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JAANA SELLMAN (Espoo)

PRELIMINARY EVALUATION OF SELECTED ACOUSTIC PARAMETERS

AS SENSITIVE INDICATORS OF DIFFERENCES

BETWEEN WOMEN WITH AND WITHOUT VOCAL NODULES

Acousticmeasures are often considered tobe well-defined,objective and reliable.

J. Laver, S. Hiller and J. Mackenzie Beck (1992) suggest that the possible clinical ap-

plications of acoustic analysis are screening of a given population, priority assess-

ment of patients visiting their general practitioner, diagnostic support, monitoring
to assess voice changes over time of patients receiving surgery, radiotherapy,
chemotherapy, or speech therapy or to track deterioration in progressive disease.

Some of theacoustic measures that have proven tobeclinically useful are mean fun-

damental frequency, frequency variability (FOstd), frequencyrange, frequency pertur-
bation, mean soundpressure level, amplitude variability, dynamicrange and amplitude
perturbation (Stemple 1993).Frequency (jitter) and amplitude (shimmer) perturba-
tion are measurements of how much a given period differs from the period that

immediately follows it. Measurements of jitter and shimmer serve to quantify short-

term instability of the vocal signal. Jitter isbelieved tobe a reflection of involuntary
changes in frequency, as opposed to voluntary changes of pitch and intonation (Baken

1987). According to R. F. Orlikoff (1995) perturbation measures reflect a speaker’scapacity
to maintain ventilatory and laryngeal parameters to produce a stable vocal output.

1. Purpose of study

The purpose of this study was to examine 14 acoustic parameters to determine

which acoustic variable(s) might be sensitive indicators of differences between a

vocal nodule group and a control group. In addition to this correlations between
the average fundamental frequency and sound pressure level and other acoustic

parameters were examined.

2. Method

2.1. Subjects and speech task

Sixteen women ranging in age from 19 to 42 years with a mean age of 30 years,
participated in this study. Nine of them had vocal nodules and seven had normal

vocal status (= control group). Laryngeal examination was conducted by a phoni-
atrician forall the subjects.
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The subjects were asked to produce a sustained /a/ three times for several sec-

onds at three different pitch and three different loudness levels. For this study voice

samples produced at a louder than normal comfortable loudness level was selected.

2.2. Recordings and acoustic analysis

The acoustic signal was recorded using an omnidirectional microphone (Brüel &

Kjaer 4176) positioned 30 cm from the speaker’s mouth. The signal was recorded

on a digital tape recorder (CASIO DA-7 Portable Audio Tape Recorder). The sound

pressure level meter (Brüel & Kjaer 2235) weighting was linear network (”Lin”).

Three seconds of each subjects’ three phonations were analysed using a Multi-

Dimensional Voice Program (MDVP) in CSL by Kay Elemetrics. MDVP provides 33

acoustic parameters. In this study 14 of these were statistically analysed. The para-
meters selected for closer study were:

— average fundamental frequency (= F0).
— standard deviation ofFO (= Füstd),
— fundamental frequency variation (= vFO),
— peak-amplitude variation (= vAm),
— noise to harmonic ratio (= NHR),
— five jitter parameters: absolute jitter (= Jita), jitter percent (= Jitt), relative aver-

age perturbation (= RAP), pitch perturbation quotient (= PPQ), smoothed pitch per-
turbation quotient (= sPPQ).

— four shimmer parameters: shimmer in dB (= Shdß). shimmerpercent (= Shim).
amplitude perturbation quotient (= APQ), smoothed amplitude perturbation quo-
tient (= sAPO).

The second sample of each subject’s three phonations was selected for statisti-

cal analysis. The mean sound pressure level was analysed using the Computerised
Speech Lab (CSL). No signal calibration was used. so the SPL values given in this

study provide only information about signal loudness compared to each otherand

do not give any information about the absolute sound pressure level.

