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UNTO K. LAINE (Espoo)

SPEECH ANALYSIS BY USING A NOVEL, BLOCK RECURSIVE

ALGORITHM FOR AUDITORY SPECTROGRAMS (BRASS)

1. Introduction

Many aspects ofspeech sounds are related in an interesting way to the properties of

human hearing. The average soundpressure level of speech locates just in the middle

of the dynamic range of the hearing (60 dB). The auditory system has the maximum

sensitivityaround 1.5 kHz. close to frequencies where the second formant, which is

perceptually the most important one. ismainly located. In general the frequency
selectivity of hearing follows well the frequencycharacteristics ofspeech. In the low-

frequency area the hearing is able to follow individual harmonics and in the higher
frequencies the formants and formant clusters. Due to the increasing acoustical

losses the average formant bandwidths increase towards the higher frequencies
where the critical bands are wider. too. These are just examples of a long list offeatures
which clearly indicate that speech is "designed” for auditory perception and auditory
perception is "designed” for speech. Their evolution has occurred "hand in hand”.

On this basis it is understandable that many attempts have been done to apply
auditory modelling and differentaspects of human auditory mechanisms to speech
analysis (Karjalainen 1985). The most popular line has been the use of auditory fil-

terbanks where the gamma tone filterbank has reached the most wide attention

(Patterson 1976). The envelopes of the impulseresponses of the gamma tone filters
follow the gamma function which AM-modulates the "tone” which in its turn defines

the center frequencyof the actual auditory filter. This shape of the impulseresponse
is closely related to the reverse correlation analysis of the data gained by the studies

of the cochlea of a cat (de Boer 1969). T. Irino (1996) has shown that the gamma chirp
filter is superior to the gamma tone when evaluated by its time-frequency selec-

tivity. The channel impulseresponses of the block recursive filterbanks used in this

study have close to gamma chirp characteristics.

In the gamma tone filterbank the individual channels are designed from the same

mathematical equation individually. While a good correspondence to the auditory sys-
tem is achieved the design does not take into account any properties related to the fil-

terbank as a whole. e.g.. how the total filterbankresponse behaves and, how to get an

orthogonal filterbank where the channel responses do not correlate. These properties
may be secondary aspects in many applications. However, they may be important
when the bank should giverelevant time-frequency informationwith minimal redun-

dancyabout the analyzed sounds. It isalso desirable that the total magnitude ofthe fil-
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terbank (all channels combined) is flat. When talking about the aspects between

the channels wehave used the conceptof syner g y. Awell designed fil-

terbank does not only have the required time-frequency properties but also a

high synergy between the individual channels. Thus channels do not only work

well individually but also together to form an unified, well-organized bank.

Computationally the gamma tone filterbankis quite simple. However, in order to

follow the auditory spectrogram the outputs of all channels have tobe calculated for

each input sample. This iscomputationally relatively expensive especially if we take

into account that the time resolution of human hearing is around one millisecond. In

other words, the filterbank outputs are needed only onceper millisecond or once per
every 48 samples ifthe sampling rate is 48 kHz. Thus one of the 48 outputs is really used

and the rest 47 results just update and prepare the filterbank for the next ”true” output.
On more aspect related to all types of filterbanks is the amount of redundant

data created. If the filterbank has 14 channels and all these are sampled at every input
sample the bank creates 14 times more "information” than what was fed in. The

true amount of informationcannot increase like that so the redundancy is increased

by a factor of 13. In order to avoid this problem filterbanks are created so that so-

called critical sampling isachieved. This means that every output chan-

nel iscritically sampled down by a sampling rate twice as high as the bandwidth of

the channel in question. This causes two more problems: in nonuniformresolution

filterbank everychannel has its own sampling frequency which increases the com-

plexity of the system, and secondly, after down sampling with 14 different fre-

quencies the channels will loose their synchrony and it is very difficult to process
them simultaneously so that the necessary time-synchronous inter-channel infor-

mation is revealed. Especially in speech analysis synchronous processing and visu-

alization of the channels seems to be important.
These four essential aspects of filterbanks, namely, the optimal time-frequency

selectivity, the high level of channel synergy. the critical or almost critical down

sampling with full inter-channelsynchrony. and the computationalefficiency guided
the way toward a design of a novel block recursive auditory filterbank (Laine 1997).
When this algorithm is used to generate Auditory SpectrogramsS Block Recursively
we talk about BRASS method (or even instrument!).

