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MEELIS MIHKLA, ARVO EEK, EINAR MEISTER (Tallinn)

CREATION OF THE ESTONIAN DIPHONE DATABASE

FOR TEXT-TO-SPEECH SYNTHESIS*

Introduction

The aim of our text-to-speech synthesis project is to convert the Estonian written

text, inserted orthographically into a computer, to an orthoepically correct and nat-

ural-sounding spoken text for a wide range ofpractical application.
Articulated speech flow does not consist of a simpleconcatenatingstring ofspeech

sounds. Rather, speech is a continuously overlapping set of transitions from one

speech sound to another. Due to the regressive coarticulation, generation of the pre-
vious segment contains features from the next speech sound(s). The minimal (elemen-

tary) articulatory gestureseems to be a demisyllable (Fujimura 1981)where the move-

ment from a constriction or closed phase to an open phase or vice versa makes up a

sonority cycle (Clements 1988). The so~called ahead articulation scansall muscle channels

exploited in the generation of the respective minimal articulatory sequence and

switches on simultaneously those channels, whose activity is not contradicting the

basic state of the movement. On the otherhand. the progressivecoarticulation, based on

the inertia of articulators, leaves traces of the previous sound in the following segment.
These coarticulation phenomena have been the main impediment in a way get-

ting satisfactorilynatural speech quality by means of formant synthesizers. Artic-

ulatory synthesizers need elaborate computational work to have wider practical
applications. Nevertheless, both types of synthesizers are perspective and applic-
able in research purposes. `

The demisyllabic CV- or -VC elementary (transitional) gesture is a relatively
non-compressiblesegment of speech flow and is not subject to considerable dura-

tional changes (e.g. Fujimura 1982). The allophonic variants of phonemes generally
arise from demisyllabic affiliations. Only the quasi-stationary part of vocalic and

consonantal phases of CV- and -VC demisyllables respectively is subject to dura-

tional variation. In many languages, including Estonian, the variability of the quasi-
stationary part is used to mark the short/long opposition.

Taking into account what was said above, it should not be surprising that a

compilative resynthesis, based on concatenating diphones separated fromnatural

speech, may lead to the best results in text-to-speech converting systems. A diphone
synthesis has the advantage that the coarticulatory transitions which are controlled
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with difficulties by rules, are naturally comprised without losses in diphones sep-
arated from real speech. A diphone databaseneeds less amount of memory than

databases of syllables or words.

Cooperation with the MBROLA project

The MBROLA (multiband resynthesis overlap add) project was initiated by the

TCTS Lab of the Faculté Polytechnique de Mons (Belgium). The aim of the MBROLA

project is to obtain a set of speech synthesizers for as many languages as possible,
free of use for non-commercial and non-military applications. MBROLA consists of

a speech synthesizer, based on the concatenation of diphones, and of diphone
databases (Dutoit 1997). Several languages are already available in the MBROLA

homepage http:/tcts.fpms.ac.be/synthesis/mbrola (e.g. Brazilian Portuguese, Bre-

ton, British English, Dutch, French, German, Romanian and Spanish).
In order to create a text-to-speech compilative synthesizer for Estonian, the work

group consisting of the researchers of the Laboratory of Phonetics and Speech Tech-

nology of Institute of Cybernetics and the Institute of the Estonian Language joined the
MBROLA project in 1997. Joining this project enablesus to use the Mons MBROLA syn-
thesizer (Figure 1:block 3) for concatenating diphones, matching them with each

other, changing the duration and fundamental frequency of sounds. In order to con-

vert an Estonian written text into synthesized speech we have to solve the following
tasks: (1) to convert an orthographic text into phonetic-phonological (Figure 1: block 1);
(2) to compile rules for the control of segment durationsand FO contours (block 2);
(3) to compile a prosodic database with dataconcerning the durations and FO contours

of the segments (block 4); (4) to compile the diphone database (block 5). By today we

have compiled the Estonian diphone database (about 1600 diphones; cf. e.g. the corre-

sponding data for other languages: Spanish 800, French 1200, German 1800 diphones).
In the nearest future an automatic control algorithm for converting an orthographic
text into an orthographic-phonetic-phonological mixed systemwill be ready.

