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NINA ALAROTU, MIETTA LENNES (Helsinki)

VARIABILITY OF FINNISH SPEECH

SPOKEN BY HEARING-IMPAIRED INDIVIDUALS

Introduction

When speech recognizers are developed as aids for the hearing-impaired, it is essen-

tial to know the typical properties of the speech of the hearing-impaired. A central

problem is whether the variability included in the speech produced by hearing-
impaired individuals isregular. A great deal ofrandom variability would naturally
add to the difficulty of the developmentprocess. In case the speech recognizer is

based on a neural network, a lot of speech material is needed to cover all the

variation, and collecting and preparing the necessary samples costs time,money,
and technical resources.

In earlier studies, several tendencies have been observed in the speech pro-
duction of deaf or hearing-impaired individuals. C. Hudgins and F. Numbers (1942)
were the first to present a discussion of the general characteristicsof the speech of

deaf subjects. They described vowel substitutions, neutralization effects, and errors

in the production of diphthongs. C. Hudgins and F. Numbersreported that hearing-
impaired individuals have particular difficulties with the production of obstruent
clusters (the components of which may be completely dropped) and withthe voiced-

voiceless distinction. Adventitioussegments (usually [3]) may also be added between

sound segments.
J. Subtelny, R. Whitehead and V. Samar (1992) measured the vowel formant

frequencies of deaf women. They found that in comparison to normal subjects the

F 2 was lower for the frontvowel [i] and higher for the back vowels [a] and [u]. The

ranges of the three lowest formantsseemed tobe more limited in the productions of

the deaf subjects. The study was in accordance with the earlier results of R. Shukla

(1989), who also found the phonologicalspace tobe reduced for the hearing-impaired,
this effect being primarily due to the lowersecond formant of the vowel [i]. J. Sub-

telny, R. Whitehead and V. Samar refer to their radiographic data, suggesting
that the voice quality typical for deaf subjects, the so-called pharyngeal
resonan c e, may be caused by the retracted tongue root and theretruded dor-

sum of the tongue. H. McCaffrey and H. Sussman (1994) reported that the leastaudi-

ble vowel formants F 2 and F 3 measured from the speech ofboth normal-hearing
and hearing-impaired subjects showed the greatest effects of severe and profound
hearing loss. F 1 and FO, being more audible, showed interindividualchanges and

changes connected with the most profound hearing losses.
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According to N. McGarr and A. Lofqvist (1982), who recorded speech samples
from threedeaf speakers, there is variation between speakerswith regard to types of

errors, variability, and interarticulatorcoordination.They also noted that hearing-
impaired speakers have great difficulty in preserving temporal aspects of speech. In

another study, N. McGarr and A. Lofqvist (1988) stated that the articulatory gestures
of the stop and fricative productions of hearing-impaired speakers did not have as

clearkinematic differences as those of the normal-hearing and, on the other hand, the

kinematic measures were more variable for the hearing-impaired subjects. R. Wald-

stein (1990) claims that postlingual deafness affects all classes of speech sounds, sug-

gesting that auditory feedback is essential for the control of speech production. A

review of the literature on the subject of speech deterioration exhibited by postlin-
gually deafened subjects is presented by H. Lane and J. Webster (1991), who also

report that there is less differentiationofplace ofarticulation between different frica-

tivesand plosivesand greater pitch variation in the speech ofthe hearing-impaired.
Although most studies in this field have been concernedwith the English lan-

guage, a great deal of the above mentioned tendencies probably occur in other lan-

guages, too. For Finnish, very few experiments havebeen conducted. One of them

is a study by О. Aaltonen and J. Suonpaa (1982), where the cepstra of the isolated

Finnish vowelproductions offour hearing-impaired children were investigated. O. Aal-

tonen and J. Suonpidi found great variation in the FO frequencies of these vowels.