3. Results

To determine which acoustic parameter(s) might be sensitive indicators of differ-

ences between the vocal nodule group and the control group the mean values of
14 acoustic parameters were calculated for both groups. A two-tailed t-test was per-
formed to determine if there was a significant group difference for those 14 para-
meters.

Table 1 shows the mean, standard deviation, minimum and maximum values

of acoustic analysis for control and for vocal nodule groups.

3.1. Acoustic parameters discriminating among two groups

The average fundamental frequency for control group was 233 Hz and for pathologic
voice group 243 Hz respectively. no statistical differencebetween two groups was

observed. Results of t-test indicatedthat values ofstandard deviation offundamental

frequency (FOstd) and fundamental frequency variation (vFO) were significantly
higher (p < .01, p <.05) in the group with vocal nodules than in the control group.

The values of peak-amplitude variation (vAm) and noise to harmonic ratio

(NHR) were a little lower in control group,although theresults of t-testdid not indi-

cate significant differences for two groups.
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Five differentjitter algorithms (Jita, Jitt, RAP, PPQ, sPPQ) were calculated in this

study. All of them showed a significant difference between the normal and patho-
logic female voice. All five average jitter values in women with vocal nodules

were significantly higher than inwomen without vocal nodules. Absolute jitter had

a somewhat lower probability (p < .05) than the other jitter algorithms (p < .01).
Altogether four shimmer algorithms (Shdß, Shim, APQ, sAPQ) were com-

pared inthis study. All the shimmer values were somewhat lower in normal female

voice than in pathologic voice, but none of those showed a significant difference

between the two groups in two-tailed t-test.

All the jitter values of control group were under the threshold values givenby
MDVP. In vocal nodule group jitter the normative threshold values were exceededby
six subjects. In the case of shimmervalues the values of three normal subjects and

respectively seven subjects with vocal nodules were over the normative shimmer
thresholds.

Figure 1 presents an exam-

ple of intragroup variability
of one acoustic parameter
(RAP) in both groups. It is

seen in Table 1 that the intra-

group variability for almost
all parameters, ismuch larger
in the pathologic than in nor-

mal group. Because of the

great variability in the vocal

nodule group there is overlap
of the perturbation measures

in normal and vocal nodule

speakers.

Figure 1. Intragroup variability of relative average
perturbation (= RAP) for the vocal nodule

and control groups.

Acoustic Normal Vocal nodules

parameter _—_—m r . —

Mean (sd) Min—max Mean (sd) Min—max

FO 233 (22.19) HZ 206—266 Hz 244 (25.69) Hz 191—283 Hz

FOstd 1.8 (0.48) 1.32—2.69 2.90 (0.68) 2.12—4.19

УРО 0.8 (0.25) 0.50—1.20 1.19 (0.28) 0.82—1.79

]Ма 18.5 (3.71) 14.38—23.86 43.0 (23.30) 11.46—85.763

Jitt 0.43 (0.095) 0.35—0.59 1.00 (0.45) 0.33—1.64

RAP 0.25 (0.058) 0.19—0.35 0.60 (0.29) 0.18—1.00

PPQ 0.26 (0.056) 0.196—0.34 0.59 (0.26) 0.18—0.96

sPPQ 0.45 (0.14) 0.31—0.68 0.79 (0.25) 0.48—1.15

SPL 66.9 (3.08) 63—70 66.3 (3.21) 61.1—70.8

УАт 12.1 (9.99) 3.41—33.21 17.85 (7.55) 11.31—33.88

ShdB 0.25 (0.17) 0.11—0.62 0.46 (0.27) 0.18—0.93

Shim 2.74 (1.53) 1.24—6.00 5.07 (3.57) 2.08—9.21

APQ 2.65 (2.55) 0.91—8.38 4.23 (3.57) 1.51—12.99

sAPQ 5.15 (4.71) 1.54—15.29 7.60 (7.55) 2.11—27.20

NHR 0.12 (0.009) 0.11—0.14 0.14 (0.028) 0.11—C.19

Table 1

Mean, standard deviation, minimum and maximum values of acoustic analysis
for the normal and vocal nodule groups
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3.2. Correlations of FO, SPL and other acoustic variables

Table 2presents the correlation data for perturbation measures and FO as well as SPL.