Figure 1. A text-to-speech compilative synthesizer based on diphones concatenation.
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Completion of the Estonian diphone database

Our text-to-speech synthesis project uses diphones as the elementary concatenat-

ing acoustic units, separated from spoken texts. Diphones are segments of the

speech flow consisting of a part of two consecutive phones (sounds) (e.g. pause—-
consonant #—C, pause—vowel #—V, consonant—vowel C—V, vowel—vowel V—

V, vowel—consonant V—C, consonant—consonant C—C, vowel—pauseV—# and

consonant—pause C—#). A diphone begins with the quasi-stationary part of the

first phone and ends in the quasi-stationary part of the following one.

Creating a diphone database consists of the following procedures: (1) possible
combinations of all vowels and consonants at the beginning, in the middle and at

the end ofwords were determined taking the three quantity degrees into account;

(2) based on these combinations a diphoneregister was created; (3) text corpus was

created so that each diphone would occur in one word at least (the text corpus for
Estonian diphones consists of 1270 words); (4) digital recording of the text corpus (the
corresponding words were read in the frame sentence iitlen

... faas 'am saying ... again’
by one male speaker inan anechoic chamber); (5) speech segments (we call them raw

segments here) were separated from the words of the text corpus so that before and

after each diphone at least 50 ms of the corresponding sound was retained (see Fig-
ure 2); (6) segmenting diphones from the raw segments mentioned in the previous
point (see Fig. 2: segmenting isa time consuming task: segmenting and labelling of a

1-minutespeech takes approximately 1000 minutes); (7) standardizing the diphones
(normalisation of intensities of diphones; made by colleagues from Mons); (8) opti-
misation of the diphone database (on the basis of listening tests itmay turn out tobe

necessary to correct diphones, to decrease or increase the number of them).
In the diphone database (Fig. 1: block 5) a diphone ischaracterised in addition

to its acoustical pattern by three characteristics which mark (1) the beginning of the

diphone, (2) the end of the diphone and (3) the boundary of two phones (all
measured fromthe beginning of the raw segment). In the prosodic database (Fig.
1: block 4) data on each sound in diphones are kept as follows: (1) the whole dura-

tion of the sound, (2) the onset of FO (percentage of sound duration), (3) the initial

frequencyofFO, (4) the place of the FO peak (percentage of sound duration), (5) the

peak frequency ofFO, (6) the place of the FO end (percentage of sound duration),

(7) the final frequency of FO. In synthesizing a certain text it is possible to change
these data with an automatic control algorithm (Fig. 1:block 2).

Below we will mention some circumstances known in Estonian phonetics which

we have taken into account in compiling the diphone corpus. Central to it is the

questionconcerning three quantity degrees: should different diphoniccombinations
be compiled for each quantity degree or is it possible here to decrease the number of

diphones? We have proceeded from the opinion that in Estonian there are two seg-
mental duration degrees and three phonologically distinctive foot patterns — quan-

tity degrees (about the prosodic hierarchy, see Eek, Meister 1998a). Long and short

vowels in stressed syllables differ little in quality, therefore defining them as different

phonemesbased only on quality is not justified. Short and long vowels are situated in

the perception space ofthe correspondingvowel types(Eek, Meister 1998b). From the

perception experiments we know that natural-sounding Q 2 is easily generated from

Q 1 by changing only the durations of the stressed and unstressed syllables to the

needed durationratioand by determining the place of the FO peak in the stressed syl-
lable (Eek 1980). That is why the diphone database does not contain diphones for the

Q 2 feet. They are generated automatically byrules (Fig. 1: block 2) based on the data

concerning diphones from the Q 1 foot. Synthesizing by rules the natural-soundingQ3
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foot on the basis of Q 1 or Q 2 would be a too difficult procedure (Eek, Meister 1997 : 88—

