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MATTI &. \RJALAINEN, TOOMAS ALTOSAAR (Espoo)

A TOOL FOR AUTOMATIC LABELLING OF FINNISH SPEECH

The labelling of speech signals is an important task for creating speech databases
which are tc be of use for other applications. E.g., phonetic analysis of a given lan-

guage/dialect/speaker or the training of a speech recogniser normally presupposes
the availability of labelled (time-aligned transcription) speech data. The labelling of

some given speech signal data, assuming that the orthographic orphonetic transcrip-
tion is given, can be donemanually, semiautomatically, or automatically. Manual

labelling is in principle the most precise and reliable method but brings about several

fundamentalproblems. Since such work is extremely laborious and intensive, it can-

not be applied to large amounts of speech data. Also, it isprone to errors; both sys-
tematic labelling biases and lack of concentration introduceinaccuracies for boundary
locations. The latter problem is avoided when using automatic labelling algorithms.

If careful labelling without errors and with preciseboundary locations is required,
no existing automatic labeller is acceptable in practice. Thus.semiautomatic labelling
systems are needed where the remaining inaccuracies from automatic labelling are

corrected manually.
A typical automatic or semiautomatic system for labelling or transcription

matching is based on Hidden Markov Models. Also, the development of such a

system is usually a bootstrap process where a small set of speech samples is man-

ually labelled and an automatic labeller is trained based on this initial material. Later

on. the automated labeller is used to process large sets of speech data.

In this paper we describe a new principle ofautomated labelling that is devel-

oped for the QuickSig speech database system (Karjalainen 1990: Karjalainen. Al-

tosaar 1993). It is based primarily on the use of neural networks as diphone event

detectors,warped linearprediction (WLP) as preprocessing to compute the inputs
of the networks. and a rule-based parser for matching the given transcription
and the diphone event sequence from diphone detectors. The labeller shows very

good time alignment precision and a low level of coarse labelling errors in a word

labelling task where the system is bootstrapped by a subset of a given speech data

set and tested on the remaining part of the data.

Labelling method

Figure 1 shows the block diagram of the labelling system developed in this study.
The preprocessingof speech signals could be carried out using any method that is

known to work, e.g.. in speech recognition. We have adopted warped linearрге-
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diction due to the reasons explained below. The preprocessed representation is

applied to a set of neural networks that perform diphone event detection. Each indi-

vidual net in the set is specialised to detect a specific class of diphones. The network

outputs yield estimates of diphone class memberships as functions of time.

Finally, the diphone events are collected together and a rule-based algorithm car-

ries out matching to the given orthographic transcription, and thus the desired labelling
is obtained.

The QuickSig system includes graphicaldisplays and interactive means for explor-
ing and manipulating signals, transcriptions, and labelling information (Karjalainen
1990; Karjalainen, Altosaar 1993).

Preprocessing by warped linear prediction

We have selected Warped Linear Prediction (WLP) (Strube 1980; Laine, Karjalainen,
Altosaar 1994) as a preprocessor to represent signals as sequences of feature vec-

tors.Warped linearprediction is a modification of the ordinary LP in order to imple-
ment the warped frequency scale (Bark scale) of human auditory perception. The

basic idea is to replace unit delays by first-orderallpass filters, i.e., frequency-depen-
dent delays, in any DSP structure, in order to obtain a warped version of it. When

in linear prediction analysis the autocorrelation coefficients are computed using a

warped delay line, this automatically leads to warped linearprediction.
WLP has been compared to other preprocessing methods (Laine, Karjalainen,

Altosaar 1994; Boda 1995) and it is found tobe as compact and powerful a repre-
sentation as mel-cepstral coefficients (MCC). A lattice formulationofWLP withreflec-

tion coefficient parameters as outputs has a further advantage: the coefficients are

normalised to lie in the range of (-1, +1). This normalisation is advantageous in our

case since these parameters are used as inputs to neural networks.
Due to the Bark scale frequency warping, the WLP method is a compact rep-

resentation also for wide-band speech. The sampling frequency used in our speech
database is 22.05 kHz. A WLP filtersize of 11 was found sufficient and one more ele-

ment, the signal level (loudness estimate), was added to compose a feature vector.

