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Abstract. The inverse problem of crack identification, localisation and severity quantification is addressed in this article. The open
cracks are simulated numerically in a homogeneous Euler–Bernoulli beam. The beam rests on the Pasternak foundation. Under
the assumption that the size of the crack is small compared to the height of the beam, it is shown that the problem can be solved
in terms of crack-induced changes in the natural frequencies or mode shapes. Predictions of the crack characteristics (location and
severity) are made by artificial neural networks or random forests. The dimensionless natural frequency parameters or the first
mode shape transformed into the Haar wavelet coefficients are used at the inputs of the machine learning methods. The numerical
examples indicate that the combined approach of the natural frequencies, Haar wavelets, and machine learning produces accurate
predictions. The results presented in the article can help in understanding the behaviour of more complex structures under similar
conditions and provide apparent influence on the design of beams.
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1. INTRODUCTION

The soil-structure interaction has broad practical application in engineering, such as the construction of
pipelines, road surfaces, or building foundations. Some of the problems, for example, contact pressure
distribution or buckling, can be idealised and solved by modelling a beam on an elastic foundation.

There are various models of beams on the elastic foundation described in the literature:Winkler, Pasternak,
Vlasov, Filonenko-Borodich, Leontiev models; however, the first two models are widely used in engineering
for their simplicity. In the Winkler one-parameter model, the foundation is composed of infinitely close
elastic springs which are independent of each other; the vertical surface displacement of the beam is assumed
to be proportional to the contact pressure at any point. The Pasternak two-parameter model represents a
system of closely placed elastic springs coupled to each other with the elements which transmit the shear
force proportional to the slope of the foundation surface [7]. The Pasternak foundation model is used in
several soil-structure interactions, e.g. road pavement, rigid concrete pavement for highways and airports,
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a bridge resting on elastomeric bearings, or excavation retaining walls and tunnels in the soil. The present
study focuses on the beam on the Pasternak foundation.

During the manufacturing or the structural service period of a beam, some defects or damage can occur.
According to Chen et al. [8], the crack is not only the most common defect in structures but also one of the
hardest to control. Since the presence of a crack in beams poses an apparent threat to the whole construction,
the identification of cracks is of great significance to the safe and reliable operation of the structure and in
scheduling maintenance procedures.

Visual or localised experimental methods, such as magnetic field methods, radiography, or thermal field
methods, require the structural element of the inspection to be readily accessible. The requirement cannot
always be met if the structure is complex and the element is mounted.

A promising alternative to the existing damage identification methods can be found in the modal analy-
sis. It is based on the principle that a reduction in the structural stiffness produces changes in the dynamic
characteristics of the structure, such as natural frequencies, mode shapes, and damping ratios [14]. Con-
stant monitoring for the changes in the dynamic response with a small number of sensors helps early detect,
localise and estimate severity [12,21,41]. However, it is noted that the natural frequencies can only follow
the damage severity, but damage locations do not influence the frequencies much; the modal assurance cri-
terion is, in contrast, less sensitive to damage compared with the natural frequencies; the coordinate modal
assurance criterion can localise damage in the beams but cannot follow severity [31]. Therefore, Wang
[44] recommends incorporating the structural properties with modern numerical methods for accurate crack
identification.

A large number of numerical solutions are based on mesh methods, such as the finite element method
(FEM) [33,42], the finite difference method [3], the spectral finite element method [24], the differential
quadrature method [28], etc. Nevertheless, the FEM may provide accurate dynamic characteristics of a
structure if the wavelength is large compared to the mesh size. Furthermore, the FEM becomes increasingly
inaccurate as the frequency increases [2]. Other deficiencies of the FEM are related to the mesh definition,
calculation, and computer storage.