90) which would actually be infeasiblewith the current system due to the prominent
reduction in quality, intensity and duration of the vowelof the unstressed syllable, and

also due to the peculiaritiesin V—C transitions of the stressed syllables. This is why we

considered it necessaryto compile special V-—C and C—V diphones for the O 3 foot.
Secondly a question should be mentioned: which consonant taken from a CV-

demisyllableshouldbe considered to represent the firstpart ofa consonant in a diphone
#—C so that the following syllable would be perceived as a natural-sounding integral
unit? The perception experimentswith plosives draw the attention to the fact that the

syllable is perceived as an integral unit only in the cases when the distance between

the strongest burst peak and the onset of the vowel formant representing F2’ does

not exceed a critical distance. Ifthe distance is larger than the critical distance, the syl-
lable is perceived as a sequenceof discontinuoussegments (Eek, Meister 1996).

In the case of plosives the mentioned problem is solved easily when the burst is

added to the transition ofthe following vowel as apart of it (i.e. a plosive is thenrep-
resented only by an occlusion). So each type of plosives isrepresented only by one

#—C diphone (e.g. #—k) and C—V is represented by 9 different diphones (e.g. k—-7,
k—e, k—ä, etc.). But we cannot proceed in the same way in the case of the continuants

because the influence ofregressive coarticulation of the following vowel reaches the

beginning of the word-initial consonant (e.g. in the syllable ha- the spectrum ofh is

similar to the spectrum of the following a already at the beginning of h and in hi- h is

similar to 7). That is why we mark the #—C diphone being influencedby the follow-

ing vowel with a number designating the corresponding vowel (e.g. #—h7, h7—a; #—

hl. hl—i, etc.). Our aim is to get the best possible natural-sounding synthesized
speech. therefore,we will not rush to decrease the number of diphones before it has

not been convincingly proved by perception experiments that taking the beginning
of a consonant into account does not affect the quality of synthesized speech.

Figure 2. An example of diphone segmentation (the word osa separated fromthe text corpus).
1 — oscillogram of the word osa (spectrogram used in segmentation is not pre-
sented in the figure);
2 — phone boundaries marked by vertical strokes;
3 — segmentation of raw segments for the corresponding diphones;
4 — separated diphones saved in diphone database with three measurementvalues

(the numerical values express distances of the vertical strokes from the beginning
of the corresponding raw segment: the first stroke — distance of the beginning
point, the second stroke — distance of the phones boundary and the third stroke —

distance of the end of the diphone from the beginning of the raw segment).
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The special marking ofword-initial continuants enables to distinguish them from

the diphonesofthe unstressed syllable beginning with the same consonant (e.g. in the

word momin: #—m6, m6—o, 6—m, m—i, i—n, n—#). In such a way the acoustical struc-

ture ofthe unstressed syllable ofa foot (i.e. of the unit essential in the identification of

quantity degrees) is more adequately represented. There cannot arise a disagreement
with the word-initial unmarkedplosivesbecause in Q 1 and Q 2 feet Q 1 diphones V—-

gand g—V, V—b and b—V, V—d and d—V, separated from the Ql, will be used. i.e.

the control algorithm directs, e.g.. in the word fuki (Q2 the intra-wordsequenceof &i.

(which otherwisecould coincide with the word-initial 2#—i diphone) as well as the uk

sequence to the diphones g—i and u—g of the word fugi (Q1 the algorithm changes
the word-initialg, b, d occurring in foreign words into word-initial &,p, t; it is possible to

use a word-initial C—V diphone from the Q 1 foot as the corresponding C—V diphone
for the Q 3 foot without impairing the naturality, whereas the backmost diphones of the

Q 3 foot will anyway be provided with a special marking (see the next chapter).

