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MATTI KARJALAINEN, TOOMAS ALTOSAAR, MARTTI VAINIO (Espoo)

FINNISH SPEECH SYNTHESIS

USING WARPED LINEAR PREDICTION AND NEURAL NETWORKS

A text-to-speech synthesis technique, based on warped linear prediction (WLP) and

neural networks, is presented for high-quality individual sounding synthetic speech.
Warped linear prediction is used as a speech production model with wide audio

bandwidth yet with highly compressed control parameter data. An excitation code-

book, inverse filtered from a target speaker’s voice, is applied to obtain individual

tone quality. A set of neural networks, specialised to yield synthesis control para-
meters from phonemic input in specific contexts, generate the detailed parametric
controls ofWLP. Neural nets are also used successfully to compute the prosodic para-
meters. We have applied this approach in prototyping improved text-to-speech
synthesis for the Finnish language.

1. Introductionand motivation

After a long period of successful developments in text-to-speech (TTS) synthesis,
voice quality still remains a challenge. No practical technique yields wide audio

bandwidth, near human quality, and individual sounding speech.
Our effort in this study was to find a strategy to improve TTS synthesis for

the Finnish language. Earlier achievements were first based on traditional for-

mant synthesis with rule-based control, SYNTE 2 and 3 (Karjalainen, Laine, Toivo-

nen 1980), and then concatenation synthesiscalled microphonemic synthesis (Lu-
kaszewicz, Karjalainen 1987) similar to the PSOLA technique (Moulines, Carpenter
1990). Concatenative synthesis, based on samples from human speech, easily cap-
tures the features from individual speakers. In order to approach full naturalness,

however, a huge inventory of samples in different contexts is needed. The algo-
rithms to select concatenative unitsand to join them in synthesis tend to become

complex.
Source-filter models for speech synthesis, such as those used in linear predic-

tion, have more flexibilityand allow for easy analysis ofcontrol data. The problem
remains how to code the excitation (source) and the filter control parameters in a

compact way and be able to recompute them from phonemic/phonetic informa-

tion. Hand-tuned rules and tables, as used in early synthesis, cannot produce the

highest quality of speech. Tables of parameter trajectories have similar problems
as concatenative synthesis: the size of such inventories grows beyond practical
limits when contextual details are included. Among the techniques that are used to
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compress and generalise control parameter information through learning are,

e.g., neural networks, Hidden Markov Models, and fuzzy or neuro-fuzzy rule

systems.
Therequirements dictating the choice of methods in our study were to obtain

very high quality individualsounding synthesis, wide audio bandwidth (>lO kHz),

easy automation of tuning the synthesis to individual speakers using a speech
database, moderate memoryand processor requirements in implementation, easy

integration ofaudio and visual synthesis (talking head), and preferably as much

language independence as possible.
We first discarded the waveform concatenation methods due to the com-

plexity of sample collection and even more due to the difficulty of controlling
the detailed contextual effects. An LPC-like source-filter model was found to

be more attractive. The success of this approach depends on several factors. A rel-

atively small inventory of source excitations for the synthesis of all phones in the

target language should be easily acquirable. The filter parameters should be rep-
resented compactly in a form that is suitable to automatic training, e.g., using
neural nets.

The problem of ordinary linearprediction with wide bandwidths is that a high
filter order isrequired and the high-frequency portion reserves too much resolu-

tion. For example, with a sampling rate of 22 kHz, the traditional rule of thumb

leads to an LP filter order of about 24 and most of the filter parameters focus on

frequencies above the important formant range below 3.4 kHz (Markel, Gray
1976). This problem was elegantly solved in our case by adopting warped linear

prediction (WLP) (Laine, Karjalainen, Altosaar 1994), utilising non-uniform fre-

quency resolution and allowing moderate filter orders of 10—14 almost indepen-
dently of the samplingrate.

The compactness of synthesis parameter information helped in modelling the

generation of these parameters from phonemic input data. Neural networks have

been shown to perform this mapping but not without problems. Possible candi-
dates ofneural nets are multilayer feedforwardnets with phoneme string and syn-
thesis position input, time delay neural networks (TDNN) with time frame input,
and recurrent networks, see Karaali et al. (1997) and references in it. Our experience
with neural nets has shown that for detailed modelling, specialisation of nets is use-

ful so that each individual net is applied only in a specific context.

In this paper the main featuresof our approach are described. We have studied

the level of voice quality achievable using WLP and specialised neural nets. A full

scale synthesiser is under development but already the experiments indicate that

a very natural and individualsounding TTS synthesis, practicalfor implementation,
can be obtained.

