liouville
type, respectively. We will use the following notation for the latter one:

D{k}t =
∂

∂ t
k ∗ .

In the usual fractional diffusion model, the kernels M and k are M(t) = tβ−1

Γ(β ) and k(t) = t−β

Γ(1−β ) , where
0< β < 1. More examples of kernels M and k occurring in different physical models are given in Subsection
6.1 of this paper.
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Let T, l > 0. Firstly, we formulate the following initial-boundary value problem (direct problem) for the
state function u:

D{k}t (u−u0)(t,x) = [a(x)ux(t,x)]x + f (t,x), x ∈ (0, l), t ∈ (0,T ), (4)
a(0)ux(t,0) = h0(t), a(l)ux(t, l) = hl(t), t ∈ (0,T ), (5)
u(0,x) = u0, x ∈ (0, l), (6)

where a, f ,h0,hl are given functions and u0 is a given number.
The boundary conditions (5) are related to fluxes at x = 0 and x = l. In view of (1), the outward pointing

fluxes at x = 0 and x = l are H0 = a(0) ∂

∂ t M ∗u(·,0) and Hl =−a(l) ∂

∂ t M ∗u(·, l), respectively. The functions
h0 and hl involved in (5) can be expressed via fluxes as h0 = k ∗H0 and hl =−k ∗Hl , respectively.

Next, let us suppose that the diffusivity coefficient a is unknown but the state is specified at the final
time t = T , i.e.

u(T,x) = uT (x), x ∈ (0, l), (7)

where uT is a given function. We pose the inverse problem to determine a pair of functions (a,u) that satisfy
the conditions (4)–(7).

The inverse problem (4)–(7) will be the main research topic of this paper. We will be able to study it
in the case of the constant initial state. Therefore, the quantity u0 was defined as a number already in the
formulation of the corresponding direct problem.

3. PRELIMINARIES

3.1. Abstract functional spaces and Sonine kernels

Let X be a Banach space. We define some spaces of abstract functions that map the intervals (0,T ) and
[0,T ] into X .

By Lp((0,T );X), p ∈ [1,∞], we denote the abstract Lebesgue spaces, i.e.

Lp((0,T );X) =

{
v : (0,T )→ X : ‖v‖Lp((0,T );X) :=

[∫ T

0
‖v(t)‖p

X dt
] 1

p

< ∞

}
, p ∈ [1,∞),

L∞((0,T );X) =

{
v : (0,T )→ X : ‖v‖L∞((0,T );X) := ess sup

t∈(0,T )
‖v(t)‖X < ∞

}
.

The space C([0,T ];X) contains functions v : [0,T ]→ X that are continuous on [0,T ]. This is a Banach space
with the norm ‖v‖C([0,T ];X) = max

t∈[0,T ]
‖v(t)‖X . Moreover, we define

C0([0,T ];X) = {v ∈C([0,T ];X) : v(0) = 0}

and
C1([0,T ];X) = {v : v, v′ ∈C([0,T ];X)}.

Let 0 < α < 1. The abstract Hölder spaces with their norms are defined by

Cα
0 ([0,T ];X) =

{
v ∈C0([0,T ];X) : ‖v‖Cα

0 ([0,T ];X) := sup
0<t1<t2<T

‖v(t2)− v(t1)‖X

(t2− t1)α
< ∞

}
,

Cα([0,T ];X) =Cα
0 ([0,T ];X)+X = {v : v(t) = v1(t)+ v2, v1 ∈Cα

0 ([0,T ];X), v2 ∈ X},
‖v‖Cα ([0,T ];X) = ‖v− v(0)‖Cα

0 ([0,T ];X)+‖v(0)‖X .
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We also introduce the following space:

C1+α

0 ([0,T ];X) = {v : v, v′ ∈Cα
0 ([0,T ];X)}, 0 < α < 1.

A function M ∈ L1,loc(0,∞) is called the Sonine kernel if the equation

M ∗ k(t) = 1, t > 0, (8)

has a solution k ∈ L1,loc(0,∞) [19]. The solution k, if it exists, is unique [5] and is referred to as associate to
M. Since the convolution is commutative, k is also the Sonine kernel and M is its associate.

The Sonine kernel is unbounded at t = 0, because otherwise M ∗k(t)→ 0 as t→ 0+ and this contradicts
M ∗ k(t)≡ 1.