Manipulations with the Estonian orthographic text

The Estonian orthography is not phonetic (see also EKG). Some essential phono-
logical oppositions as well as phonologically non-relevant phonetic facts (but impor-
tant from the point of view of orthoepy and speech naturality) are not exposed in

the written form of Estonian. Below we will present the most important cases

along withshort references to the rules of control algorithm used in phonetizing
this part of orthography.
(1) Generally, long vowels and consonants are reflected in the orthography: long
vowels are presented as double vowels and long consonants as geminates (about

relations between short/long segmental duration degrees and quantity degrees,
see Eek, Meister 1998a). However, there are many exceptions:
(a) intervocalic geminate plosives k. p, t and fricatives f, § after short vowels are

written by one letter in the Q 2 foot, e.g. fuki, tuti, tupe, tufi. tusi; only in the Q 3 foot
these geminates are written by two letters, e.g. fukki, tutti, tuppe. tuffi. tussi:

(b) after long vowels or diphthongs. irrespective ofthe quantity degree ofa foot, long
(geminate) obstruents (except s, e.g. poiss, Q3) are written by one character. e.g.
saate (Q2 saate (Q3 laat (Q3 to this group belongs also a geminate A in the Q 2 foot:
(c) after a sequence of short vowel + sonorant, irrespective of the quantity degree
of a foot, long (geminate) obstruents (except s, e.g. varss. Q3) are written by one

character, e.g. narta (Q2 karta (Q3 kart (Q3
(d) the same is valid for long (geminate) plosives in the Q 2 and Q 3 feet after long
vowels and diphthongs, e.g. kaarte, (Q2 kaarte (Q3 kaart (Q3
(e) plosive geminates when followed by a sequence of voiced consonant + vowel.
is also written by one character, e.g. riitmi (Q2 riitmi (Q3 kitli (Q3

All the above mentioned geminate obstruents in the Q 2 feet written by one

character do not need an extramarking. The intervocalic geminate plosives k. p. ¢

written by one character will be directed in the linguistic processingblock 1a (Fig. 1)

to the diphonesconsisting of the corresponding short consonants g, b, d (e.g. muki

— mugi). Passing untouched through the automatic diacritics rules in block Ib. muk:

will be changed in the prosodic processing block 2a. b according to the data of the

diphones u-g and g-i from the word mugi in block 4 so that the duration of the occlu-

sion phase of the corresponding short consonant will be doubled. This economical

manipulation decreasing the number of diphones (about the argumentation. see

above) cannot be used inthe case of the geminatesf and § written by one character.
In these cases different diphones (e.g. u—f from tufi and u—s from tusi) have
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been recorded because Estonian lacks an intervocalic short (lenis)f. the short (lenis)
§ (orthographically ž) could be pronounced in a non-Estonian way as too voiced.

Therefore after the transcription change £ — $ in block 1a the short $ (e.g. ortho-

graphically š in Xiži) will be directed to the diphone of the corresponding geminate
(e.g. i—š from niši) where in block 2a the stationary part of 5 willbe shortened.

(2) Generally, the O2 and O3 opposition, a central phenomenon of the Estonian

prosody. is not revealedin the orthography (e.g. saada (Q2) — saada (Q3), laulu

(Q2) — laulu (Q3), kalla (Q2) —kalla (Q3), kalmu (Q2) — kalmu (Q3), etc.). The only
exception is made by the intervocalic or word-final obstruents following a short

vowel (e.g. tugi (Q1) — tuki (Q2) — tukki (Q3), tukk (Q3)).
Q 1 and Q 2 need no special marking. We will mark Q 3 by acolon placed after the

peak of the Q 3 foot (Eek, Meister 1998a). The colon does not denote a Q 3 phoneme
but indicates that the whole foot is in Q3, and at the same time it signalises the poten-
tial but not obligatory duration increment (peakedness) of the preceding syllable-final
phoneme. All Q 3 feet are either vowel-peaked or consonant-peaked. In case of an

openstressed syllable (or if a long vowel nucleus is followed by a sonorant or lenis

obstruent) the peak of articulation tension falls on the long vowel nucleus (e.g.
saa:da, lau:lu, lau:da, kaa:rdu,pea:lse). In a closed syllable the tension peak falls on the

first or secondconsonant of the coda: in the latter case the peak consonant can be a

fortis obstruent preceded by a sonorant (fuk:ki. tuk:k. saat.a. laat., laut.a, laut., kal:la,

hal:l. karda, kard. kal:mu, kal:m, kart.a, kart,, kaarti, kaart:). In the Q 3 foot markedby
a colon the V—C diphones of a stressed syllable and C—V diphones of an unstressed

syllable were separated. In order to distinguish the strongly reduced vowels of an

unstressed syllable of the Q 3 foot from the corresponding vowels of the Q 1 and Q2
feet, we will mark the vowels of an unstressed syllable of a Q 3 foot by number 3.

