
1. INTRODUCTION 

 
With the increasing complexity of the control systems, 
especially the systems with high safety requirements (such 
as aircraft, power systems, chemical facilities, nuclear 
energy facilities, etc.), the fault­tolerant control strategies 
need to be used in order to ensure that the system can still 
meet a certain stable performance when an abnormality 
occurs. 

System integrity means that when one or more 
components in the system fail, the system can still work 
steadily by using the remaining components. In the early 
days, many scholars carried out research on this problem 
[1–3]. In 1971, Niederlinski proposed the concept of 
integral control [4], which is the idea of fault­tolerant 
control. If the closed­loop system is still stable and has ideal 

characteristics when the actuator, sensor or component fails, 
the closed­loop control system is called the fault­tolerant 
control system. Around 1980, Šiljak researched the problem 
of reliable stabilization of the system and published some 
results, which are the important early literature for the fault­
tolerant control [5–7].  

Faults in the engineering system mainly include the 
actuator fault, sensor fault, controller fault and controlled 
object fault [8–11]. The actuator is the most prone to 
failure because it performs control tasks frequently. The 
failure of the actuator in the system may cause the system 
to lose its original performance, or even cause the system 
to become unstable [12–15]. For example, in spacecraft 
control systems, the actuators are one of the key 
components for precise control. If the actuator fails, it will 
inevitably affect the performance of the spacecraft control 
system. In serious cases, it may even lead to the failure of 
the space mission. Therefore, when the actuators fail, how 
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to use limited information to improve the stability of the 

system has attracted the attention of many scholars. In 

short, it is of great significance to study the robust fault­

tolerant control when the system fails [16–18]. 

In recent years, many scholars have had some 

achievements in the research of robust fault­tolerant 

control [19–22]. Ma et al. [19] have investigated the 

networked non­fragile H∞ control problem for Lipschitz 

nonlinear system with quantization and packet dropout in 

both feedback and forward channels. The problem of 

iterative learning of fault­tolerant control for multi­stage 

intermittent processes with uncertainties and actuator 

failures is studied in [20]. Tong et al. [21] have researched 

the adaptive fuzzy decentralized fault­tolerant control 

(FTC) problem for a class of nonlinear large­scale systems 

with strict feedback. The nonlinear system considered 

contains unmeasured states and actuator faults. By means 

of fuzzy logic systems, approximating unknown nonlinear 

functions, a fuzzy adaptive observer is designed to es ­

timate the unmeasured state. Mahmoud and Khalid [22] 

have proposed for interconnected systems within the 

framework of integrated design a fault­tolerant control 

scheme to monitor and detect the faults in time, and to 

reconfigure the controller according to these faults. 

In practical engineering systems, there is a wide range 

of systems with Markov chains. This system includes both 

time state evolution and event modal­driven hybrid 

dynamic systems. In particular, due to the existence of 

random phenomena such as component failures, changes 

in the external environment, and network delays, the 

systems may suddenly change in structure or parameters. 

At this time, the systems can often be abstracted as 

Markov jump systems for modelling and analysis. In 

recent years, many scholars have focused on Markov 

jump systems and have had some research achievements 

[23–29]. H∞ state feedback control for singular Markov 

jump systems with incomplete transfer probability 

knowledge is studied in [23]. Zhang et al. [25] have 

designed a finite­time bounded observer with elasticity 

and robustness for a class of nonlinear systems with 

nonlinear measurement equations, which all have dis ­

appeared nonlinear model disturbances and additive 

perturbations.  Moon and Başar [26] have considered the 

robust stochastic large population game for coupled 

Markov jump linear systems (MJLS). Based on the robust 

mean field game theory, a low complexity robust 

decentralized controller is designed. In the case of control 

for Markov jump time­delay systems, the category of 

control methodologies employing contemporary develop ­

ments in switching BAS control as well as the switched 

systems theory are of considerable importance. Li et al. 

[28] have modelled the linear time­varying delay system 

with actuator failures as a switched linear time­varying 

delay system by utilizing the switched systems theory and 

a suitable control scheme. Li et al. [29] have considered 

the problem of reliable stabilization and H∞ control for a 

class of continuous­time switched Lipschitz nonlinear 

systems with actuator failures. The sufficient conditions 

for reliable exponential stabilization of the switched 

systems were derived by hybrid observer­based output 

feedback control.  