Let M be the Sonine kernel and k its associate. Then

D{k}t (M ∗ v) =
d
dt

k ∗M ∗ v =
d
dt

1∗ v = v, ∀v ∈ L1((0,T );X). (9)

Therefore, the operator M∗ is a one-to-one mapping from L1((0,T );X) to the space

M ∗L1((0,T );X) = {M ∗ v : v ∈ L1((0,T );X)}

and D{k}t is the inverse of M∗. The reversed relation to (9) is

M ∗ (D{k}t v) = v, ∀v ∈M ∗L1((0,T );X). (10)

Next, we define some abstract C- and Hölder spaces related to the Sonine kernel M and its associate k:

C{k}0 ([0,T ];X) := M ∗C([0,T ];X), ‖v‖
C{k}0 ([0,T ];X)

= ‖D{k}t v‖C([0,T ];X),

C{k}([0,T ];X) :=C{k}0 ([0,T ];X)+X , ‖v‖C{k}([0,T ];X) = ‖v− v(0)‖
C{k}0 ([0,T ];X)

+‖v(0)‖X ,

C{k},α0 ([0,T ];X) = M ∗Cα
0 ([0,T ];X), ‖v‖

C{k},α0 ([0,T ];X)
= ‖D{k}t v‖Cα

0 ([0,T ];X).

The following continuous embeddings are valid [9]:

C1([0,T ];X) ↪→C{k}([0,T ];X) ↪→C([0,T ];X)

C1+α

0 ([0,T ];X) ↪→C{k},α0 ([0,T ];X) ↪→Cα
0 ([0,T ];X).

Clearly, the integration improves the regularity of a function. Therefore, one may ask the question: does
the subspace C{k},α0 ([0,T ];X) of Cα

0 ([0,T ];X) consist of functions that are Hölder continuous of an order
greater than α? This is true provided the function M satisfies certain additional restrictions, as can be seen
from the following lemma.

Lemma 1. [9] If M(t) ≤ c1tβ−1, |M′(t)| ≤ c2tβ−2, t ∈ (0,T ) for some c1,c2 > 0, 0 < β ≤ α < 1, then
M∗ ∈B(Cα−β

0 ([0,T ];X),Cα
0 ([0,T ];X)), which implies C{k},α−β

0 ([0,T ];X) ↪→Cα
0 ([0,T ];X).

In the particular case M(t) = tβ−1

Γ(β ) we have C{k},α−β

0 ([0,T ];X) =Cα
0 ([0,T ];X) [6].
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3.2. Inverse source problem

In this section we formulate the results regarding an inverse source problem that consists in finding the pair
(φ ,w) satisfying

D{k}t w(t,x) = a(x)wxx(t,x)+φ(x)r(t,x)+q(t,x), x ∈ (0, l), t ∈ (0,T ),
w(t,0) = w(t, l) = 0, t ∈ (0,T ),
w(0,x) = 0, x ∈ (0, l),
w(T,x) = wT (x), x ∈ (0, l),

 (11)

where a,r,q,wT are given functions. Such a problem is an important tool in the analysis of the inverse
diffusivity problem (4)–(7) posed in Section 2.

Theorem 1. [9] Let k be the Sonine kernel and M its associate. Assume that

k ∈C(0,∞), k is nonincreasing, ∃tk > 0 : k(t) is strictly decreasing in (0, tk), (12)

M ∈C1(0,∞), M > 0, M′ ≤ 0, −M′ is nonincreasing and convex. (13)

Moreover, let a ∈C[0,T ], a(x)> 0, x ∈ [0, l], and one of the following assumptions be valid:

(A1) r ∈C1+α1
0 ([0,T ];C[0, l]) for some 0 < α1 < 1;

(A2) r ∈C{k},α1
0 ([0,T ];C[0, l]) and M(t)≥ ctγ−1, t ∈ (0,T ), for some c > 0, 0 < γ < α1 < 1;

(A3) r ∈C{k},α1−β

0 ([0,T ];C[0, l]) and c1tγ−1 ≤M(t)≤ c2tβ−1, |M′(t)| ≤ c3tβ−2, t ∈ (0,T ),
for some c1,c2,c3 > 0, 0 < β ≤ γ < α1 < 1.

Additionally, we assume that

r ≥ 0, D{k}t r ≥ 0, (14)
a.e. x ∈ (0, l) ∃tx ∈ (0,T ] : r(tx,x)> 0, (15)
for any b ∈ {0; l} either r(T,b)> 0 or r(·,b) = 0. (16)

Finally, let (φ ,w) ∈C[0, l]×C{k}0 ([0,T ];C[0, l])∩C0([0,T ];W 2
p (0, l)) for some p > 1 solve (11) for q = 0,

wT = 0. Then (φ ,w) = (0,0).

