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MODELING FINNISH MICROPROSODY WITH NEURAL NETWORKS

In this study of Finnish microprosody. two prosodic parameters — pitch and loud-
ness — were modeled with artificial neural networks. The networks are of the gen-
eral feed forward type trained with backpropagation. For each phoneme. the net-
work predicts a series of either pitch or loudness values on the basis of information of
the phoneme’s phonologically motivated features and its phonetic environment.
The tests we have run so far indicate that the neural networks are highly success-
ful and accurate in modeling the micro-level behavior of both pitch and loudness.

1. Introduction

Pitch-related microprosodic variation has been well attested for several languages
including Finnish. For instance, the fundamental frequency difference between open and
close vowels and the effect of immediate consonant context on the FO of a vowel seem
to be universal (Whalen, Levitt 1995; Aulanko 1985; Vilkman, Aaltonen, Raimo. Arajarvi,
Oksanen 1989). Similar variation can be observed with regard to loudness. The most
well known phenomenon is the difference between the inherent loudness levels of, e.g.,
open vs. close vowels and sonorant vs. obstruent consonants (Lehiste, Peterson 1959).

The microprosodic characteristics can be seen as the lowest level of a multi-layered
prosodic system producing the final suprasegmental realization of speech. They are
not generally seen as a part of the linguistic-prosodic pattern of the utterance, but
rather to be segmentally conditioned. That is, they reflect the gestures necessary for
producing the specific articulatory movements for various vowels and consonants.

In speech synthesis, microprosodic modeling has usually been fairly scarce —
the developers have concentrated on more salient and urgent problems and the
modeling has usually remained on a first approximation level. In general. speech
synthesizers use some information about the intrinsic pitch. loudness and duration of
speech sounds which are changed algorithmically according to certain rules that take
the sounds’ context into account. The microscopic changes within the time-varying
parameters of the sounds have not been paid much attention to, although most syn-
thesis systems do model the timing of FO peaks and differences in FO slopes and onsets
after different consonants. It is probable that the inclusion of microprosodic variation
would improve the naturalness and even the intelligibility of synthesized speech.

It can be argued that microprosodic variation is analogous to variation in other
aspects of speech in that there are both phenomena that are extremely common
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and phenomena that are extremely rare. The rich combinatorics of natural lan-
guage makes the number of possible combinations of units very large. Conse-
quently, the individual phenomena that are rare in themselves become common
when seen as a group and occur frequently in running speech or text. This makes it
practically impossible to gather databases that can serve as a training basis for all the
phenomena and combinations in speech (even in some constrained domain, such as
microprosody). This calls for models that can make generalizations of some kind
and generate accurate predictions for patterns that are absent in the database.

Neural networks are known for their ability to generalize according to the sim-
ilarity of their input but at the same time known for being able to distinguish dif-
ferent outputs from input patterns that are superficially similar. This means that the
network can learn to predict patterns it has never seen before — a fact that makes
it an ideal candidate for building models from imperfect data for the highly com-
plex phenomena that prosody comprises in all its levels.

The network architecture used here, as well as the data representations for both
types of networks, was the same throughout the tests since the problem at hand is
quite similar — to model microscopic variations in two time-varying parameters that
occur in similar circumstances and are for the most part governed by the same factors.

The models were trained speaker-dependently, i.e.. one or more models for
each speaker were generated. The study was carried out on the object-oriented
QuickSig signal processing environment. which is programmed in LISP/CLOS
(Karjalainen, Altosaar 1993).

2. Training and evaluation data

The tests presented here were conducted on a database of about 2000 hand-labeled
isolated words spoken by two male Finnish speakers. The words in the set include
most bi-phonemic sequences found in Finnish and some interesting tri-phonemic
sequences (mostly consonant clusters). The words were further divided into two
training and two evaluation sets with a ratio of 2 to 1. respectively.

We used nine points (or frames) for the relative linear position of the estimated
value within the phoneme. Thus, each phoneme in the set produced nine training
elements for the networks. The total number of training elements varied from
about 500 to 20000 depending on the network’s level of specialization.