This paper reviews shortly the background of the BRASS method and shows

by examples how the method works in different areas of speech processing.

2. The BRASS algorithm

The BRASS method has evolved through a technique called frequency
w ar pin g. By applying the frequency warping method the uniformresolution
Fourier analysis can be transformed to a nonuniform resolution form. Thus the

BRASS method can be seen as a frequency-warped Fourier analyzer (Laine,
Harma 1996). The shape of the frequency-warping function defines the mapping
between the uniform Hz scale to the new nonuniform auditory scale. Typically
Hz-to-Bark or Hz-to-ERB-rate mappings are used. The BRASS method of this

paper applies the ERB-rate scale.
The BRASS algorithm realizes an auditory ERB-rate-scale filterbank and gives

a new auditory spectra vector at every Mth signal sample, where the value of M

can be freely chosen. The input to the algorithm is a M-vector of signal samplesand
the output a N-vectorof filterbank outputs. A new output vector iscomputed recur-

sively from the previous oneby adding to the recursive part the "novelty” given by
the new input M-vector. This can be formulated шп е following way:
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Sm+l(V) = AS(V) + B Sm, 1)

where sm is the M-vector at the time index m, S,,(v) is the filterbankoutput at the

same time index (the auditory spectrum, variable n denotes the channel index), A

is the recursion matrix and B the spectral state control matrix. The whole filterbank

design problem is focused on the optimal design of these two matrices. This topic
is discussed in more detail in Laine 1997.

All the analyzed signals were sampled at 22.05 kHz rate. Fourteen complex valued
channels were realized. The bank iscomputed after every fourteensamples thus a

oversampling of factor two isused. The channel frequencies are: 130, 260, 390, 560,
775, 1030, 1380, 1810, 2370, 3100, 4005, 5210, 6675, and 8610 Hz. They follow closely
the ERB-rate scale, however the bandwidths are almost two times broader than in

the corresponding gamma tone bank.

The broader bandwidths were applied in this study in order to reach high
time resolution. The bandwidths are still narrow enough for the observations of

the movements of the two, three lowest formants. With this reduced frequency
resolution the bank givescorrespondingly higher time resolution than the human

ear (around 0.65 ms). This allows to monitor even pitch-synchronouseffects and to

observe the time-frequency properties of single pitch periods []. A nice feature of

the BRASS design is that the number of channels can be freely chosen. The added
channel responses always form a flat frequency response and their center fre-

quencies follow closely the desired frequency scale. Thus the user has the full con-

trol over the allocation of the time-frequency resolution.

3. A preliminary test

In order to test the BRASS algorithm and to get a preliminary idea of the auditory
time-frequency distribution of the glottal excitation five synthetic glottal pulses
were analyzed. They were produced using a simple polynomial model of the form

g(t) = c (&2 — t3) followed by a proper set of zeroes modelling the closed phase.
Figure 1 illustrates the auditory spectrogram. An increment in the x-dimension

corresponds to 0.64 ms. The sharp glottal closure is the main part of the excitation.

Its frequency conteint is distributed over all frequencies. The latency (time delay)
between the channels isclearly seen. The auditory spectrogram models closely the

delay of the traveling wave in the cochlea. The high frequency part of the cochlea

is excited first and the low frequency part later. The maximum latency isabout 8ms.

Q 10 20 30 40 50 60 70

Figure 1. Auditory spectrogramof five synthetic glottal pulses.
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Another interesting detail in the Figure 1 is the quite large "bubble” in the low

frequency area. This corresponds to the open period pulseform which also means

that this part ends at the glottal closure.