The formantstructure of the vowels also showed large variability. but this fact was

toleratedquite well by the normal-hearing listeners who were asked to identify the

vowels. Therealizations of /e/ of the hearing-impaired subjects were often con-

fused with /a/ and /ce/. On the other hand, although therewas large variation in

the productions of /y/, they were usually identified correctly. Since the normal-

hearing speaker that was used as a control subject was an adult male, comparisons
were difficult to make between the acoustic properties of the productions of the

hearing-impaired children and the control subject.
This study presents a preliminary auditory analysis of the production errors

and the qualitative variability observed in the 400 isolated Finnish wordsrecorded
from hearing-impaired subjects. It was hypothesized that the qualityand the amount

of errors are affected by such factors as time elapsed from the loss of hearing, the

degree of hearing-impairment, and the age ofthe subject. Since the aim was to find
basic information for a diphone-based speech recognizer, only the qualitative vari-

ability occurring in the segmental level is more closely investigated.

Methods

Spoken utterances of 400 isolated Finnish words were recorded from eight hear-

ing-impaired adult subjects (age 35—64 years; 3 males). One male subject was

congenitally deaf, other subjects had postlingually lost their hearing either gradu-
ally or abruptly. Five subjects were able to at least partially hear their own voice;
six subjects were able to hear some other sounds. Two subjects were profoundly
deaf, and another two wore multichannel cochlear implants.

The word list was built in order to cover the most frequently used words of

Finnish. Previously recorded, transcribed samples of spontaneous speech were

available from 11 normal-hearingFinnish speakers. 200 most frequently used words

were picked out from these samples, and another 200 words were added to the list

from the frequency dictionary of Finnish. Almost all words were in their basic

forms. A small amount of words were replaced in order to increase the diphone
diversity of the word list.
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The recordings were tobe used for training and testing a neural network

speech recognizer. Since it was therefore desirable to pursue as natural speech
samples as possible, the recordings were performed in an ordinary conference

room. The room was arranged so that only minor background noise was present.
The utterances were recorded using a Sennheiser high-quality miniature micro-

phone attached on a head set and placed a few centimeters to the right from the

right corner of the subject’s mouth, ensuring that the distance between the mouth

and the microphone was kept nearly constant.

A special computer program was used to present each subject with the words
and to record the speech signals directly to the hard diskof a Macintosh computer
at a sampling rate of22050 Hz. The subject was asked to read the word appearing on

the screen and to produce it three times consecutively with a small pause between

each utterance. The subject was also instructed to speak in the rate, pitch and level
that he/she would normally use. The next word was presented when the subjectwas

ready. The presentation of words was controlled with the mouse by the experi-
menter and the subject was allowed to have shortbreaks and at least one longer
break during the recording session. From each subject, all 400 words were recorded
in a single session. Each session lasted approximately 2 hours in total.

Results

A qualitative auditory analysis was performed by two phoneticians on all the

recorded sound files. Since variable amounts of audible noise were present in the
sound signals, different spectral measurements would probably be unreliable. All
three instances of a few randomly selected words spoken by each subject were

roughly transcribed to find general trends in the changes occurring fromutterance 1

to utterance 3. All subjects appeared to exhibit normal-like reduction effects between
the three utterances. However, the first utterance was sometimes less carefully
pronounced than the second one — despite the fact that it usuallycarried a primary
"sentence” stress. The prosodic details will not be further considered here.

For all subjects, the second utterances of each word were then picked out as

prosodically similar instances for a comparison between the different words and

the differentsubjects. These instances were generally found tobe the clearest and

the most successful productions of the words. Each of the selected instances was

transcribed for an analysis of sound errors. In the following, the level and duration

of the hearing-impairment of each subject is briefly described along with the indi-

vidual properties observed in the subject’s speech.
PP, female, 62: The subject started to loseher hearing when she was 21 years old

and became deaf ten years later.Four years priorto the experiment she had received

a multichannel cochlear implant. PP hears many kinds of sounds, including her

own speech, but does not comprehend other people’s speech without seeing the

speaker’s lips. PP’s speech was completely intelligible and she did not use signifi-
cantly deviant sound articulations. However, her voice quality was very creaky
and glottalized.