Statistically significant correlations were found between the fundamental frequency
and four jitter parameters in the vocal nodule group. The higher the pitch of the

pathologic voice the lower the jitter value. This was, however, not true in the control

group, where only the fundamentalfrequency and fundamental frequency variation

(vFO) indicatedsignificant correlation (-.70, p < .05). In the control group the correla-
tion of FO and vFO indicates that the higher the pitch the lower the variation of fun-
damental frequency.

When the correlations of sound pressure level and other acoustic parameters
were examined, a significant correlation (.70, p < .05) was foundbetween SPL and

absolute jitter in the control group. Also the other jitter parameters (Jitt, RAP,

PPQ) indicated some correlation with SPL, but because of the small number of sub-

jects they did not reach statistic significance. In women with a normal voice, cor-

relations between SPL and frequency perturbation measures were positive indi-

cating that when the sound pressure level increased so did the jitter values. In the
vocal nodule group SPL and jitter values responded in different ways compared to

the control group. The correlations were negative, indicating that jitter values
decreased when sound pressure level increased. Correlations in the vocal nodule

group were not however statistically significant. Figure 2 presents the values of

absolute jitter and fundamental frequency for the vocal nodule group and Figure 3

shows the values of absolute jitter and sound pressure level for the normal group.
The results show that the higher or the louder the voices of subjects the more sim-

ilar are also the jitter values of pathologic and normal voice.

Correlationbetween SPL and NHR was high (r = —.BO for normal and r = —.74

for pathologic voices, p < .01) and statistically significantfor both groups indicating
that the louder the voice the better the NHR value.

SPL and short-term amplitude perturbation measures correlated significantly
in the pathologic group (Shdß: —.69, Shim: —.65, APQ: —.72, SAPQ: —.66; p < .05). SPL

FO SPL

All Normal Моса] АП Могта! Vocal
n=16 n=7 nodules n=16 n=7 nodules

n=9 n=9

1. FO 1776 -.1950 4611

2. F0sd .1693 —.5316 -.2653 .0492 .3666 .0766
3. vFO -.1589 —7012 * —.2206 —.0256 ‚3562 —.1447

4. Jita —.4229 -.0697 —.89 *** -318 ‚7008 * —.4958

5. Jitt -.2851 3507 —.8028 ** -.3088 .5860 -.5077

6. RAP -.2875 ‚3580 —.7907 ** —3192 5200 —.5095

7. PPO —.2950 4432 —.8459 ** -.3205 5979 -.5365

8. sPPQ .0053 —.5276 -.0785 .0071 .0578 1252

9. SPL 1776 —. 1959 4611

10.vAm -.0988 — 1479 —.2355 —.5450 * —.5725 -.5285

11. ShdB -.1490 1247 -.4484 —.6453 ** -.6409 —.6948 *

12. Shim -.1732 .1274 -.4893 —.6067 ** -.6569 -.6503 *

13. АРО -.1204 .0673 —.3106 —.6608 ** -.5589 -.7197 *

14. 5АРО -.0675 -.0894 — 1315 —.6293 ** -.5809 —.6610 *

15. NHR -2374 3802 —.5585 —.6649 ** —.8012 ** -.7409 **

Table 2
Correlation coefficients of fundamental frequency (F0 sound pressure level (SPL)

and otheracoustic parameters(* = р < .05, **
= р < .01, ***

= р < .001)
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and the shimmerparameters responded in similar ways in the control group as in

vocal nodule group, but because of the small number of subjects they did not reach

statistical significance.