Theorem 2. [9] Let k be the Sonine kernel, M its associate and (12), (13) hold. Let r and M satisfy one of the
assumptions (A1)–(A3), the inequalities (14) and r(T,x)> 0, x ∈ [0, l]. If wT ∈C2[0, l], wT (0) = wT (l) = 0,
q∈C{k},α2

0 ([0,T ];Lp(0, l))∩C0([0,T ];C[0, l]) for some p> 1 and 0<α2 < 1, then (11) has a unique solution

(φ ,w) in the space C[0, l]×C{k},α
′

0 ([0,T ]; 0W 2
p (0, l))∩C0([0,T ];C2[0, l]), where α ′ = min{α̂;α2},

α̂ =

{
α1 in cases (A1), (A2)
α1−β in case (A3) (17)

and 0W 2
p (0, l) = {z ∈W 2

p (0, l) : z(0) = z(l) = 0}. Moreover, the estimate

‖φ‖C[0,l]+‖w‖C{k},α ′0 ([0,T ];0W 2
p (0,l))∩C0([0,T ];C2[0,l])

≤C1

(
‖q‖

C{k},α2
0 ([0,T ];Lp(0,l))∩C0([0,T ];C[0,l])

+‖wT‖C2[0,l]

) (18)

is valid where the constant C1 is independent of q and wT .
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4. STATEMENTS ABOUT THE DIRECT PROBLEM (4)–(6)

Lemma 2. Let k be the Sonine kernel and M its associate. Let a∈C[0, l]. If a function u∈C{k}([0,T ];L1(0, l))
∩C([0,T ];W 1

1 (0, l)) satisfies aux ∈C0([0,T ];W 1
1 (0, l)) and solves (4)–(6), then∫ l

0
u(t,y)dy = M ∗

[
hl−h0 +

∫ l

0
f (·,y)dy

]
(t)+ lu0, t ∈ [0,T ]. (19)

Proof. Integrating (4) from 0 to l and taking into account (5), we obtain D{k}t

[∫ l
0 u(t,y)dy− lu0

]
= hl(t)−

h0(t)+
∫ l

0 f (t,y)dy. Applying the operator M∗ to this relation and taking into account (10), we reach (19).

�

Remark 1. The relation (19) is the integral conservation law. Indeed, in Section 2 we saw that f = k ∗F ,
h0 = k∗H0 and hl =−k∗Hl , where F is the physical source function and H0 and Hl are the outward pointing
fluxes. Therefore, since M ∗ k = 1, the relation (19) can be rewritten as∫ l

0
u(t,y)dy =−

∫ t

0
[Hl(τ)+H0(τ)]dτ +

∫ t

0

∫ l

0
F(τ,y)dydτ +

∫ l

0
u0dx.

Let us define an operator J : L1(0, l)→{z ∈W 1
1 (0, l) : z(0) = z(l) = 0} by the following formula:

J ρ(x) =
l− x

l

∫ x

0
ρ(y)dy+

x
l

∫ x

l
ρ(y)dy, x ∈ [0, l]. (20)

Proposition 1. Let k be the Sonine kernel and M its associate. Let a ∈C[0, l]. Then the following assertions
are valid.
(i) If a function u ∈C{k}([0,T ];L1(0, l))∩C([0,T ];W 1

1 (0, l)) satisfies aux ∈C0([0,T ];W 1
1 (0, l)) and solves

(4)–(6), then the function v ∈C{k}0 ([0,T ];W 1
1 (0, l))∩C0([0,T ];W 2

1 (0, l)) defined by

v(t,x) = J u(t,x) (21)

satisfies avxx ∈C0([0,T ];W 1
1 (0, l)) and solves the following problem:

D{k}t v(t,x) = a(x)vxx(t,x)+g(t,x), x ∈ (0, l), t ∈ (0,T ), (22)

v(t,0) = v(t, l) = 0, t ∈ (0,T ), (23)

v(0,x) = 0, x ∈ (0, l), (24)

where

g(t,x) = J f (t,x)− l− x
l

h0(t)−
x
l
hl(t). (25)

(ii) If f ∈C([0,T ];L1(0, l)), h0,hl ∈C0[0,T ] and a function v ∈C{k}0 ([0,T ];W 1
1 (0, l))∩C0([0,T ];W 2

1 (0, l))
satisfies avxx ∈ C0([0,T ];W 1

1 (0, l)) and solves (22)–(24) with g of the form (25), then the function
u ∈C{k}([0,T ];L1(0, l))∩C([0,T ];W 1