The quad­rotor UAV is widely used in military 

reconnaissance, power inspection, aerial photography and 

in other fields due to its several advantages such as good 

stability, low flight speed, and low­altitude flight safety 

performance. In flight, a quad­rotor UAV may suffer from 

random disturbances such as the external environment 

changes, system parameters changes, and damage to the 

internal components of the system, which may result in 

faults. The Markov jump system model can effectively 

describe random mutations caused by failures and due to 

other reasons during system operation. Therefore, the 

quad­rotor UAV system model can be abstracted as a 

Markov jump system model description, and then the 

corresponding control method can be designed. 

In this paper, for actuator failure the robust H∞ fault­

tolerant control of stochastic Markov jump system with 

both state and input delays is studied. By establishing the 

fault model of the actuator, according to the Lyapunov 

stability theory, the sufficient condition for the existence 

of the robust H∞ fault­tolerant controller is given, which 

makes the closed­loop system asymptotically stable and 

meets certain H∞ interference suppression. The advantage 

of the robust fault­tolerant control designed in this paper 

lies in the fact that there is no need to estimate the 

boundary value of actuator failure, nor does it depend on 

fault detection and diagnostic devices. Finally, the 

designed controller is applied to a UAV illustrative 

example. The numerical results and computer simulation 

demonstrate the effectiveness of the proposed fault­

tolerant control. 

 

 

2. PROBLEM  STATEMENTS 

 

In the probability space (Ω, F, P), consider a stochastic 

Markov jump time­delay system with parameter uncer ­

tainties  

where Ω is the sample space, F denotes the σ algebra 

subset on the sample space, and P indicates the probability 
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density. x(t) ∊ Rn is the state vector, u(t) ∊ Rm refers to the 

control input, z(t) ∊ Rq is the control output and ω(t) ∊ Rp 

is an external interference input vector in w(t)∊ L2[0,∞). 

L2[0,∞) is the square integrable function space, φ(t) 
signifies a continuous initial state and {rt,t≥0} is a 

continuous time state of Markov process with the values 

in the finite space Ʌ={1,2,∙∙∙,N}. The state transition 

probability is 

   (2)

 

where h > 0 and lim = o(h) / h = 0∙ �ij is the state transition 

probability from state i at time t to state j at time t + h. If 

j ≠ i, then �ij > 0. Otherwise,                    . A(rt), Ad(rt), 

B(rt), Bd(rt) and Bω(rt) are known constant real matrices 

of appropriate dimensions; ΔA(rt), ΔAd (rt), ΔB(rt), ΔBd (rt) 

and ΔBω(rt) are time­varying parameter uncertainties 

which satisfy the following condition 

 

(3)

 

where E(rt) and Hi(rt)(i = 1,2,3,4,5) are known constant real 

matrices of appropriate dimensions. F(t) denotes an un­

known matrix function with measurable elements and sat­

isfies FT(t)F(t)≤I, I is unit matrices. d1 and d2 
are time­delay 

parameters, which satisfy d1 > 0, d2 > 0, τ = max {d1, d2}. 

In this paper, we will design a feedback controller 

 

(4) 

where K1 ∊ Rm×n is a constant matrix with appropriate 

dimension. 

The stochastic Markov jump time­delay closed­loop 

system is as follows: 

 

where 

 

Definition 1. [30] In the stochastic Markov jump time-
delay system (1), when u(t) = 0 and ω(t) = 0, if for all 
initial states x0, initial mode r0, system uncertainties (3) 
and all finite functions φ(t) defined in [–τ, 0], we have  

     

(6) 

then the stochastic Markov jump time-delay system (1) is 
asymptotically stable.  
Definition 2. [23] Given a scalar γ > 0, if there is a state 
feedback controller (4) such that for all possible actuator 
failures, any x0 ∊ Rn, r0 ∊ Δ and system uncertainties (3), 
the closed-loop system is asymptotically stable and 
satisfies  

then the stochastic Markov jump time-delay system (1) is 
asymptotically stable and has the H∞ performance index 
γ > 0. The corresponding controller is the robust H∞ fault-
tolerant controller.  
Lemma 1. [31] (Schur Complements). Given the 
symmetric matrix  

where Θ11 and  Θ21  are symmetric matrices, the following 
conditions are equivalent: 