2.1. Input data normalization

The signal amplitudes in our database are not homogeneous due to slightly different
conditions during the recording phase — the distance between the speaker's mouth
and the microphone, for instance, could not be kept totally fixed. For this reason we
had to implement a normalization scheme to keep the inputs for the loudness net-
works as constant as possible. Our scheme is as follows: first a sonority table is calcu-
lated for each phone/phoneme in the database for each speaker (this table corre-
sponded with the ones reported in the literature with the open vowels being the
loudest, followed by mid and close vowels: Lehiste, Peterson 1959). Second. each
loudness signal is shifted according to the peak (which invariably falls on the first syl-
lable nucleus) and the vowel in which the peak occurs. For instance, if the peak occurs
in the vowel [a] (the loudest one). the signal is shifted so that the peak value becomes
100 phon — if the peak occurs in some other vowel. the signal is shifted in such a way
that the peak value will be 100 phon minus the value in the sonority table. Thus. e.g..
a peak occurring in [i] will result in a value of 100 - 4.8 = 95.2 phon. This is obviously not
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the best way to normalize the loudness signals but it had a positive effect on the net-
works’ performance.! The fundamental frequency signals did not require normalization.

3. Neural network organization and input coding

The neural networks used in this study are of the general feed forward type trained
with backpropagation. The networks consist of three layers — input, output and a hid-
den layer. The output layer consists of one node which outputs either a fundamental fre-
quency value in (coded) semitone (later converted to an absolute Hertz value) or a loud-
ness value in (coded) phon. The input has 18 values for a distributed coding scheme (see
below). The hidden layer has 11 nodes — the optimal number was determined empir-
ically. Figure 1 shows the network’s architecture as well as its input coding strategy.
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Figure 1. The neural network input, coding and architecture. The example shows the coding
for the vowel /a/ in the word fakassakin ’in the fire-place, too’. A seven-phoneme
window is used; the three features for the vowel are phoneme identity (a = /a/),
its class (BV = back vowel) and its length (. = short). The additional information
in the training vector includes: the estimated phoneme’s place in the word, the
length of the word and the estimated frame’s position in the phoneme.

1 The normalization scheme does not take into account the differences in the stress level between
the words. However, this does not seem to be a problem, for the words in the database
were articulated in a very monotonous and neutral manner.

201



Martti Vainio, Toomas Altosaar, Matti Karjalainen, Reijo Aulanko

The input coding follows a distributed scheme used successfully in our earlier
studies of Finnish lexical prosody (Vainio, Altosaar 1996; 1998; Vainio, Altosaar,
Karjalainen, Aulanko 1997); this was an adaptation of the scheme used by M. Kar-
jalainen and T. Altosaar (1991) for predicting segmental durations in Finnish. A
sequence of phonemes is represented by a set of linguistically motivated features
that are straightforward to calculate from a string of phonemes and require no
structural analysis of the input text.2 The features are: phoneme identity (e.g.,
/a/), phoneme class (e.g., nasal), phoneme broad class (consonant vs. vowel) and
quantity degree (short vs. long). Each input vector also includes three values rep-
resenting the information about the context for the estimated value or frame.
These are: length of the word (as the number of phonemes in the word), position
of the estimated phoneme in the word and the position of the estimated frame in the
phoneme — the estimation for each phoneme thus consists of nine equidistant frames
or points within the span of the phoneme. The input vector covers a seven-phoneme
window by providing information about three phonemes on both sides of the esti-
mated one. Moreover, the context is coded in a manner which provides more res-
olution (i.e., more detailed information) for the nearby neighbors and less resolution
for the further neighbors. Each input value is coded as a real number between zero
and one. See Figure 1 for more detail.

4, Results

The performance of both types of networks is summarized in Table 1. The results
for loudness are somewhat preliminary since the networks were trained on data
that was normalized by according to maxima within words: i.e., the network esti-
mates, not only the contour within the phone, but within the whole word as well.