The statistical methods, such as correlation functions and coefficients, autoregressive models, machine
learning methods, properly address the modern-type vibration-based methods. The description of each
method can be found in a great number of articles, for example, [19,32,43,46]. Mahmoud and Kiefa [25]
investigated a steel cantilever beam with a single edge crack. They used the general regression neural net-
works (GRNN) and the first six natural frequencies in order to predict the crack size and location. The nat-
ural frequencies were calculated using the M-matrix technique and the Newton–Raphson method. Mahmoud
and Kiefa drew several important conclusions: the first two natural frequencies were not sufficient to predict
the depth and location of a crack since the natural frequencies varied in a cyclic manner; if the crack depth
was small (a/h < 0.2), it was difficult to quantify since the change in the natural frequencies was small.
Hakim et al. [13] applied artificial neural networks (ANNs) to detect cracks in I-beams, particularly the
locations of two cracks and their depths. For the training of the ANNs, 52 patterns of 3D finite element
simulations and 52 experimentally obtained patterns were used. Each pattern contained the first natural
frequency and 14 mode shape values of the first mode at the points on the centreline of the beam, except for
the points at the ends. The optimal feed-forward back propagation ANN had the architecture of 15-8-4-3
(all together 179 weights). The mean square error of the test was 0.00449. The correlation coefficient for the
crack severity and two locations of the cracks were 0.9925, 0.9680 and 0.9700, respectively. Later, Hakim
et al. improved the results using an ensemble of five ANNs. Each individual ANN with the architecture
of 15-8-4-3 was trained with the data obtained from one of the first five natural frequencies and their mode
shape values. The mean square error was 0.0037. The correlation coefficient for the crack severity and
two locations of the cracks were 0.9898, 0.9856 and 0.9855, respectively. It was also concluded that crack
localisation was a harder task than the identification of the crack depth.

Although the statistical methods overcome the drawbacks of common non-destructive testing techniques
by the ability to extract information from raw data, some issues need to be discussed and resolved. Firstly,
the choice of a proper statistical method for the crack quantification in beams is complicated: no systematic
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comprehensive overview or comparison between the performances of different methods has been made thus
far. Secondly, in engineering, data are often the result of expensive experiments and will be in short supply;
in this case, the only way to ensure generalisation is to restrict the number of weights in the network [45].
Thirdly, an optimal feature vector selection for the data-driven methods can be challenging. The vector is
frequently dependent on the structure, the goal of the investigation, the nature of the raw data, advantages
and disadvantages of the classifier.

Merging data-driven machine learning methods with the modal analysis, the present article proposes a
new theoretical approach to crack quantification. Namely, to overcome the limitations of the modal data and
increase the accuracy of predictive models, a search for an informative feature vector is conducted in the field
of wavelets. The wavelet analysis represents a modern-type windowing technique for signal decomposition
into logarithmically scaled regions [30]. A different view of data (signal) reveals aspects of data that other
signal analysis techniques miss [29]. For example, Quek et al. [35] conducted a sensitivity analysis of
crack detection in simply supported and clamped beams under a static load. The authors established that
the wavelets were sensitive to the curvature of the deflection profile calculated with the aid of the FEM.
Using the vibration data and the Haar/Gabor wavelets, multiple cracks were detected. Notably, the Haar
wavelets exhibited superior performance for detecting discrete cracks whose depth ratio to the length of the
beam was as low as 1/150. The observation of the wavelet sensitivity to the non-linear structure changes
was confirmed experimentally by Rucka and Wilde in [38,39].

Although the application of wavelets in structural health monitoring is on the rise, it still requires add-
itional research. Hereof, one of the main questions of the present research is whether the mode shape
decomposition by wavelets produces informative data and whether the wavelet coefficients are more infor-
mative than natural frequencies. The results are validated using two of the most popular machine learning
methods: the ANNs and the random forests (RFs). The numerical examples are conducted on the cracked
Euler–Bernoulli beam on the Pasternak foundation.

2. DYNAMIC RESPONSE OF VIBRATING BEAMS WITH MULTIPLE CRACKS

In Fig. 1, a clamped Euler–Bernoulli beam of length L is placed on the Pasternak foundation. The beam has
n cracks.

According to Rizos et al. [36], Shifrin and Ruotolo [40], a beam with n cracks can be modelled as a
beam divided into n+ 1 sections connected by elastic springs. The differential equation of the transverse
vibration in each region x ∈ [xi,xi+1] of the beam placed is as follows [10]:

EI
∂ 4yi(x, t)

∂x4 −G2
∂ 2yi(x, t)

∂x2 +G1yi(x, t)+ρA
∂ 2yi(x, t)

∂ t2 = 0, (1)

where G1 is the Winkler foundation modulus, G2 denotes the shear modulus of the Pasternak foundation,
i represents the number of the section (i = 1, ...,n+ 1) and yi(x, t) is the transverse deflection in the i-th
section. The solution to (1) is sought using the method of separation of variables [20]:

Fig. 1. A clamped beam on the Pasternak foundation.

y(x, t) =W (x)T (t). (2)

y(x, t) =W (x)T (t). (2)

Fig. 1. A clamped beam on the Pasternak foundation.
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Substituting (2) into (1), the equation of the transverse vibration (1) takes the form of

d4Wi(x)
dx4 −µ d2Wi(x)

dx2 +(γ − k̃)Wi(x) = 0, (3)

where

µ =
G2

EI
,γ =

G1

EI
, k̃ =

mω2
∗

EI
. (4)