 

Lemma 2. [32] For the uncertainty F(t) and the matrices 
M = MT, S and N with appropriate dimensions, the 
following two conditions are equivalent: 

 
3. ROBUST  H∞  FAULT­TOLERANT  CONTROL 

    WITH  THE  ACTUATOR  FAULT SYSTEM 

 

In the system, the following actuator failure is introduced: 

      

(8) 

where ρ(t) = diag{ρ1(t),∙∙∙ρm(t)}, ρi(t) represents an 

unknown actuator failure factor, ρi and ρi are the upper 

and lower bounds of the actuator failure factor ρi. 
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According to the operation of the actuator, there is 0 ≤ ρi 

≤ ρi ≤ ρi ≤ 1. When ρi = ρi = 0, the ith actuator works 

properly; when ρi = ρi = 1, the ith actuator has a failure; 

when 0 ≤ ρi ≤ ρi < 1, the ith actuator has a partial failure. 

When an actuator failure occurs in a Markov time­

delay system, the state feedback controller is 

Bringing the equation (9) into the equation (5), the 

actuator fault closed­loop system of the stochastic Markov 

jump time­delay systems is 

where 

 
 

Theorem 1. Consider the closed-loop system (10) with 
actuator failures, if there exist symmetric positive definite 
symmetric matrices Pi, Qi, Ri ∊ Rn×n

 and matrix Ki ∊ Rm×n, 
and the constant γ > 0 such that the following matrix 
inequality (11) holds 

where 

 

Then the system (10) is asymptotically stable and can meet 
the H∞ performance index γ > 0. 
Proof. Let ω(t) = 0, construct a Lyapunov functional 

candidate as 

where 

 

In Euclidean space, the weak infinitesimal operator 

for the Lyapunov function with the Markov jump process 

is defined as follows: 

Then the derivative of V(xt, rt, t) for time along the closed­

loop system (10) is as follows: 

where 

 

Substituting the first formula in the equation (10) into 

(13), we have 

 

where 
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From the equation (11) and Lemma 1, Ω1< 0 can be 

derived, i.e. ℓV(xt, rt, t) ≤ 0. According to Definition 1, the 

closed­loop system (10) is asymptotically stable. 

Below, the closed­loop system (10) is discussed with 

the H∞ performance index γ. Under zero initial conditions, 

for any non­zero external perturbations ω(t) ∊ L2[0,∞], the 

derivative of V(xt, rt, t) along the closed­loop system (10) 

is 

 

then 

 

where 

 

 

Ω1< 0 can be obtained from (11), which is zT(t)z(t) – 
γ2ωT(t)ω(t) + ℓVω(xt, rt, t) < 0. 

Then the equation (14) can be derived by Dynkin’s 

formula 

where x0, r0 and t0 are the initial values of the cor ­

responding variables. From the equation (14), the follow ­ 

ing can be obtained: 

As can be seen from Definition 2, the actuator fault 

closed­loop system (10) is stable and can meet the H∞ 

performance index. 

According to Theorem 1, the algorithm for the con ­

troller solving is given below. 

Theorem 2. For stochastic Markov jump time-delay 
systems with actuator failures (10), if there exist matrices 
and Xi > 0, Pi > 0, Qi > 0, Ri > 0 and Ki, Wi ∊ Rm×n and 

γ > 0 such that the following matrix inequality holds, then 
we obtain  

where
 

 

Then Ki = Wi Xi
–1 is the robust H∞ fault tolerant controller 

of the closed-loop system (10).               
                                                                  ˆ Proof. Let Pi =  Xi

–1, Ki = Wi Xi
–1, Qi = Xi

–1Qi Xi
–1, 

Ri = Xi
–1Ri Xi

–1  pre­ and post­multiplying both sides of 

(16) by {Xi
–1 Xi

–1 Xi
–1 Xi

–1  I ∙∙∙ I}. From Lemma 2, the 

equation (16) is equivalent to the equation (11). The proof 

is completed. 

The condition for the asymptotic stability of the 

closed­loop system under actuator failure is given by 

Theorem 1. The solution of the robust H∞ fault­tolerant 

controller is provided by Theorem 2. The conclusions 

address the stochastic Markov jump time­delay system 

with parameter uncertainties. Compared with the existing 

references, the proposed fault­tolerant control does not 

need to estimate the boundary value of the actuator failure. 
 