4. Analysis ofFinnish /=/

Figure 2 illustrates an auditory spectrogram of Finnish vowel /a&/ where five

glottal closures and openings are displayed. The high temporal resolution of the
chosen BRASS method is well demonstrated in this figure. At each closure espe-
cially the second and the third formant are strongly excited (channels 7—10). The
first formant at channel 5 (775 Hz) produces a long pattern in time. At about the

middle of the closure patterns some hints of the secondary excitation caused by the

glottal opening can be seen. At the same instant the second formant is strongly
damped. The position and shape of the secondaryexcitation fluctuates more than

the sharp excitation of the closure.
The low frequency "bubble” locates now somewhathigher than in the synthetic

case. However, it still precedes the main excitation at the glottal closure. Sometimes

this "bubble” is similar to a pattern produced by an excited resonator. This led to a

hyphotheses of a possible subglottal resonance. The closer analysis showed that
even if some other methods also show some resonator-type of behavior around

these frequencies, the main reason to this "bubble” 15 the shape of the glottal wave-

form during the open period. A more detailed analysis of this phenomena will be

published in Laine 1998.

5. Other BRASS based speech processing examples

BRASS method do not only workat the level of individualpitch periods. An exam-

ple of Finnish sentence memo päälle spoken by a male is seen in Figure 3.

The picture demonstrateswell the fact that the voiced sounds have little energy
in frequencies over 4 kHz. A clear energy drop is seen between channels 10 (3100 Hz)
and 11 (4005 Hz). Due to the high temporal resolution the phonemes are seen as

vertical blocks in the spectrogram. Every glottal excitation produces a vertical
line, too. Yet the positions and movements of the lowest formants can be moni-

tored quite easily. The spectrogramcould be processed further to improve the clar-

ity of formant related information.

Figure 2. Auditory spectrogram of Finnish //.
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5.1. Experiments with BRASS based speech recognition and automatic segmentation

The clearness and the high temporal resolution of the produced auditory spectro-
gram led to a question if this method could be applied to a simple speech recog-
nizer or to find automatically the phoneme boundaries (automatic segmentation).
In the following a couple examplesof these applications are given.

One pitch period ofthe second /m/phoneme in the sentence ofFigure 3 is picked
up to represent the whole phoneme segment. This model period is a 14 x 14 matrix

taken from the auditory spectrogram. When this model is compared to all of the
other periods in the sentence by computing the Euclidean (time-frequency) distance

between the modelperiod and the unknown periods, the distancefunction of the Fig-
ure 4 iscreated. The function is normalized so that zero corresponds to thezero distance

(the two patterns are equal) and one corresponds the comparison to a zero matrix.

Since the model pitch period was picked up from another recording of the same

sentence, the distance function doesnever reach a complete fit (the zero value). How-

ever, over the whole sentence it has the lowest values just during the corresponding
segment of /m/. Note that the first /m/ segment will also give quite lowvalues. The

two /m/ segments differ so much that different models are needed for each of them.

Vowels /e/, /o/ and /a/ as well the segment /1/ give values much higher than one.

Figure 3. Auditory spectrogram of the Finnish sentence memo päälle.

Figure 4. Normalized Euclidean distance function between the model pitch period and

all the other pitch periods (or equivalent subrfames) of the sentence (see text).
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When two distance functions of neighboring segments are combined as

s =(dl-d2)/(d1 + d2),

which defines a new measure for the segment boundary or the diphone in question.
Figure 5 illustrateshow this variable reacts to the pitch periods around those two seg-
ments /m/ and/o/. During the /m/; segment the value ofs should be minus one and

during the segment /o/ plus one. The jumpfrom one segment to another occurs in one

glottal period. Interestingly, the segment /e/ reacts a little likethe segment /o/ (just like

the /m/ segment follows the patternof the /m/, segment) because those two vowels

(nasals) are relatively close to each others in the auditory domain.

The ”microphonemic” approach described above was applied in a simple single
sentence recognizer. The segment prototypes were picked up and stored. The

incoming signal was transformed by using the BRASS method to auditory spectral
domain and by applying a peak picking procedure the glottal periods were esti-

mated. A simple Markov Model was created for the sentence and each time a

”hit” occurred the model changed its state correspondingly. The prototype of the

recognizer runs easily in real time by using a Texas Instruments TMS32OC3O DSP

processor. The processor uses about 60% of its capacity to run the algorithm. The

prototype has been preliminary tested with promising results.

6. Conclusions

A novel, computationally efficient algorithm for production of auditory. spectro-
gramshas been tested by synthetic and natural speech samples. When using a high
time-resolution the BRASS algorithm reveals interesting details even inside pitch
periods. The algorithm has found many interesting applications in speech pro-

cessing.
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