The characteristic equation of (3) can be presented as follows:

λ 4 −µλ 2 +(γ − k̃) = 0 (5)

and the general solution to (3) for the present vibration problem can be presented as follows [37]:

Wi =C1,ieλ1x +C2,ieλ2x +C3,ieλ3x +C4,ieλ4x, (6)

where λ1, ...,λ4 are the roots of (5) and C1,i, ...,C4,i refer to the integration constants. The equation (3) should
be solved separately for each beam section i (i = 1, ...,n+1). The solution for the whole beam can be put
together taking into account the continuity and boundary conditions. The continuity conditions at the crack
position xi can be expressed as follows [9]:

Wi(xi) =Wi+1(xi),

d2Wi(xi)

dx2 =
d2Wi+1(xi)

dx2 ,

d3Wi(xi)

dx3 =
d3Wi+1(xi)

dx3 ,

dWi(xi)

dx
+ ci

d2Wi(xi)

dx2 =
dWi+1(xi)

dx
, i = 1, ...,n,

(7)

where ci is the bending constant of the spring:

ci = 5.346
h

EI
J(ηi),ηi =

ai

h
. (8)

In (8), h is the height of the beam, ai represents the crack depth and J(ηi) denotes the dimensionless local
compliance function:

J(ηi) = 1.8624(ηi)
2 −3.95(ηi)

3 +16.375(ηi)
4 −37.226(ηi)

5 +76.81(ηi)
6 −126.9(ηi)

7

+172(ηi)
8 −143.97(ηi)

9 +66.56(ηi)
10.

(9)

In the case of a clamped-pinned beam, the boundary conditions can be presented as follows:

W1(0) =
dW1(0)

dx
= 0,

Wn+1(L) =
d2Wn+1(L)

dx2 = 0.
(10)

The system (3)–(10) can be solved with the aid of exact solution (6) taking into account (7)–(10) or
using the Haar wavelet technique [4,23,26,34].
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3. HAAR WAVELETS

In recent years, the wavelet transform has occasionally been implemented in structural health monitoring.
The advantage of the technique consists in the fact that the method does not require the analysis of the
complete structure and has the ability to reveal some hidden parts of data that other signal analysis techniques
fail to detect [35,47]. In [22], Lepik demonstrated that the Haar wavelets can be applied for numerical
solving of differential equations. Later, many authors showed that the Haar wavelet method can be applied
to solving integral and integro-differential equations, e.g. Aziz and Pervaiz [4,34].

The main properties of the Haar wavelet are orthogonality and compact support. The scaling function
for the family of the Haar wavelets is symmetric and discontinuous. It resembles a step function which is
defined as [5]:

h1(ξ ) =

{
1, for ξ ∈ [0,1),
0, elsewhere.

(11)

The mother wavelet for the Haar wavelet family is antisymmetric, and it is defined as:

h2(ξ ) =






1, for ξ ∈ [0, 1
2),

−1, for ξ ∈ [ 1
2 ,1),

0, elsewhere.
(12)

All the other functions in the Haar wavelet family are defined on the subintervals of [0,1]. The daughter
functions are generated from the mother wavelet h2(ξ ) by scaling and shifting it along the abscissa [23]:

hi(ξ ) =






1, for ξ ∈ [ξ (1),ξ (2)),

−1, for ξ ∈ [ξ (2),ξ (3)),

0, elsewhere,
(13)

where

ξ (1) =
k
m
,ξ (2) =

k+0.5
m

,ξ (3) =
k+1

m
. (14)

Integer k is the translational parameter or the shifting factor (k = 0,1, ...,m− 1), m denotes the dilatation
parameter or the factor of scale (m = 2 j and j = 0,1, ...,J), j indicates the level of the wavelet. Integer J is
the maximal level of resolution and M represents the resolution coefficient (M = 2J). The relation between
i, m and k is expressed as i = m+ k+1.

Generally, wavelet transform is capable of providing the time and frequency information simultaneously.
Several techniques are described in [1,23]. In this article, the collocation points method [23] is used since it
is applicable to the mode shape representation in the form of a limited feature matrix vector. The values of
the collocation points are defined by [23]:

ξl =
l −0.5
2J+1 =

l −0.5
2M

, (15)

where l = 1,2, ...,2M. The collocation points divide the interval ξ ∈ [0,1) into 2M parts; each part is of
length $ξ = 1/(2M).