Below we will present sequences of concatenative diphones of some types of

quantity degrees along with the words where the corresponding diphone has beensep-
arated (* denotes the correspondingrules ofthe control algorithm and 2x denotes the

lengthening of the duration):

sada saada saa:da laulu lau:lu

#—s7 (sada) #—s7 (sada) #—s7 (sada) #—17 (laba) #—17 (laba)
s7—a (sada) s7—a (sada*2x) s7—a (sada) W—a (laba) I7—a (laba)

a—d (sada) a—d (sada) a—a: (laa:bu) a—u (lauda) a—u: (lau:da)

d—a (sada) d—a (sada) a:—d saa:da) u—l (ulu) u—l (kuula)

а—# (iha) а—# (iha) d—a3 (patta*) l—u (ulu) l—u3 (hul:lu*)

a3—# (tappa) u—# (uhu) u3—# (tip:pu)

maki mak:ki saate saat:e auto

#—m7 (madu) #—m7 (madu) #—s7 (sada) #—s7 (sada) #—a (ahi)

m7—a (madu) m7—a (madu) s7—a (sada*2x) s7—a (sada*2x) a—u (lauda)

a—g (kagu*2x) a—k: (kakku) a—d (sada®,2x) a—t: (patta) u—d (pude*2x)

g—i (nogi*) k:—i3 (kakk*) d—e (pude®) t:—e3 (pet:te*) d—o (pedo*)
-# (ahi) 3—# (top:p) eH (ehe) e3—# (tup:pe) о—# (Leho)

laut.a saa:d mak:k laat: laut:

#—17 (laba) #—s7 (sada) #—m?7 (madu) #—17 (laba) #—17 (laba)

I7—a (laba) s7—a (sada) m7—a (madu) —a (аБа* 2х) P—a (laba)

a—u (lauda) a—a: (laabu) a—k: (kakku) a—t: (patta) a—u (lauda)

u—t: (rut:tu) a—d (saaxda) k—# (palk:*) t:—# (alt:) u—t: (rut:tu)

t—a3 (pat:ta*) d—# (pöl:d) t:—# (alt:)
a3—# (tap:pa)
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(3) Distinctive palatalisation is not revealed in the orthography. In order to mark

palatalisation we use an apostrophe (e.g. pan'i —pan'ni —pan':nü).
(4) It will be determined by the rules that the long syllable-final üü will be pro-
nounced as üi (both in a O2 and O3 foot) if the following unstressed syllable begins
with a short vowel (e.g. püüa püia; lüü:a lüi:a).

(5) The phoneme /n/ isrealised as palato-velar nasal [n] before palato-velar plosives
(except in the case of morpheme boundary before g,k). To bring forth the excep-
tion we use a comma as the morpheme boundary (cf. e.g. istungi — istun,gi).
(6) The boundaries of the components of a compound word are marked with +.

(7) As the short intervocalic & has become voiced. in order to avoid unnaturality we

cannot derive geminates by doubling the duration of a short consonant. For that

purpose we exceptionally use different diphones.
(8) Word-initial g, b, d are changed into k, p, fin block 1a; z and &, not depending on

their position in a word, are changed into s and $respectively.
Adding diacritics (a colon, apostrophe, comma, plus sign) to the orthography

manually will certainly give the best results. But then the general applicability ofthe

synthesizer decreasesbecause not everyone is able to add the additional marks. The

soon-to-be-tested automatic system for adding diacritics (block 1b)will likely need

tobe developed by adding syntactical data. It will be dangerous to leave it half done

because the heard defective synthesized speech (especially with an inadequate pre-
sentation of Q 3 and palatalisation) could eventually lead to the inadequate pro-
nunciation of the listeners, which in the current case would finnishize Estonian.
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