2. Warped linear prediction

The first systematic formulationof warped linearprediction was presented in 1980

(Strube 1980). Later, U. K. Laine, M. Karjalainen and T. Altosaar(1994) have studied
various formulations of efficient WLP. The idea of a warped frequency scale and

related resolution is based on using allpass sections instead of unit delays in DSP

structures. With a proper warping the frequency scale shows a good match to the

psychoacoustically defined Bark scale (Smith, Abel 1995) thus optimising the fre-

quency resolution from the point of view of auditory perception. The filter struc-

ture shown inFigure 1 has been used in our WLP synthesis experiments.
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The advantage gained when

using Barkwarping is that in wide-
band synthesis the filter ordercan

be reduced remarkably without

sacrificing the frequencyresolution

at low frequencies. At high fre-

quencies the spectral resolution is

worse, nevertheless this is exactly
how hearing functions. We have

experimentally evaluated the voice

quality of WLP and normal LP for
various filterorders when the sam-

pling rate is 22 kHz. Ordinary LP

yields good quality with orders of
20—24 while WLP works compa-

rably with orders of 10—14. Figure
2 shows synthesis filter responses
for a vowel spectrum (Finnish /a/)
using ordinary LP and WLP.

The main advantage of WLP over LP is the compression of control parameter
data which helps in the training of neural nets to generate these parameters. A lower
filter order is also advantageous for fast computation but this is counteracted by
the inherently more complexstructure ofthe warped lIR filters (Figure 1). It is also

possible to expand the WIIR filter structure into an ordinary direct form lIR filter

but the WIIR structure is numerically more robust as discussed in Karjalainen, Här-

mä, Laine 1996. Since on modern processors (DSPs, Pentium, PowerPC) such filters

consume only a few per cent of CPU resources, the robust and straightforward
WIIR structure ofFigure 1 has been used in our synthesiser.

Figure 1. A realisable WIIR structure

with first-orderallpass delays
and a single unit delay.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Hz

Figure 2. LP and WLP spectra of vowel /a/ for different filter orders.
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As a final representation for WLP filtercontrol parameters we used WLP lattice

coefficients (reflection coefficients). This was due to the desirable characteristics of

reflection coefficients whereby the stability of the synthesis filter can be guaranteed by
limiting the coefficient values in therange (-1,+1). This well-defined range of para-
meters also helps when generating them using neural networks as will be described

below. The warped reflection coefficients were converted by the standard step-up
procedure to warped polynumial coefficients for controlling the filter structure

shown inFigure 1.

2.1. System Configuration

Figure 3 illustrates the block diagram of the synthesiser. The WLP synthesis struc-

ture consists of an excitation codebook, an overlap-add concatenator of excitation

signals for pitch and duration generation. a gain multiplier. and a warped LP filter

(WIIR synthesis filter). This voice synthesis chain is controlled by sets of context-

specialised neural networks (netsets), for filter parameters. pitch, duration, and gain
controls. Neural network inputs as well as the selection of a proper network within

a netset is based on the phoneme tobe synthesised, its phonemic context as well as

other contextual information.

The input data in Figure 3 is a string of phonemes. The preceding grapheme-
to-phoneme conversion, which is exceptionally simple in the Finnish language, is

not shown and discussed here. The phoneme tobe synthesised as well as the

neighbouring phonemes and other contextual information are used to compute
numerically coded context vectors for the neural network inputs. Each netset in the

diagram is a set of context-specialised feedforward neural nets. Only one of the net-

works within a netset is activated at any one time, depending on the unit tobe syn-
thesised and its context.

Figure 3. Configuration ofthe speech synthesis system using warped linearprediction
and specialised neural nets.
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3. Specialised neural nets for filter parameter control

Our experience with feedforwardneural nets has shown that, instead of using a single
large network, acomplex input-output mapping is more easilyand precisely learntby
a set of specialisednetworks, each one contributing only within a specific region of a

multidimensional input data space. The same strategy, the utilisation of specialised
detectors and generators, is also found in biological and human neural systems.

In speech processing, this principle can be utilised in various ways. Earlier we

have shown that the performance of prosodic feature models is improved when

the mapping from phoneme string input to duration, pitch, or signal gain isprop-
erly partitioned (Vainio, Altosaar 1996a).

3.1. Network Input/Output Coding

The input to the synthesiserconsists of phonemic information (a string of phonemes
converted from a string ofgraphemes) as well as phonetic information (e.g., factors

affecting prosody indicated by punctuation). This symbolic information must be

converted into numerical form to allow neural networks to be utilised in the gen-
eration of synthesis control parameters. We have used three types of informationto

constitute the input to the networks:
The phoneme to be synthesised iscoded as three real numbersrepresenting the

broad class (e.g., vowel), the fine class (e.g., /a/), and the quantity (e.g.. short vs. long).
Neighbouring phonemes (e.g., three previous as well as three future phonemes)
are also coded in a similar way and thus the network is introduced to the specific
context in which the phoneme to be generated exists.Therefore (3 + 1 + 3) х 3 = 21

elements of the input vector are generated from the phonemic information in the

above mentioned way.
Therelative position of the phoneme to be synthesised in the word as well as the

number of phonemes in the word are coded as two real numbers. This improves
performance since the network then can infer stressed/unstressed syllables.