 

4. EXPERIMENTAL  SIMULATION 

 

4.1. Numerical  simulation 

 

Consider the stochastic Markov jump time­delay systems 

with the following parameters, 

mode 1: 
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mode 2: 

 

where
 

 

The transition probability matrix is �ij =              , 
d1 = d2 = 0.5, λ = 0.2, ρ = 0.5.  

Consider a system actuator failure, L0 = diag(1, 1) is 

actuator normal, L1 = diag(0, 1) and L2 = diag(1, 0) indi ­

cate an actuator failure. When the second channel faults 

occur in the system, γ = 0.9828 is obtained by using the 

MATLAB LMI toolbox. The state feedback gain matrices 

are as follows:  

 

The state response curves with the actuator 2 failure 

are shown in Figs 1 and 2. 

When the first channel faults occur in the system, 

γ = 1.1373 is obtained by using the MATLAB LMI tool ­

box. The state feedback gain matrices are as follows: 

At this time, the state response curves with actuator 1 

failure are shown in Figs 3 and 4.  

In the case of an actuator failure, it can be seen from the 

simulation results that the designed controller can ensure 

that the system has certain anti­interference and fault tol ­

erance. This verifies the effectiveness of the proposed method. 

 

4.2. UAV  application  simulation 

 

To further verify the effectiveness of the proposed method, 

the robust fault­tolerant control method is applied to the 

F. Xingjian and P. Xinrui: Robust H∞ fault-tolerant control for Markov systems and application 107

, ,E H11, H
101H1H

0.1 0 0.1 0
00 0.1 0 0.1

Fig. 1. The x1 status with the actuator 2 failure.

Time s

 

 Fig. 2. The x2 status with the actuator 2 failure.

Time s

S
ta

te
 x

2

Fig. 3. The x1 status with the actuator 1 failure. 

Time s

S
ta

te
 x

1

 0.1

 –

 –

0 

 

–0.5 

 

–1 

 

–1.5 

 

–2 

 

–2.5 

 

–3

1 

0.9 

0.8 

0.7 

0.6 

 
0.5 

0.4 

0.3 

0.2 

0.1 

0

1 

0.9 

0.8 

0.7 

0.6 

 
0.5 

0.4 

0.3 

0.2 

0.1 

0

S
ta

te
 x

1

 0       0.1      0.2      0.3      0.4      0.5      0.6      0.7     0.8       0.9       1 0       0.1      0.2       0.3      0.4      0.5      0.6      0.7      0.8       0.9       1

0       0.1      0.2      0.3      0.4      0.5      0.6       0.7      0.8       0.9       1



quad­rotor UAV control system. With reference to [33], a 

linearized four­rotor UAV model is selected, and its 

parameter matrices are as follows: 

 

 

where β(t) is an uncertain model parameter that satisfies 

the Markov jumping process of the mode 

 

Considering that the first failure occurs in the system, the 

other parameters selected are the same as the numerical 

example. x(t) = [x1 x2 x3]
T = [θ ϕ ψ]T is the state vector, 

where ϕ is roll angle, θ is pitch angle, and ψ is yaw angle. 

In order to apply simulation, the initial state is set to 

x0(1, 0.1 0.1), the actuator failure is set to fa(t) = sin(t). 
γ = 4.4577 is obtained by using the MATLAB LMI 

toolbox. The state feedback gain matrices are as follows:  

      K1 = [–90.5965    3.2325    –27.1382], 
      K2 = [39.7603    4.1709    35.10]. 
 

The roll angle, pitch angle, and yaw angle curves are 

shown in Figs 5–7. It can be seen from Figs 5–7 that there 

is a certain transition process in the initial operating state 

of the system. However, under the action of the fault­

tolerant controller, the roll angle, pitch angle, and yaw 

angle of the UAV can reach stability after a short 

adjustment process. The results show that the designed 
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Fig. 4. The x2 status with the actuator 1 failure. 
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fault­tolerant controller has a good control effect when it 
is used in a four­rotor UAV system. The effectiveness of 
the proposed method is verified.  