HN, male, 51: The subject completely lost his hearing when he was 19 years
old. Despite this fact, he has maintained very good speaking skills and even his

original dialect. HN’s productions of the words were veryclear indeed, but some

minor peculiarities could be noted. However, it is not clear whether these phe-
nomena really are abnormal or just part of the "normal” variation in speech. HN

was in the habit of starting and ending each word with a voiced or voiceless bilabial
nasal [m]. The vowel of the second syllable tended tobe slightly lengthened, which
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was probably due to HN’s dialect. His productions of /a/ were often lowered to

[a]. HN usually produced voiceless fricatives instead of [k}: [¢] in frontvowel envi-

ronments and [x] in others — this may not be unusual innormal-hearing speakers.
TK, female, 35: The subject has gradually lost her hearing since the age of 16.

TK is still able to hear some sounds and her own voice, but it is difficult for her to

control the loudness of her speech. She usually speaks with a very quiet, breathy
voice. This resulted in a poor signal-to-noise ratio and sometimes impeded the

transcription work. TK’s vowels were usuallycentralized: her [o] was advanced, [u]
became [+4], and in fact, /a/ was mostly realized as [a]. The frontvowels [e] and [i]
were usually palatalized. She also produced very open variants of /e/ and raised

variants of /2e/ to the point where the two articulations were practically reversed.

TK's [s] was consistently ”dark”, i.e., retracted, [k] was slightly aspirated, and before

close frontvowels [k] was palatalized.
HM, female, 65: The subject began to lose her hearing at the age of 6 months

and became severely hearing-impaired at the age of 50 years. With the hearing aid,
she isable to hear her own voice and some other sounds, too. However, before the

experiment, her hearing aid was turned off. HM’s vowels were often centralized,

even in stressed positions. The articulations of /e/ and /a/ tended tobe confused
with each other. She also produced advanced, dental [s] sounds and had difficulties
with the Finnish tremulant /r/, sometimes realizing it as [l], sometimes as [rl].

HK, female, 61: The subject has gradually lost her hearing since the age of four

years. She still hears her own voice and some other sounds with the hearing aid.
HK tended to produce an [u] instead of [u]. The articulations of /e/ and /a/ were

often similar or reversed. HK tended to velarize unstressed vowels, especially
/a/ and /i/. Her /1/-s were realized as velar [L]-s in most environments. HK pro-
duced /d/ as a tap or flap [r]. The sibilant /s/ had many variants: []. [B]. [s]. and

even [f], and this variation was not found tobe rule-governed but rather free.

UL, male, 65: The subject was hard-of-hearing until the age of 16 years, when

he lost the rest of his hearing. He received a cochlear implant eight months before
the experiment and hears some noises but cannot quite comprehend speech. UL

used the variants [o], [s’], and a frontal [s] in free variation in spite of the sound [s].
In the beginning of a word, [b] became voiceless, but surprisingly, a word-starting
/p/ was realized as [b]. In this data, UL’s /d/ was always realized as [r] and his
/ге/-в were lowered to [a]. The productions of /e/ and /a/ tended tobe confused.

KK, female, 65: The subject lost hearing almost completely at the age of 12.

KK's word-final [a] and [#] had a tendency tobe retracted, velarized or even

pharyngealized. KK realized /s/ as [f] after [o] or adjacent to [u] and as [o] in other
environments. Her productions of /m/ were quite tense with [b]-like releases
and tended to spread over the following vowel. For KK’s diphthongs, there was

regularity in the sense that either component of closing diphthongs tended tobe
retracted, whereas in opening diphthongs there was a tendency of centralization.