1 (0, l)) defined by

u(t,x) = vx(t,x)+
1
l

M ∗
[

hl−h0 +
∫ l

0
f (·,y)dy

]
(t)+u0 (26)

satisfies aux ∈C0([0,T ];W 1
1 (0, l)) and solves (4)–(6).
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Proof. (i) The assertions regarding the regularity of v and the conditions (23), (24) immediately follow
from (21), (20), the assumed regularity of u and (6). Applying the operator J to (4), observing that
J [(aux)x] = aux− l−x

l a(0)ux(t,0)− x
l a(l)ux(t, l) and taking the boundary conditions (5) and the relation

ux = vxx into account, we obtain (22) with g of the form (25).
(ii) The asserted regularity of u and the condition (6) follow from the formula (26), the assumed regu-

larity of f , h and v and the relation (24). Passing to the limit x→ 0+ in (22) and observing (23), (25), we
have 0 = a(0)vxx(t,0)− h0(t). Since vxx = ux, we obtain the boundary condition a(0)ux(t,0) = h0(t). In a
similar manner we prove another boundary condition a(l)ux(t, l) = hl(t), too. Next, we apply the operator
∂

∂x to the equation (22). Replacing vx by u− u0− 1
l M ∗

[
hl−h0 +

∫ l
0 f (·,y)dy

]
in the left-hand side of the

obtained equation and using (9), we have

D{k}t (u−u0)(t,x)−Q(t) = (a(x)vxx(t,x))x +gx(t,x),

where Q(t) = 1
l

[
hl(t)−h0(t)+

∫ l
0 f (t,y)dy

]
. On the other hand, (25) implies gx(t,x) = f (t,x)−Q(t).

Therefore, since vxx = ux, we obtain the equation (4). �

5. RESULTS ABOUT THE INVERSE PROBLEM (4)–(7)

Firstly, we prove the global uniqueness of the solution to (4)–(7).

Theorem 3. Let k be the Sonine kernel, M its associate and (12), (13) hold. Let the inverse problem (4)–(7)
have two solutions (a,u),(a1,u1) ∈C[0, l]×C{k}([0,T ];L1(0, l))∩C([0,T ];W 1

1 (0, l)) such that aux,a1u1,x ∈
C0([0,T ];W 1

1 (0, l)) and u1− u ∈C([0,T ];W 1
p (0, l)) for some p > 1. Assume that a1(x) > 0, x ∈ [0, l], and

one of the following conditions is valid:

(A4) ux ∈C1+α1
0 ([0,T ];C[0, l]) for some 0 < α1 < 1;

(A5) ux ∈C{k},α1
0 ([0,T ];C[0, l]) and M(t)≥ ctγ−1, t ∈ (0,T ), for some c > 0, 0 < γ < α1 < 1;

(A6) ux ∈C{k},α1−β

0 ([0,T ];C[0, l]) and c1tγ−1 ≤M(t)≤ c2tβ−1, |M′(t)| ≤ c3tβ−2, t ∈ (0,T ),
for some c1,c2,c3 > 0, 0 < β ≤ γ < α1 < 1.

Additionally, let

ux ≥ 0, D{k}t ux ≥ 0, (27)
a.e. x ∈ (0, l) ∃tx ∈ (0,T ] : ux(tx,x)> 0, (28)
for any b ∈ {0; l} either ux(T,b)> 0 or ux(·,b) = 0. (29)

Then (a,u) = (a1,u1).

Proof. Let us denote v(t,x) = J u(t,x) and v1(t,x) = J u1(t,x). Due to Proposition 1 (i), v is a solution to
the problem (22)–(24) and v1 is a solution to the following problem:

D{k}t v1(t,x) = a1(x)v1,xx(t,x)+g(t,x), x ∈ (0, l), t ∈ (0,T ), (30)

v1(t,0) = v1(t, l) = 0, t ∈ (0,T ), (31)

v1(0,x) = 0, x ∈ (0, l). (32)

Moreover, v(T,x) = v1(T,x) and vxx = ux, v1,xx = u1,x. The pair of differences (φ ,w) = (a1− a,v1− v)
belongs to C[0, l]×C{k}0 ([0,T ];W 1

1 (0, l))∩C0([0,T ];W 2
p (0, l)) and is a solution to the following problem:

D{k}t w(t,x) = a1(x)wxx(t,x)+φ(x)ux(t,x), x ∈ (0, l), t ∈ (0,T ),
w(t,0) = w(t, l) = 0, t ∈ (0,T ),
w(0,x) = 0, x ∈ (0, l),
w(T,x) = 0, x ∈ (0, l).

(33)
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This is the inverse source problem (11) with the data r = ux, q = 0 and wT = 0. The assumptions of Theorem
1 are satisfied for this problem. Theorem 1 implies φ = 0 and w = 0. Thus, a = a1 and v = v1.