The wavelet function values of (13) in the collocation points are presented in the Haar matrix H, whose
dimensions are 2M × 2M. The elements of the matrix are H2M×2M(i, l) = hi(ξl). An example of the Haar
matrix for M = 2 is presented below:



H. Hein and L. Jaanuska: Quantification of cracks in beams on the Pasternak foundation using Haar wavelets 21

H4×4 =





1
8

3
8

5
8

7
8

h1 1 1 1 1
h2 1 1 −1 −1
h3 1 −1 0 0
h4 0 0 1 −1



. (16)

According to [23], any function y(ξ ) that is integrable in the interval [0,1) can be expanded into the
Haar series :

y(ξ ) =
∞

∑
i=1

cihi(ξ ), (17)

where ci are the wavelet coefficients, which can be calculated by minimising the integral square error (see
[17]). In the present article, the sum is limited by 2M terms. The discrete form of (17) with 2M is

y(ξl) =
2M

∑
i=1

cihi(ξl), (18)

where ξl (l = 1,2, ...,2M) are the collocation points. The matrix form of (18) is

y = cH, (19)

where H is the Haar matrix, c = (ci) and y = (yl) are 2M dimensional row vectors. The Haar wavelet
coefficients can be found by:

c = yH−1, (20)

where H−1 is the inverse of the Haar matrix. Replacing c into (17) with i = 1, ...,2M, the wavelet approxi-
mation of function y with the level of resolution J can be obtained. The accuracy of the approximation is
discussed in several articles [23,26,27]. Equation (20) is called the forward discrete transform, and (19) is
called the inversed discrete transform. Since H2M×2M and H−1

2M×2M contain many zeros, the Haar transform
is much faster than the Fourier transform [17].

In the present study, the Haar wavelet transform is applied to the first mode shape of the beam on the
Pasternak foundation since it is the most informative [6].

4. NUMERICAL EXAMPLES

The procedure and identification of a single crack in the Euler–Bernoulli beam can be found in several
research papers [11,16,18]. Taking into account the previous experience, the present section focuses on the
Euler–Bernoulli beam placed on the Pasternak foundation (G1 = 10, G2 = 2.5π2). One end of the beam is
clamped, the other one is pinned. The ratio between the beam height and length is set to 0.1. The beam
length is scaled to 1.

4.1. Quantification of two cracks

Two cracks were induced at the arbitrary points along the beam. One crack was induced from 0.1 to 0.7
units from the left side of the beam (L1); the second crack was induced from 0.1 to 0.8 units from the first
crack (L2) so that both cracks were in the range of 0.1 to 0.8 units. On practical grounds, the minimum and
maximum values of crack depths (D1, D2) were set between 0.01 and 0.5 (Fig. 2).
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Fig. 3. Correlation and error distribution of the predicted cracks by the ensemble of the ANNs: (a)–(b) location from the left side of 
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Fig. 3. Correlation and error distribution of the predicted cracks by the ensemble of the ANNs: (a)-(b) location from the left side
of the beam; (c)-(d) distance between two cracks; (e)-(f) depth of the first crack; (g)-(h) depth of the second crack.

of 16 (six predictors without replacement). The MSE of the first crack location was 2.4e-5 and the MSE of
the distance between the two cracks was 2.1e-5. The R-values were 9.997e-1 and 9.997e-1, respectively.

Comparing the results of the ANNs and the RFs, it was noted that the RFs slightly outperformed the
ANNs. The observation could be explained by the fact that the RFs had fewer hyperparameters to tune.
Also, it was noted that the training process was remarkably shorter in the case of the RFs than in the case of
the ANNs.

4.2. One crack or two cracks

The proposed method of the modal data, Haar wavelets and machine learning examined in the previous sub-
section quantifies cracks accurately if the number of cracks in the beam is known in advance. In practice, the
number of cracks in the beam is not known a priori. Therefore, the proposed method has to be supplemented
with a classifier.

In the present research, the classifier was implemented in terms of the ANN or the RF. The architecture
and the hyperparameters of the ANN were set the same as in the regression task on the crack quantification
(Subsection 4.1). A one-hidden-layer feed forward network with back propagation had ten hidden neurons.
The network was trained by the Bayesian regularisation training function. Elliot symmetric sigmoid transfer
function was used in the hidden layer and the linear transfer function was used in the output layer. The RF
had 50 trees.

The classifiers were examined using two datasets: the DFP-based dataset and the HWC-based dataset.
Each dataset consisted of 2400 records: 1200 records of the beams with one crack and 1200 records of the
beams with two cracks. Each dataset was split into the training and testing set in the ratio of 90 per cent and
10 per cent. The feature vector of the DFP-based dataset contained the first eight DFPs; the feature vector
of the HWC-based dataset contained 16 HWCs transformed from the first mode shape.