PK, male, 51: PK was the only congenitally hearing-impaired subject. PK is able
to hear some speech, but mainly reads from lips. PK tended to produceall voiced

sounds with a creaky voice quality. In general, PK’s speech was not very intelligible.
There was a lot of variation in the prosodic features of his speech: especially the

components of diphthongs seemed tobe too separate. Particularly in vowels of

long quantity, nasality could often be heard. In general, the subject’s vowels had a

tendency ofstrong centralization and often also velarization. There was a tendency
of confusion between therealizations of/e/ and /2/. In combinationsof two plosives,
eg., [t] and [k], the sounds had separate releases. In the beginning of the word, /m/

was realized as [b] or [mb], and sometimes this phenomenon also occurred in other
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environments. [#] was often replaced by [a] and [v] by [ß]. PK usually added a

schwa vowel after [l], [r], and all nasal consonants (cf. Hudgins, Numbers 1942). He

also used nasal consonants as variants of /1/.
In general, the centralizationof vowels was quite common in the data. One of

the more stable vowels was /y/, which was usually produced quite accurately
even by the less intelligible subjects (cf. Aaltonen, Suonpää 1982). It was some-

times observed that the subjects had difficulties in controlling the relative durations
of sounds. However, this seemed to affect the intelligibility of the speech only in a

few cases.

Discussion

Since the variability between subjects was considerable, a general summaryofall

subjects turned out tobe difficultto build. This supports previousresults (e.g., McGarr,

Löfqvist 1982). It must be stated that, although some of the sound errors produced
by the eight hearing-impaired subjects were regular within an individual, general
trends for all subjects are rather difficult to identify. Another problem was that in

a few cases the background noise of the recording prevented an accurate transcrip-
tion.

A tendency of vowel centralization was quite evident in the data and cannot be

accounted for by referring to normal reduction, because the centralization effect
seemed to occur even in stressed syllables. This could have been expected on the
basis of previous studies (Shukla 1989; Subtelny, Whitehead, Samar 1992). The

vowels [e] and [e] tended to get confused with each other in the productions of
five subjects, which is well in accordance with O. Aaltonen and J. Suonpaa’s results.

No clear correspondence between the amount of deviant articulationsand the

subject’s age or the time elapsed from the loss ofhearing could be found оп the basis
of this data. Subject HN was quite fluentboth prosodically and articulatorily, although
he had been completely deaf for 32 years. Several other subjects were almost totally
intelligible even after more than30 years ofsevere hearing impairment. However, the

age at which the subject had become severely hearing-impaired (or started to

lose hearing) seems to be of some significance: the speakers with sound qualities
closest to normal, i.e., HN and PP, had lost their hearing as late as at the age of 19

and 21 years. As expected, the subject PK, who had been almost completely deaf
from birth, had the most difficulties in his speech. It should be noted that no infor-

mation about the speech training (e.g., speech therapy) histories of the subjects is

available at this point. Thus, the subjects may have had differentamounts of prac-
tice and may thereforenot be comparable with each other. Moreover, no audio-

grams or other clinical evaluations of the subjects’ degree of hearing impairment
were obtained, so that nothing more than preliminary and suggestive conclu-
sions can be drawn here.

The velarization and/or palatalization of sounds were typical for four of the

subjects. This result is in accordance with previous studies (see, e.g., Subtelny,
Whitehead, Samar 1992). These effects may have something to do with the audi-

bility of the sounds. One sometimes hears the claim that the prominent feature in

the speech of hearing-impaired individuals is an overall nasality. In the present data,
however, there was no evidence of any strong tendency to this direction, except
possibly in the case ofsubject PK. It is possible that nasality has been confused with

the velarization and/or palatalization effects, which were much more common.

The lack of auditorily perceivable nasality may also be partly due to noisy signals
and the existence of this featureneeds to be studied acoustically.
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The general question raised by studies of the speech of the hearing-impaired is,
which properties of speech can be considered as ”normal”.It must not be regarded
as self-evident that all the errors made by hearing-impaired subjects occur in deviant

speech alone. There are a great deal of reduced forms and natural variability in the

speech of normal-hearing individuals as well. Answering this question requires a

comparison with normal-hearing speakers, more spoken material, some acoustic

analyses, and statisticalanalyses that can only be made from segmented and labelled

speech samples. .
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