Table 1
Network estimation results (average absolute error) for pitch and loudness

for two male speakers (MK and MV)

Pitch (%) Loudness (phon)

MK MV MK MV
Voiced 1.66 2.07 2.61 3.22
Vowel 1.39 2.01 1.76 2.50
Sonorant 1.76 1.88 3.05 3.45
Voiced Stop - - 4.59 3.56
Unvoiced - - 3.66 4.45
Fricative - - 2.55 3.28
Unvoiced Stop - - 3.18 . 8.39
[al 1.40 2.18 P37 1.76
1 1.18 1.74 248 2.30
[s] - - 2.33 2.53
[t] - - 3.28 2.32

The pitch values are in Hertz (average percent error) and the loudness values are average
phon. The values for [t] are for the release phase only. The term sonorant refers to voiced,
continuant consonants.

Figure 2 shows a comparison of the actual fundamental frequency values and
the neural network estimates for six different cases. See the caption for more detail.
Somewhat similar cases for loudness can be seen in Figure 3.

2 The only structural analysis we have experimented with so far has been the syllabification of
the input text. This, however, had very little positive effect on the networks’ prediction capa-
bility (Vainio, Altosaar 1998).
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Figure 2. Estimated pitch and actual values for [a] in the words knalli and tase, for [e] in tase
and [1] in ladata, gallup and tuuli. The vowels are estimated with a network that
was trained on all voiced phones; the I-estimates represent a specialized network
trained only on [1] phones. The triangles represent neural network estimates and
the circles (or N) the actual F0 values. The x-axis represents the nine estimation

frames for each phone.
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Figure 3. Estimated loudness and actual values for [a] in the words kahdeksan and arlanda.
The triangles represent neural network estimates and the circles the actual loud-
ness values. The x-axis represents the nine estimation frames for each phone.
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The error was measured as the shape mismatch between the actual pitch or loud-
ness contour and the network estimates. All errors are reported as average absolute
error: per cent for pitch and phon for loudness.

5. Conclusion

We have presented some of our ongoing research of Finnish prosody. Our results
this far show that the neural network model is applicable to both lexical and micro-
scopic variations of the prosodic parameters. The networks are capable of rule-like
behavior and the next, obvious, step is to study the networks themselves to find
out more about the factors that govern them and thus the behavior of the para-
meters they model.

REFERENCES

Aulanko, R. 1985 Microprosodic Features in Speech: Experiments on Finnish. —
Fonetiikan Paivat. Turku 1985, Turku (University of Turku, Department of Finnish
and General Linguistics. Publications 26), 33—54.

Karjalainen, M, Altosaar, T. 1991, Phoneme Duration Rules for Speech Syn-
thesis by Neural Networks. — Proceedings of the European Conference on Speech
Technology EUROSPEECH91, Genoa.

—— 1993, An Object-Oriented Database for speech Processing. — Proceedings of the
European Conference on Speech Technology EUROSPEECH'93, Berlin.

Lehiste, I, Peterson, G. 1959, Vowel Amplitude and Phonemic Stress in Ameri-
can English. — The Journal of the Acoustical Society of America 31, 428—435.
Vainio, M, Altosaar, T. 1996, Pitch, Loudness, and Segmental Duration Corre-
lates: Towards a Model for the Phonetic Aspects of Finnish Prosody. — Proceedings

of ICSLP 96, vol. 3, Philadelphia, 2052—2055.

—— 1998, Pitch, Loudness and Segmental Duration Correlates in Finnish Prosody. —
Nordic Prosody. Proceedings of the VIIth Conference. Joensuu, 1996, Frankfurt am
Main, 247—255.

Vainio, M,, Altosaar, T.,, Karjalainen M, Aulanko, R 1997, Model-
ing Finnish Microprosody for Speech Synthesis. — ESCA Workshop on Intonation:
Theory, Models and Applications, Athens, Greece, September 18—20, 1997, Athens,
309—-312.