 
 

5. CONCLUSIONS 

 

In this paper, the robust H∞ fault­tolerant control for 
uncertain stochastic Markov jump systems with both state 
time­delay and input time­delay has been studied. Based 
on the linear matrix inequality, by constructing the 
Lyapunov functional, the sufficient condition is presented 
for the asymptotic stability of the closed­loop system 
under actuator failure. Moreover, the solution of the fault­
tolerant controller is also provided, so that the closed­loop 
system satisfies a certain H∞ suppression index γ. The 
validity of the method is verified by the numerical 
simulation examples and UAV application simulation. 
 
 
ACKNOWLEDGEMENTS 

 

This work was supported by the National Natural Science 
Foundation of China under Grant 61573230 and by the 
Research Development Project of Beijing Information 
Science and Technology University under Grant 
5221823306. The publication costs of this article were 
partially covered by the Estonian Academy of Sciences. 
 

 

REFERENCES 

 
1. Bristol, E. On a new measure of interaction for multivariable 

process control. IEEE Trans. Automat. Contr., 1966, 11(1), 
133–134. https://doi.org/10.1109/TAC.1966.1098266 

2. Rosenbrock, H. H. State-Space and Multivariable Theory. 
John Wiley & Sons, New York, 1970.  

3. Dimirovski, G. M., Barnett, S., Kleftouris, D. N., and 
Gough, N. E. An input­output package for MIMO non­linear 
control systems. IFAC Proceedings Volumes, 1979, 12(3), 
265–273. https://doi.org/10.1016/S1474­6670(17)65813­0 

4. Niederlinski A. A. Heuristic approach to the design of linear 
multivariable interacting control systems. Automatica, 1971, 
7(6), 691–701. https://doi.org/10.1016/0005­1098(71)90007­0 

5. Pichai, V., Sezer, M. E., and Šiljak, D. D. Vulnerability of 
dynamic systems. Int. J. Control, 1981, 34(6), 1049–1060. 
https://doi.org/10.1080/00207178108922581 

6. Šiljak, D. D. On pure structure of dynamic systems. 
Nonlinear Anal. Theory Methods Appl., 1977, 1(4), 397–413. 
https://doi.org/10.1016/S0362­546X(97)90006­7 

7. Šiljak, D. D. Reliable control using multiple control systems. 
Int. J. Control, 1980, 31(2), 303–329. https://doi.org/10.1080/ 
00207178008961043 

8. Jiang J. and Yu, X. Fault­tolerant control systems: a 
comparative study between active and passive approaches. 
Annu. Rev. Control, 2012, 36(1), 60–72. https://doi.org/10.10 
16/j.arcontrol.2012.03.005 

9. Lan, J. and Patton, R. J. A new strategy for integration of 
fault estimation within fault­tolerant control. Automatica, 2016, 
69, 48–59. https://doi.org/10.1016/j.automatica.2016.02.014 

10. Tšukrejev, P., Kruuser, K., and Karjust, K. Production 
monitoring system development for manufacturing 
processes of photovoltaic modules. Proc. Estonian Acad. Sci., 
2019, 68(4), 401–406. https://doi.org/10.3176/proc.2019.4.09 

11. Liu, Y., Yang, G.­H., and Li, X.­J. Fault­tolerant control for 
uncertain linear systems via adaptive and LMI approaches. 
Int. J. Syst. Sci., 2017, 48(2), 347–356. https://doi.org/10.1080/ 
00207721.2016.1181225 

12. Lanzon, A., Freddi, A., and Longhi, S. Flight control of a 
quadrotor vehicle subsequent to a rotor failure. J. Guid. 
Control  Dyn., 2014, 37(2), 580–591. https://doi.org/10.2514/ 
1.59869 

13. He, Y. and Liu, T. Time delay integral backstepping based 
fault tolerant control of quadrotor aircraft. Systems 
Engineering and Electronics, 2015, 37(10), 2341–2346. 
https://doi.org/10.3969/j.issn.1001506X.2015.10.23 

14. Zhou, C., Yang, G., Su, J., and Sun, G. The control strategy 
for dual three­phase PMSM based on normal decoupling 
transformation under fault condition due to open phases. 
Transactions of China Electrotechnical Society, 2017, 32(3), 
86–96.  