4. Discussion

The results of this study may indicate that certain acoustic parameters of voice may
be more sensitive indicators of laryngeal pathology than others. In general, the vocal

nodule group had higher and more variable perturbation scores compared to the

control group. The standard deviation of fundamental freguency (FOstd), funda-

mental frequency variation (vFO), absolute jitter (Jita), jitter percent (Jitt), relative

acoustic perturbation (RAP), frequency perturbation quotient (PPQ) and smoothed

frequency perturbation quotient (sPPQ) proved tobe sensitive indicators of dif-

ferencesbetween women with and without vocal nodules in the Multi-Dimensional
Voice Program. If the number of subjects had been bigger, the difference in shim-

mer values might also have reached statistical significance.
Knowing that vocal nodules increase the vibrating mass of vocal cords, it would

have been expected that the mean fundamental frequency of pathologic group
would have been lower than in control group.However, in this study the opposite
effect was found. A possible reason for this is the phonation task. Subjects were

Figure 2 . Correlation of FO and absolute jitter in the vocal nodule group.

Figure 3. Correlation of SPL and absolute jitter in the normal group.
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asked to produce sustained phonation at louder than their comfortable loudness

level so increased effort took place when producing the phonation. It is likely that

women with vocal nodules strengthen their voice using a different technique than

females with normal vocal status. The subjects with vocal nodules might have

used more air pressure to get the increased mass of vocal cords in vibration. This

could have led to more pressed manner of voice production and also to a higher
fundamental frequency, particularly when producing loud voice.

It isknown that the lower the fundamental frequency the higher is the perturba-
tion (e.g. Lieberman 1963). The pattern of jitter parameters indicate that the least

amount of fundamental frequency perturbation of voice occurred at high pitch
phonations particularly in the vocal nodule group. According to A. K. Silbergleit,
A. F. Johnson, B. H. Jacobson (1997) there is less room for vocal variability at a high
pitch than at a comfort or low pitch. Also the size of vocal nodules might have had

some effects on this correlation. It can be assumed that the anatomic dissimilarityof the

vocal cords in the pathologic group ismuch greater than in control group. This can

explain the high variability ofacoustic scores, particularly in the vocal nodule group._

J. C. Stemple (1993) has claimed that the direct clinical management technigues
used daily with voice disordered patients have not been tested by scientific proce-
dures. I suppose one reason for this is the lack of valid methods and standards.

Although acoustic analysis is considered objective voice analysis method some

researchers (e.g. Bielamowicz, Kreiman, Gerratt, Dauer, Berke 1996) have almost

given up on the possibility of using perturbation measures and their utility in

analysing vocal quality. It has been claimed that jitter cannot be measured validly
when voices are aperiodic, which is usually the case when dealing with pathologic
voice (e.g. Bielamowicz, Kreiman, Gerratt,Dauer, Berke 1996). Also, R. C. Rabinov,
J. Kreiman, B. R. Garrett, S. Bielamowicz (1995) has reported that objective methods

quickly broke down as severity of voice disorder increased. Methodology-oriented
studies of perturbations have led to researchers seriouslyconsidering the abandon-

ment of jitter as a measure of pathological voice. However, in this study it has been

shown that perturbation measures, especially jitter parameters are able to discrimi-

nate normal and pathologic voice. However, great caution mustbe exercised when

giving threshold values for normal and pathological voice. A single value of jitter does

not always tell whether the subject has normal or pathological vocal status.

Methodological studies will give us more information of the acoustic perturba-
tion itselfand are therefore very important. However, in order to develop more clin-
ical applications for acoustic analysis, all clinicians and speech therapists should do

more application-oriented case-studies; to evaluate the acoustic parameters as part of

their assessment and monitoring. There is also a need for longitudinal studies of
acoustic parameters of the voice inpatients with voice disorders. Longitudinal studies

would improve our knowledge ofthe sensitivity of acoustic variables giving us infor-
mation about the pattern of vocal change as a result of voice therapy. The results of

monitoring vocal changes during therapy have the potential to assistclinical decision-

making of different therapy methods as well as the duration of therapy.
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