Diphone detection by neural networks

The most essential part of the labeller system is a set of diphone event detectors

composed of multilayer feedforward neural nets (multilayer perceptrons). Several

basic ideas are used here. First, specialisation isapplied in the form of a

parallel set of neural nets, each one trained to detect a specific class of diphones. In

many contexts we have found that it is better to use several simple nets, each one

for a subtask, than one large network that has to solve the entire problem.
Secondly, the detectors are designed tobe not too categoric so that they do not

fullyresolvethe detaileddiphoneclasses. Instead, coarse categories areused

for the Finnish language so that all pair-wise combinations of {vowel, stop, nasal, frica-

Figure 1. Block diagram of the automated labelling system
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tive, semivowel, tremulant, liquid, pause} are provided with individual neural nets for the

corresponding diphone event detection; in total 64 networks are used. This coarse-cat-

egorical analysisresults in increasedrobustness and less sensitivity to speech variation.

The inputs to the diphone detector networks are composed of preprocessed feature

vectors as shown in Figure 2. A temporal window of 100 ms around the event detection

point is utilised and a hop size of 10 milliseconds specifies the temporal resolution. The

ideaof using diphone detectors is the same as in our earlier speech recognition exper-
iments (Altosaar, Karjalainen 1992). The dimensions of each network are: 84 input
nodes, 10 hidden nodes, and a single output node. Although 64 such networks are run

in parallel, the computation isfaster thanreal-time on a fast Power Macintosh which is

the platform for the QuickSig system.

Figure 3 shows some exam-

ples of neural net diphone detec-

tor outputs for the word /yy-
teri/. The outputs can be inter-

preted as coarse diphone class

membership estimates, 0.0 for

no membership and 1.0 for full

membership. During the train-

ing phase the networks learn a

target membership curve that

peaks around the hand-labelled
phoneme boundary, being a

smooth "bump” of 25 ms and

zero elsewhere. During detec-

tion, a threepoint median filter
is applied to smooth the net-

work output waveforms.

Each network contributes
its diphone detections that are

described as discrete events of

the corresponding diphone category, time position, and prominence (peak level).
A simple maskingrule is used to reduce the number of low prominence events by
deleting them in the vicinity of high prominence events. In a majority of cases the

correct type of event is found as the most prominent one and almost always the

correct event is among the three top prominence events.

Figure 3. Examples of diphone detector network

outputs for the word /yyteri/.
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Figure 2. The configuration of a single diphone detector neural net.
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Matching the transcription

The matching of a given orthographic transcription to a diphone event sequence is

carried out using a relatively simplerule-based algorithm. It is based on event pro-

cessing with prominence estimates and consistsof three main phases:
First an event sequence is searched for using neural networks as described

above and the events are matched to diphones in the given transcription. As a result

each diphone contains a list of all potential diphone events including a promi-
nence measure. No check of temporal positions of events iscarried out yet.

The second step is to find all possible diphone pairs (triphones) for each phoneme
generated from the orthographic transcription. This means that the previous and

next diphones of the phoneme are searched for to find diphone events that prop-
erly encompass the phoneme. The combined prominence of this diphone pair is

computed from the prominences of the events and their temporal distance com-

pared to the desired duration of the phoneme. Notice that this can utilise explicit
timing information. Simple averages of short and long phoneme durations are

used in the present version but more detailed rule-based or neural network based

durationgeneration could be used to improve the performance.
The third phase of eventparsing isto check the diphones again in order tocombine

the triphones in such a way that theycomposea consistent sequence of diphones. A list

ofsuch possible events iscomputed for each diphone with a combined prominence mea-

sure and the most prominentevent is selected to represent the diphone under study.

Labeller performance

We have tested the present version of the automated labelling tool by training the sys-
tem for word labelling using 700 words from a single male speaker; 188 words were

left for independent testing. The diphone nets were trained by a standard backprop-
agation algorithm by applying the training material 200 times, i.e.. each word and each

10 ms time position to all nets along with target data based on hand-labelling.
When the networks had been trained. the testing phase followed. The 188

words were applied and the automatic labellings were analysed. It was found that

4.5% of coarse labels experienced problems: 3.1% deletions and 1.4%replacements.
Due to the principle used. no insertion errors are possible. For the training set sam-

ples there were 2.5% coarse errors, all of them being deletion errors.

The average deviation of the boundaries from manual segmentation was sur-

prisingly low: the average of absolute deviation was 7.9 ms and standard deviation

12 ms. Figure 4 shows the distribution of the phoneme boundary deviations.