15. Li, X. and Zhu, F. Fault­tolerant control for Markovian jump 
systems with general uncertain transition rates against 
simultaneous actuator and sensor faults. Int. J. Robust 
Nonlinear Control, 2017, 27(18), 4245–4274. https://doi.org/ 
10.1002/rnc.3791 

16. Tao, H., Liu, Y., and Yang, H. Robust iterative learning 
fault tolerant control for actuator fault output time­delay 
double rate sampling system. Journal of Nanjing University 
of Science and Technology, 2018, 42(4), 430–438. 
https://doi.org/10.14177/j.cnki.32­1397n.2018.42.04.007 

17. Mathiyalagan, K., Anbuvithya, R., Sakthivel, R., Park, J. H., 
and Prakash, P. Reliable stabilization for memristor­based 
recurrent neural networks with time­varying delays. 
Neurocomputing, 2015, 153, 140–147. https://doi.org/10.1016/ 
j.neucom.2014.11.043 

18. Limin, W., Jisheng, Y., Jingxian, Y.­U., Li, B., and Gao, F. 
Iterative learning fault­tolerant control for batch processes 

F. Xingjian and P. Xinrui: Robust H∞ fault-tolerant control for Markov systems and application 109

 

Fig. 7. The curve of yaw angle ψ. 

Time s

0.2 

0.1 

0 

–0.1 

–0.2 

 
–0.3 

–0.4 

–0.5 

–0.6 

–0.7 

–0.8

Y
aw

 a
ng

le
 s

ta
te

 ψ
/r

ad

0         1         2          3         4         5          6         7         8          9       10

https://doi.org/10.1016/S1474-6670(17)65813-0
https://doi.org/10.1016/S0362-546X(97)90006-7
https://doi.org/10.1080/00207178008961043
https://doi.org/10.1080/00207178008961043
https://doi.org/10.1080/00207178008961043
https://doi.org/10.1016/j.arcontrol.2012.03.005
https://doi.org/10.1016/j.arcontrol.2012.03.005
https://doi.org/10.1016/j.arcontrol.2012.03.005
https://doi.org/10.1080/00207721.2016.1181225
https://doi.org/10.1080/00207721.2016.1181225
https://doi.org/10.1080/00207721.2016.1181225
https://doi.org/10.2514/1.59869
https://doi.org/10.2514/1.59869
https://doi.org/10.2514/1.59869
https://doi.org/10.1002/rnc.3791
https://doi.org/10.1002/rnc.3791
https://doi.org/10.1002/rnc.3791
https://doi.org/10.1016/j.neucom.2014.11.043
https://doi.org/10.1016/j.neucom.2014.11.043
https://doi.org/10.1016/j.neucom.2014.11.043


based on T­S fuzzy model. Journal of Chemical Industry and 
Engineering, 2017, 68(3), 1081–1089. https://doi.org/10.11949/ 

j.issn.0438­1157.20161608 

19. Ma, W., Xu, X., and Zhu, H. Networked non­fragile H∞ 

control for Lipschitz nonlinear system with quantization and 

packet dropout in both feedback and forward channels. J. 
Comput. Inf. Technol., 2017, 25(3), 181–190. https://doi.org/ 

10.20532/cit.2017.1003404 

20. Wang, L., Sun, L., Yu, J., Zhang, R., and Gao, F. Robust 

iterative learning fault­tolerant control for multiphase batch 

processes with uncertainties. Ind. Eng. Chem. Res., 2017, 

56, 10099–10109. https://doi.org/10.1021/acs.iecr.7b00525 

21. Tong, S., Huo, B., and Li, Y. Observer­based adaptive 

decentralized fuzzy fault­tolerant control of nonlinear large­

scale systems with actuator failures. IEEE Trans. Fuzzy 
Syst., 2014, 22(1), 1–15. https://doi.org/10.1109/TFUZZ.201 

3.2241770 

22. Mahmoud, M. S. and Khalid, H. M. Model prediction­based 

approach to fault­tolerant control with applications. IMA J. 
Math. Control Inf., 2014, 31(2), 217–244. https://doi.org/10. 

1093/imamci/dnt007 

23. Kwon, N. K., Park, I. S., and Park, P. G. H∞ control for 

singular Markovian jump systems with incomplete 

knowledge of transition probabilities. Appl. Math. Comput., 
2017, 295, 126–135. https://doi.org/10.1016/j.amc.2016.09. 