The results of the classification are shown in the confusion matrix (Fig. 5). The matrix was the same
in all four cases: classification by the ANN provided with DFPs or HWCs, and classification by the RF
provided with DFPs or HWCs. High accuracy (F-score = 1.0) could be explained by the fact that two cracks
caused higher frequencies (the first NFP was around four units) than single cracks (the first NFP was around
20 units).

Fig. 3. Continued 
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Fig. 4. Correlation and error distribution of the predicted cracks by the ensemble of the RFs: (a)–(b) location from the left side of the 
beam; (c)–(d) distance between two cracks; (e)–(f) depth of the first crack; (g)–(h) depth of the second crack. (Continued on the next 
page.) 
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Fig. 5. Confusion matrix of the predicted and actual numbers of cracks in the beam.
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5. CONCLUSIONS

In the present research, the Euler–Bernoulli beam resting on the Pasternak foundation was investigated.
The primary objective of the research was to find an efficient predictive model for crack identification and
quantification. Among various machine learning methods, the feed forward back propagation ANNs and
the RFs were used for their popularity and efficiency in other engineering disciplines. Another objective
of the research was related to the datasets. Specifically, different feature vectors were investigated with the
aim of finding an informative one. Two sets of data were calculated numerically. The first one contained the
first eight DFPs; the other one – up to 16 HWCs derived from the first mode shape. The hypotheses were
evaluated on the testing set (not shown to the predictive models in advance).

The results of crack quantification showed that the RFs slightly outperformed the ensemble of the ANNs.
Notably, the RFs had fewer hyperparameters to tune and the training process was remarkably shorter than
in the case of the ANNs.

Analysing the results of the predictions, it was detected that the depth of cracks was more difficult to
predict accurately than the location. The dataset of eight DFPs produced more accurate predictions of the
crack depths but not of the crack locations. The hypothesis on the sensitivity of the HWCs towards the crack
localisation was decisively confirmed; however, the Haar wavelet transform method could not follow the
severity of the crack.

The classification task on the number of cracks in the beam was solved by the ANN and the RF. The
machine learning methods were provided either with the DFPs or HWCs. Disregarding the nature of the
features in the patterns, both machine learning methods classified the beams accurately (F-score = 1.0).
High accuracy was explained by the unique values of the features.

In the present research, the problems arising from the arrangement of experiments and measured modal
data cleansing (filter noise, spike removal, removal of outliers, treatment of missing data) were not taken
into account. In order to apply the proposed numerical approach not only to the modelling or simulations of
beam-like structure but also in practice, the approach has to be validated by the experiment and experimental
data.

Furthermore, in order to evaluate the flexibility of the proposed approach of the machine learning, modal
data and the Haar wavelets, it is recommended that the approach be validated on other structural elements
(I-beams, T-beams, rods, ties, shells, plates), material constitutive models (elastic-plastic or plastic models),
and types of damage (breathing cracks, subsurface cracks, transverse cracks, necks, debonding, faults, frac-
tures).

The presented methods can be extended for analysing other important engineering elements, e.g. de-
laminated beams, cracked Timoshenko beams, buckling beams, cracked functionally graded beams.
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Pragude määramine võnkuvates Pasternaki alusel talades, rakendades masinõppe
meetodeid ja Haari lainikuid

Helle Hein ja Ljubov Jaanuska

Eksperimentaalsetes uuringutes on tuvastatud, et praod võnkuvates talades tekitavad muutusi võnkumise
modaalsetes omadustes (nt vabavõnkumise sagedustes ja moodides). Selles artiklis käsitletakse pragude tu-
vastamise, lokaliseerimise ja raskusastme määramist võnkumise modaalsete omaduste kaudu. Konkreetse
ülesandena vaadeldi ühe ja kahe praoga Pasternaki alusel võnkuvat Euler-Bernoulli tala. Pragude arvu, asu-
koha ja raskusastme määramiseks kasutati tehisnärvivõrke ning tingimuslikke otsustuspuid ehk juhumetsi.
Andmekogumite genereerimiseks lahendati võnkumise võrrand ja tulemusi töödeldi Haari lainikute abil.
Numbrilised eksperimendid näitasid, et omavõnkumiste sageduste, moodide, Haari lainikute ja masinõppe
meetodite kombineeritud lähenemine võimaldab täpselt määrata pragude arvu, asukohta ning raskusastet.