The result shows two

facts. First, the manual seg-
mentation has been sys-
tematic in order to allow
the networks to learn, and

second, the networks per-
form accurately. In fact.

in some cases the devia-

tion between automatic and

hand-labelling turned out

after closer inspection to

be due to inconsistency of
hand labelling.

Figure 4. Histogram оё phoneme boundary deviations

between automatic and hand labelling.
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Many improvements are still possible in the labelling system. When analysing
the errors we found that most of them are systematic and can be eliminated, e.g.,
by post-processing or by improving the matching rules. Systematic deletions just
mean that a new diphone must be inserted and the position can be computed using
duration information. In a similar way most of replacements can be post-corrected.
A reduction of coarse errors should be possible such that the remaining errors are

not more than about 1—2%.

Among problems that we found in the current system is the detection ofdiphone
events when the transition isslow, suchas diphthongs (vowel transitions) and vowel-

liquid transitions. The performance of the former could be improved by using a neural

net where the input context covers a wider temporal frame than for most of the

other diphone types. Table 1 shows the error decompositionaccording to networkclass.

Order Left Right N AvgAbsErr Std Dev Avg Err

1 nasal stop 2 0.003 0.001 —0.003

2 fricative stop 3 0.003 0.004 —0.003

3 tremulant nasal 1 0.004 0.000 -0.004

4 vowel stop 61 0.005 0.006 0.001

5 spacer stop 83 0.005 0.006 -0.001

6 stop vowel 144 0.005 0.006 -0.002

7 nasal vowel 35 0.006 0.011 0.002

8 vowel tremulant 20 0.006 0.006 -0.003
9 fricative vowel 53 0.006 0.007 -0.002

10 vowel fricative 27 0.006 0.007 -0.003

11 stop nasal 2 0.006 0.001 -0.006

12 vowel spacer 163 0.006 0.008 —0.001

13 stop stop 1 0.006 0.000 0.006

14 fricative liquid 3 0.007 0.006 -0.004

15 vowel semivowel 14 0.007 0.009 -0.002

16 liquid vowel 36 0.007 0.009 -0.003

17 nasal fricative 4 0.007 0.007 -0.000

18 spacer vowel 13 0.007 0.010 0.002

19 stop fricative 1 0.008 0.000 0.008

20 liquid stop 3 0.008 0.002 -0.008
21 5расег nasal 14 0.008 0.010 . 0.004

2 vowel nasal 40 0.008 0.013 0.003

23 spacer semivowel 16 0.009 0.009 0.004
24 spacer tremulant 10 0.010 0.010 0.003

25 tremulant stop 4 0.010 0.008 -0.010
26 tremulant vowel 26 0.011 0.016 -0.003

27 vowel liquid 20 0.011 0.016 -0.002

28 semivowel vowel 32 0.012 0.013 -0.004

29 nasal spacer 19 0.012 0.012 -0.009

30 spacer liquid 12 0.014 0.017 0.000

31 spacer fricative 34 0.015 0.021 0.005

32 vowel vowel 32 0.019 0.028 0.000

33 tremulant fricative 1 0.020 0.000 -0.020

34 fricative semivowel 1 0.023 0.000 —0.023

35 liquid nasal 1 0.048 0.000 -0.048

36 fricative spacer 4 0.050 0.018 -0.050

37 stop semivowel 1 0.071 0.000 -0.071

Table 1

Error decomposition of the 188 evaluation words

sorted according to the average absolute error (AvgAbsErr) in seconds

(N indicates the number of occurrences found in a specific coarse-category
37 out of a possible 64 coarse-categories existed in the word set)
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Nodirectcomparison of the present system was possible with any other labelling
system. In an informal comparison we found, however, that the HTK Toolkit,

when used for time alignment, typically yielded position errors ofaround 20 ms.

Summary and future work

This paper has described an automated speech labelling tool that is part ofthe Quick-

Sig speech database system. The labeller isbased on using neural networks for find-

ing diphone events related to coarse categories of Finnish speech and a rule-based

parser to match a given orthographic transcription to a given speech signal. The

system performs with a low error rate and precise phoneme boundary assignment
when applied to speech samples of a speaker that has been trained for the event

detector neural nets. Since the system is based on robust coarse category features, it

could be possible to extend it to labelling of speech also in a speaker-independent
manner. This and other improvements of the labellerremain as future work.
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