004 

24. Zhou, Q., Yao, D., Wang J., and Wu, C. Robust control of 

uncertain semi­Markovian jump systems using sliding mode 

control method. Appl. Math. Comput., 2016, 286, 72–87. 

https://doi.org/10.1016/j.amc.2016.03.013 

25. Zhang, Y., Shi, Y., and Shi, P. Robust and non­fragile finite­

time H∞ control for uncertain Markovian jump nonlinear 

systems. Appl. Math. Comput., 2016, 279, 125138. 

https://doi.org/10.1016/j.amc.2016.01.012 

26. Moon, J. and Başar, T. Robust mean field games for coupled 

Markov jump linear systems. Int. J. Control, 2016, 89(7), 

1367–1381. https://doi.org/10.1080/00207179.2015.1129560 

27. Zhang, D., Jing, Y., Zhang, Q., and Dimirovski, G. M. 

Stabilization of singular T­S fuzzy Markovian jump systems 

with mode­dependent derivative­term coefficient via sliding 

mode control. Appl. Math. Comput., 2020, 364, 1–19. 

https://doi.org/10.1016/j.amc.2019.124643 

28. Li, Q., Dimirovski, G. M., Fu, J., and Wang, J. Switching 

strategy in tracking constant references for linear time­

varying­delay systems with actuator failures. Int. J. Control, 
2019, 92(8), 1870–1882. https://doi.org/10.1080/00207179.2 

017.1415464 

29. Li, L., Zhao, J., and Dimirovski, G. M. Observer­based 

reliable exponential stabilization and H∞ control for switched 

systems with faulty actuators: an average dwell time 

approach. Nonlinear Analysis: Hybrid Systems, 2011, 5(3), 

479–491. https://doi.org/10.1016/j.nahs.2010.10.006 

30. Liu, J. C. and Zhang, J. Robust H­infinity control for Markovian 

jump systems with time­varying time­delay in input and 

state. Control Theory and Applications, 2010, 27(6), 809–814.  

31. Liu J., Zhang J., Zhou L., and Tu, G. The Nekrasov 

diagonally dominant degree on the Schur complement of 

Nekrasov matrices and its applications. Appl. Math. Comput., 
2018, 320, 251–263. https://doi.org/10.1016/j.amc.2017.09.032 

32. Jiang, B., Gao, C., and Xie, J. Passivity based sliding mode 

control of uncertain singular Markovian jump systems with 

time­varying delay and nonlinear perturbations. Appl. Math. 
Comput., 2015, 271, 187–200. https://doi.org/10.1016/j.amc.20 

15.08.118 

33. Li, X.­H. and Zhu, F.­L. Simultaneous estimation of actuator 

and sensor faults for uncertain time­delayed Markovian 

jump systems. ACTA AUTOMATICA SINICA. 2017, 43(1), 

72–82. https://doi.org/10.16383/j.aas.2017.c150389 

Proceedings of the Estonian Academy of Sciences, 2021, 70, 1, 102–110110

 
 

Vigase  täiturmehhanismiga  stohhastiliste  ajalise  hilistumisega  Markovi  
hüppesüsteemide  robustne  H∞  veakindel  juhtimine  ja  rakendamine 

 
Fu Xingjian ja Pang Xinrui 

  

On uuritud robustset H∞­meetodil põhinevat veakindlat juhtimist parameetriliselt ebatäpsete stohhastiliste ajalise 

hilistumisega Markovi hüppesüsteemide jaoks. Lyapunovi stabiilsusteooria abil on leitud piisav tingimus lineaarse 

maatriksvõrratuse kujul robustse kontrolleri olemasoluks, mis garanteerib täiturmehhanismi rikke korral suletud süsteemi 

asümptootilise stabiilsuse ja etteantud tulemuslikkuse. Robustne veakindel juhtimisalgoritm on leitud lineaarse maatriks ­

võrratuse lahendina. Juhtimisalgoritmil on lihtne struktuur ja selle leidmine ei nõua palju arvutusi. Meetodi kehtivust 

on kontrollitud akadeemilise näite ja mehitamata õhusõiduki mudeli numbriliste simulatsioonide kaudu. 
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