The relative point (time) within the phoneme to be synthesised is coded as a

number between 0.0 and 1.0. This allows for the microstructure to be generated
further improving the quality of the synthesis.

These 21+2+1=24 values are combined into one input vector. Associated with
each input vector is a target vector that indicates the desired output values of a

neural net, i.e., the WLP lattice coefficients.

3.2. Network Specialisation

Phoneme networks model the WLP coefficients at any temporal point within a

phoneme. However, when moving across phoneme boundaries, switching in a

new network may cause discontinuities to occur in the coefficients. To achieve

more smooth transitional performance around these areas a set of diphone WLP

synthesis networks are taught and utilised in a manner similar to the phoneme
nets. Amplitude mixing (cross-fading) the outputs ofboth network types improves
the quality of synthesis.

Table 1 shows the average absolute error of the lattice coefficients for a set of

WLP diphone synthesis networks as a function of the degree of specialisation. As

specialisation decreases the error increases. As an example of spectral error due to

latticecoefficient error, Figure 4 displays the WLP spectrum slightly past the diphthong
transition [e]—[i] in the Finnish word /keinu/. The topmost curve represents the
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actual WLP spectrum at this point in the signal while the other curves (in order of

decreasing specialisation) represent the synthesised spectra using the networks
listed in Table 1. The [e]—[i] specific network produces the mostaccurate spectral
estimate (second topmostcurve).

3.3. Speech Database and Network Training

The speech material used for training and evaluating the networks consisted of

approximately 2000 Finnish words spoken in isolationby a single male speaker. This

manually segmented and phonetically transcribed material was divided into training
and evaluation sets with a 2:1 ratio on a word basis. Each phone or diphone seg-
ment in either the training or evaluation set provided for 13 temporally nonlinearly
spaced training elements. The number of elements in the training and evaluation

sets for the most general diphone network exceeded 100,000 and 50,000, respec-
tively. As the degree of specialisation increased the size of the sets decreased.

Table 1

Lattice coefficient error vs. network specialisation

Figure 4. WLP spectra (dB vs. Bark scale) at a certain time instant in an [e]—]i] transition

of word /keinu/. The top curve is the target spectrum and the other ones are

neural net generated cases (Table 1) in order of decreasing specialisation.

Specialisation Diphone Type Coefficient Error

specific /е/—/\/ 5.0%

front vowel — front vowel 5.3%

e vowel — front 6.1%

general any—any 7.5%
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For each degree of specialisation the number ofhidden nodes was systemati-
cally varied to determine the optimum network size so as to match the network to

the difficulty of the mapping problem. Three hidden nodes was found to minimise the

error for the most specialised network while the more general networks per-
formed better with a substantially larger number of nodes. For example, the

any—any diphone net displayed in Figure 4 utilised 500 hidden nodes and this

explains the relatively high level of spectral detail produced by this network.

4. Excitation codebook

The excitation codebook is an indexed table of residual signals, extracted fromthe

speech database signal entries for the individual speaker tobe modelled. In the

most simple case a single excitation pattern may be used for all voiced sounds.

However, a more natural voice quality is obtained if each phoneme has a different

entry in the codebook, each representing a typical case of this specific phoneme. If

desired, the codebook can be made even more specialised, e.g., by providing a sep-
arate entry for some critical allophones.

The entries of the excitations are concatenated during synthesis so that the desired

pitch is generated according to the pitch target produced by the corresponding net-

set. For unvoiced sounds, white noise is used as an excitation signal.

5. Prosody control

Prosody control is accomplished with three sets of networks for segmental dura-

tions, fundamental frequency, and gain (loudness). Their input is similar to the

WLP networks’ input with some difference in the phonetic information.Pitch nets

are coded onto the semitone scale, loudnessnets onto the phon scale, and the dura-

tion nets onto a logarithmic time scale. Again, specialisation is utilised.
Our prosody control results were as follows: duration estimation was the most

difficult task and specialisation was needed for the error to decreasebelow 20%, the

difference limen. A 2.2 phon error was achieved with loudness networks — one

phon is generally considered just noticeable. An error of 3.5% was measured for

the pitch networks: this amounts to about 0.6 semitones at 100 Hz and is well below

the 1.5 to 2 semitone threshold for speech ('t Hart, Collier, Cohen 1990). Prosody
control is discussed in more detail in Karjalainen, Altosaar 1991; Vainio. Altosaar

1996а; 1998.

6. Summary

An experimental framework for individual sounding TTS utilising WLP and spe-
cialised neural network sets for controlling spectral and prosodic parameters has

been presented. The system described in this paper is in the development stage
and so far has been trained and evaluated on isolated words. Future work includes

extending the synthesiser to the sentence level as well as implementing a real-time

version.
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