Due to the assumed regularity of a and u the functions f , h0 and hl satisfy f ∈ C([0,T ];L1(0, l)) and
h0,hl ∈C0[0,T ]. Therefore, we can apply Proposition 1 (ii) for the problems (22)–(24) and (30)–(32). We
have u = vx +

1
l M ∗

[
hl−h0 +

∫ l
0 f (·,y)dy

]
+ u0 and u1 = v1,x +

1
l M ∗

[
hl−h0 +

∫ l
0 f (·,y)dy

]
+ u0. Since

v = v1, we obtain u = u1. This completes the proof. �

Next, we are going to establish the local existence and stability for the inverse coefficient problem. Let
us formulate a problem that contains approximate data:

D{k}t (ũ− ũ0)(t,x) = [ã(x)ũx(t,x)]x + f̃ (t,x), x ∈ (0, l), t ∈ (0,T ), (34)

ã(0)ũx(t,0) = h̃0(t), ã(l)ũx(t, l) = h̃l(t), t ∈ (0,T ), (35)
ũ(0,x) = ũ0, x ∈ (0, l), (36)
ũ(T,x) = ũT (x), x ∈ (0, l). (37)

Let us denote the data vectors of the exact and approximate problems as follows:

D = ( f ,h0,hl,u0,uT ), D̃ = ( f̃ , h̃0, h̃l, ũ0, ũT ).

The aim is to show that (34)–(37) has a solution that is close to a solution to (4)–(7) provided the difference
of D̃ and D is sufficiently small.

Theorem 4. Let k be the Sonine kernel, M its associate and (12), (13) hold. Let (4)–(7) have a solution
(a,u) ∈C[0, l]×C{k}([0,T ];L1(0, l))∩C([0,T ];W 1

1 (0, l)) such that aux ∈C0([0,T ];W 1
1 (0, l)), a(x)> 0, x ∈

[0, l], ux and M satisfy one of the assumptions (A4)–(A6), the inequalities (27) and ux(T,x) > 0, x ∈ [0, l].
Assume that f̃ ∈C([0,T ];L1(0, l)), h̃0, h̃l ∈C0[0,T ], ũT ∈C[0, l] and∫ l

0
ũT (y)dy = M ∗

[
h̃l− h̃0 +

∫ l

0
f̃ (·,y)dy

]
(T )+ lũ0. (38)

Let 0 < α2 < 1 and p > 1. Then there exists a constant δ > 0, depending on k,a,u,α2, p such that if

D̃−D ∈D and ‖D̃−D‖D ≤ δ where D =C{k},α2
0 ([0,T ];L1(0, l))× (C{k},α2

0 [0,T ])2×R×C1[0, l],

then there exist functions ã ∈ C[0, l] and ũ ∈ C{k}([0,T ];L1(0, l)) ∩ C([0,T ];W 1
1 (0, l)) such that

ãũx ∈ C0([0,T ];W 1
1 (0, l)) and the pair (ã, ũ) is a solution to the problem (34)–(37). Moreover, ũ− u ∈

(C{k},α
′

0 ([0,T ];W 1
p (0, l))+R)∩C([0,T ];C1[0, l]) and the following estimate is valid:

‖ã−a‖C[0,l]+‖ũ−u‖(
C{k},α

′
0 ([0,T ];W 1

p (0,l))+R
)
∩C([0,T ];C1[0,l])

+‖ãũx−aux‖C0([0,T ];W 1
1 (0,l))

≤ K‖D̃−D‖D , (39)

where α ′ = min{α̂;α2}, α̂ =

{
α1 in cases (A4), (A5)
α1−β in case (A6) and the constant K is independent of D̃−D.

Proof. Let us consider the problem to find a pair (φ ,w) that satisfies the following relations:

D{k}t w(t,x) = a(x)wxx(t,x)+φ(x)ux(t,x)+φ(x)wxx(t,x)+q(t,x), x ∈ (0, l), t ∈ (0,T ), (40)

w(t,0) = w(t, l) = 0, t ∈ (0,T ), (41)

w(0,x) = 0, x ∈ (0, l), (42)

w(T,x) = wT (x), x ∈ (0, l), (43)
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where q(t,x) = J ( f̃ − f )(t,x)− l−x
l (h̃0− h0)(t)− x

l (h̃l − hl)(t) and wT (x) = J (ũT − uT )(x). In case

D̃−D ∈D , we have q ∈C{k},α2
0 ([0,T ];W 1

1 (0,T )), wT ∈C2[0,T ], wT (0) = wT (l) = 0 and

‖q‖
C{k},α2

0 ([0,T ];W 1
1 (0,T ))

+‖wT‖C2[0,l] ≤C2‖D̃−D‖D (44)

with some constant C2 > 0. Further, let Fa,r stand for the a- and r-dependent operator that maps the pair of
functions (q,wT ) to the solution of the inverse source problem (11). Let us fix some p > 1. Due to Theorem
2, the problem (40)–(43) is in the space

W =C[0, l]×C{k},α
′

0 ([0,T ]; 0W 2
p (0, l))∩C0([0,T ];C2[0, l])

equivalent to the following operator equation:

S = F(S), where S = (φ ,w), F(S) = Fa,ux(φwxx +q,wT ). (45)

Using (18) and (44), we deduce the estimate

‖F(S)‖W ≤C1

(
‖φwxx +q‖

C{k},α2
0 ([0,T ];Lp(0,l))∩C0([0,T ];C[0,l])

+‖wT‖C2[0,l]

)
≤C3‖S‖2

W +C4‖D̃−D‖D , (46)

where C3 = C1 max{ω1;1}, C4 = C1C2 max{ω2;1} and ω1 and ω2 are the norms of the embedding opera-
tors C{k},α

′

0 ([0,T ];Lp(0, l)) ↪→C{k},α2
0 ([0,T ];Lp(0, l)) and C{k},α2

0 ([0,T ];W 1
1 (0, l)) ↪→C{k},α2

0 ([0,T ];Lp(0, l))
∩C0([0,T ];C[0, l]), respectively. Similarly, for S j = (φ j,w j), j = 1,2, we have

‖F(S1)−F(S2)‖W = ‖Fa,ux

(
(φ1−φ2)w1,xx +φ2(w1,xx−w2,xx),0

)
‖W

≤C3
(
‖S1‖W +‖S2‖W

)
‖S1−S2‖W . (47)

Let ‖D̃−D‖D ≤ δ = 1
8C3C4

. Then, for any S such that ‖S‖W ≤ ρ = K0‖D̃−D‖D where K0 = 2C4 from
(46), we have

‖F(S)‖W ≤C3ρ
2 +C4‖D̃−D‖D =C3K2

0‖D̃−D‖2
D +C4‖D̃−D‖D =C3K2

0‖D̃−D‖D‖D̃−D‖D

+C4‖D̃−D‖D ≤C3K2
0 δ‖D̃−D‖D +C4‖D̃−D‖D =

3K0

4
‖D̃−D‖D < ρ.

This implies that the operator F leaves the ball ‖S‖W ≤ ρ invariant. Further, for any S j, j = 1,2 such that
‖S j‖W ≤ ρ from (47), we obtain

‖F(S1)−F(S2)‖W ≤ 2C3ρ‖S1−S2‖W = 2C3K0‖D̃−D‖D‖S1−S2‖W

≤ 2C3K0δ‖S1−S2‖2
W =

1
2
‖S1−S2‖W .

This shows that the operator F is a contraction in the ball ‖S‖W ≤ ρ . Consequently, the equation (45) and
the equivalent problem (40)–(43) have a unique solution S = (φ ,w) in such a ball. Due to the definition of
ρ we have the estimate

‖φ‖C[0,l]+‖w‖C{k},α ′0 ([0,T ];0W 2
p (0,l))∩C0([0,T ];C2[0,l])

≤ K0‖D̃−D‖D . (48)

Let v = J u. By Proposition 1 (i), v belongs to C{k}0 ([0,T ];W 1
1 (0, l))∩C0([0,T ];W 2

1 (0, l)), satisfies
avxx ∈C0([0,T ];W 1

1 (0, l)) and is a solution to (22)–(24), where g is given by (25). Further, let ṽ= v+w. Due
to the properties of v and w we have ṽ ∈C{k}0 ([0,T ];W 1

1 (0, l))∩C0([0,T ];W 2
1 (0, l)). Adding the equations
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(40), (41) and (42) to the equations (22), (23) and (24), respectively, and replacing ux by vxx, we see that ṽ
is a solution to the following problem:

D{k}t ṽ(t,x) = ã(x)ṽxx(t,x)+ g̃(t,x), x ∈ (0, l), t ∈ (0,T ), (49)

ṽ(t,0) = ṽ(t, l) = 0, t ∈ (0,T ), (50)

ṽ(0,x) = 0, x ∈ (0, l), (51)

where ã = a+φ and

g̃(t,x) = g(t,x)+q(t,x) = J f̃ (t,x)− l− x
l

h̃0(t)−
x
l
h̃l(t).

Since ṽ ∈ C{k}0 ([0,T ];W 1
1 (0, l)) and g̃ ∈ C0([0,T ];W 1

1 (0, l)), from the equation (49) we obtain that ãṽxx ∈
C0([0,T ];W 1

1 (0, l)). Applying Proposition 1 (ii) to (49)–(51), we obtain that the function ũ ∈
C{k}([0,T ];L1(0, l))∩C([0,T ];W 1

1 (0, l)) defined by

ũ(t,x) = ṽx(t,x)+
1
l

M ∗
[

h̃l− h̃0 +
∫ l

0
f̃ (·,y)dy

]
(t)+ ũ0 (52)

satisfies ãũx ∈ C0([0,T ];W 1
1 (0, l)) and solves (34)–(36). Since v(T,x) = J uT (x) and w(T,x) = wT (x) =

J (ũT −uT )(x), we have ṽ(T,x) = J ũT (x). Hence, from (52) we obtain

ũ(T,x) = ũT (x)−
1
l

∫ l

0
ũT (y)dy+

1
l

M ∗
[

h̃l− h̃0 +
∫ l

0
f̃ (·,y)dy

]
(T )+ ũ0.

Using (38), we obtain (37). Therefore, (ã, ũ) is a solution to (34)–(37).

It remains to prove ũ−u∈ (C{k},α
′

0 ([0,T ];W 1
p (0, l))+R)∩C([0,T ];C1[0, l]) and the estimate (39). From

ũ(t,x)−u(t,x) = wx(t,x)+
1
l

M ∗
[

h̃l−hl− h̃0 +h0 +
∫ l

0
( f̃ − f )(·,y)dy

]
(t)+ ũ0−u0, (53)

in view of w ∈C{k},α
′

0 ([0,T ]; 0W 2
p (0, l))∩C0([0,T ];C2[0, l]) and the assumptions on D̃−D, we have ũ−u ∈

(C{k},α
′

0 ([0,T ];W 1
p (0, l))+R)∩C([0,T ];C1[0, l]). Next, we note that ãṽxx−avxx = D{k}t w+g− g̃. Thus, due

to (48) and the definitions of g and g̃ as well as the norm ‖ · ‖D , we obtain

‖ãṽxx−avxx‖C0([0,T ];W 1
1 (0,l))

≤ K1‖D̃−D‖D , (54)

where K1 is a constant. By means of (48), (53), (54) as well as the relations φ = ã− a and ãṽxx− avxx =
ãũx−aux, we obtain the estimate (39). This completes the proof. �

Remark 2. The estimate (39) shows that the solution to (34)–(37) continuously depends on the first order
derivative of the measured function uT . The degree of ill-posedness of the inverse diffusivity problem
(4)–(7) is lower than that of the inverse problem to reconstruct an x-dependent source factor from final
measurements [9]. The solution to the latter problem continuously depends on the second order derivatives
of the final data.



J. Janno et al.: Inverse problem 13

6. ADDITIONAL REMARKS

6.1. Examples of kernels

Let us define the following subset of the set of completely monotonic functions:

C M = {z ∈ L1,loc(0,∞)∩C∞(0,∞) : lim
t→0+

z(t) = ∞, (−1)iz(i)(t)> 0, t > 0, i = 0,1,2, . . .}.

It holds the following statement:

Lemma 3. [4] Let k ∈ C M . Then k is the Sonine kernel and its associate M also belongs to C M .

Clearly, for k,M ∈ C M , the conditions (12) and (13) are satisfied.

There are many examples of generalized fractional derivatives with kernels of the class C M in models
of subdiffusion. Let us list some of them. A more detailed description can be found, e.g., in [10].
• Distributed fractional derivatives. Then

either k(t) =
∫ 1

0
t−β

Γ(1−β )d p(β ) or M(t) =
∫ 1

0
tβ−1

Γ(β )d p(β ),

where p is a Borel measure. Such derivatives occur in the modelling of accelerating and retarding subdiffu-
sion, also of ultraslow diffusion [12]. A particular case is the multiterm derivatives when

either k(t) =
s
∑
j=1

κ j
t−β j

Γ(1−β j)
or M(t) =

s
∑
j=1

κ j
tβ j−1

Γ(βJ)
, where 0 < β1 < .. . < βs < 1, κ j > 0.

• Tempered fractional derivatives. They are used in the modelling of slow transition from anomalous diffu-
sion to the normal one. We can point out three different cases that occur in the literature:

M(t) =
1

Γ(β )
e−λ ttβ−1, 0 < β < 1, λ > 0

[20]
(
then k(t) = 1

Γ(1−β )e
−λ tt−β + λ

Γ(1−β )

∫ t
0 e−λττ−β dτ

)
;

M(t) =
1

Γ(β )
e−λ ttβ−1 +

λ

Γ(β )

∫ t

0
e−λτ

τ
β−1dτ, 0 < β < 1, λ > 0

[3]
(
then k(t) = 1

Γ(1−β )e
−λ tt−β

)
;

M(t) = e−λ ttβ−1Eβ ,β (λ
β tβ ), 0 < β < 1, λ > 0,

where Eβ ,β is the two-parametric Mittag-Leffler function [22]
(
then

k(t) = 1
Γ(1−β )e

−λ tt−β + λ

Γ(1−β )

∫ t
0 e−λττ−β dτ−λ β

)
.

6.2. Positivity assumptions on ux

In this subsection we consider the direct problem (4)–(6), assume that its solution u is sufficiently smooth
and ask the question: which sufficient conditions on the data f , h0 and hl guarantee the validity of the
conditions ux ≥ 0, D{k}t ux ≥ 0 and ux(T,x)> 0, x ∈ [0, l] in Theorems 3 and 4?1

1 Evidently, the other two inequality type conditions (28) and (29) in Theorem 3 follow from ux(T,x)> 0, x ∈ [0, l].
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From (4)–(6) we deduce the following problem for U = aux:

D{k}t U(t,x) = a(x)Uxx(t,x)+a(x) fx(t,x), x ∈ (0, l), t ∈ (0,T ),
U(t,0) = h0(t), U(t, l) = hl(t), t ∈ (0,T ),
U(0,x) = 0, x ∈ (0, l).

Assume that a(x) > 0, x ∈ [0, l]. Then the conditions ux ≥ 0, D{k}t ux ≥ 0 and ux(T,x) > 0, x ∈ [0, l] are
equivalent to U ≥ 0, D{k}t U ≥ 0 and U(T,x) > 0, x ∈ [0, l], respectively. Moreover, let k satisfy (12).
Then we can apply a positivity principle for the generalized subdiffusion equation (Lemma 4 in [9]). The
assumptions fx ≥ 0, h0 ≥ 0 and hl ≥ 0 imply the inequality U ≥ 0.

The problem for V = D{k}t U reads

D{k}t [V (t,x)−V (0,x)] = a(x)Vxx(t,x)+a(x)D{k}t [ fx(t,x)− fx(0,x)], x ∈ (0, l), t ∈ (0,T ),

V (t,0) = D{k}t h0(t), V (t, l) = D{k}t hl(t), t ∈ (0,T ),
V (0,x) = a(x) fx(0,x), x ∈ (0, l).

Due to the above mentioned positivity principle, the assumptions D{k}t [ fx(t,x)− fx(0,x)] ≥ 0, D{k}t h0 ≥ 0
and D{k}t hl ≥ 0 imply the inequality D{k}t U ≥ 0.

It remains to deal with the strict inequality U(T,x)> 0, x∈ [0, l]. We are going to use a method presented
in pp. 257–258 of [9]. Let us assume that

∃µ ∈C[0,T ], µ ≥ 0, µ 6= 0, µ−nondecreasing :
a(x) fx(t,x)≥ µ(t), x ∈ [0, l], t ∈ [0,T ], h0(t)≥ µ(t), hl(t)≥ µ(t), t ∈ [0,T ].

Let us denote W =U−δ1∗µ where δ > 0. The function W is a solution to the problem

D{k}t W (t,x) = a(x)Wxx(t,x)+a(x) fx(t,x)−δk ∗µ(t), x ∈ (0, l), t ∈ (0,T ), (55)
W (t,0) = h0(t)−δ1∗µ(t), W (t, l) = hl(t)−δ1∗µ(t), t ∈ (0,T ), (56)
W (0,x) = 0, x ∈ (0, l). (57)

Let δ ≤min
{

1∫ T
0 k(τ)dτ

; 1
T

}
. Then we have

a(x) fx(t,x)−δk ∗µ(t)≥ a(x) fx(t,x)−δ

∫ t

0
k(τ)dτ µ(t)≥ a(x) fx(t,x)−µ(t)≥ 0

and h0(t)−δ1∗µ(t)≥ h0(t)−δ tµ(t)≥ h0(t)−µ(t)≥ 0. Similarly, we obtain hl(t)−δ1∗µ(t)≥ 0. The
positivity principle implies W ≥ 0. Thus, U(T,x) =W (T,x)+δ1∗µ(T )> 0, x ∈ [0, l].
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Pöördülesanne difusioonikordaja määramiseks üldistatud subdifusioonivõrrandis
lõpphetkel tehtud mõõtmiste alusel

Jaan Janno, Kairi Kasemets ja Nataliia Kinash

Vaadeldakse pöördülesannet difusioonikordaja määramiseks ühemõõtmelises subdifusioonivõrrandis, mis
sisaldab üldistatud murrulist tuletist ajamuutuja suhtes. Ülesandes on lisatingimusena antud olekufunkt-
siooni jälg lõpphetkel t =T . On tõestatud pöördülesande lahendi ühesus. Seejärel on formuleeritud ligikaud-
sete algandmetega ülesanne ja tõestatud, et juhul, kui täpne ülesanne omab lahendit ja algandmete viga on
piisavalt väike, siis omab ka ligikaudne ülesanne lahendit. Lisaks on tuletatud mainitud lahendite vahe
hinnang algandmete vea kaudu.
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