Vilkman, E, Aaltonen, O, Raimo, I. Arajarvi, P, Oksanen, H.
1989, Articulatory Hyoid-Laryngeal Changes vs. Cricothyroid Muscle Activity in the
Control of Intrinsic Fp of Vowels. — Journal of Phonetics 17, 193—203.

Whalen, D, Levitt, A. 1995 The Universality of Intrinsic Fy of Vowels. — Journal
of Phonetics 23, 349—366.

204



	b10725076-1998-3 no. 3 01.07.1998
	Cover page
	Untitled

	Chapter
	PREFACE
	PARTITIVE OR ILLATIVE?
	Correct case identification Number of correctly identified stimuli Figure 1. Distribution of correct case identifications.
	Table 1 Average duration (in milliseconds) of the vowel of the first syllable, the intervocalic consonant, and the vowel of the second syllable in test words produced by three speakers
	Table 2 Duration ranges (in milliseconds) of intervocalic consonants in test words produced by three speakers
	Table 3 Responses of 50 listeners to 48 test items produced by three speakers
	Table 4 Responses of 50 listeners to test items produced by Speaker 1
	Table 5 Responses of 50 listeners to test items produced by Speaker 2
	Table 6 Responses of 50 listeners to test items produced by Speaker 3

	PERCEPTION OF ESTONIAN WORD PROSODY. A STUDY OF WORDS EXTRACTED FROM CONVERSATIONAL SPEECH
	_Ё П& E a DE K SC ж З K “:ž.;—g'-š RECOGNITION RATE RECOGNITION RATE
	N Z a Ра АЫ :Ё&“ё"' : G š; ? N S.
	RECOGNITION RATE
	x > NO a Õ sd b 1t RECOGNITION RATE Figure 2. Vı duration, Vl/V; duration ratio, percent FO change within Vi and FO peak position (as ratio of Vi duration) in relation to different recognition rates of the guantity degree of the stimulus. Filled sguares = 01, unfilled sguares = 02, filled circles = 03. See text for details.
	Untitled
	Figure 1 shows percent Ql, Q 2 and Q 3 answers to stimuli of each of the three degrees of quantity. The general pattern is similar for the three speakers, although the number of correct answers varies. It can be seen that recognizing Q 1 did not cause difficulties and that Q 2 was a little more difficult. More serious difficulties were encountered only in connection with Q 3, particularly with the stimuli of speaker AT. The recognition rate of Q 3 words was very variable: for example, one word could be recognized by all 24 listeners while another, similar word spoken by the same person was not recognized at all. There could be several reasons for this difference, which will be discussed further on. The most obvious reason could lie in the acoustic properties of the stimuli. STIMULUS QUANTITY STIMULUS QUANTITY STIMULUS QUANTITY Figure 1. Percent Ql, Q 2 and Q 3 answers to stimuli of each of these dezrees of quantity. Black = Ql, white = Q 2, and grey = Q 3.
	Untitled
	Table 1 Multiple correlation analysis of four acoustic properties as predictors of the recognition of Q 3 stimuli
	Table 2 Mean temporal and tonal values in stimuli recognized by more than 80% of the listeners
	WHY SYLLABIC QUANTITY? WHY NOT THE FOOT?
	Untitled

	REASONS FOR AN UNDERLYING UNITY IN RHYTHM DICHOTOMY
	Table 1 Linear regression equations and correlation coefficients for five languages using R. M. Dauer’s (1983) data
	Untitled
	SPEAKER DATABASE TEST AND FUNDAMENTAL FREQUENCY IN SPEECH
	Table 1 Data on speakers and speech material used in F 0 analysis
	Table 2 Mean values of F 0 and its standard deviation for female speakers (N = 53)
	Table 3 Mean values of F 0 and its standard deviation for male speakers (N = 58)
	Table 4 Results of the basic test run (closed test)

	EVALUATION OF SIMILARITY DEGREE BETWEEN SPEAKERS ON THE BASIS OF SHORT TIME FFT SPECTRA
	Figure la. Three single spectral (snaps) and the averaged spectrum with ”well-shaped” formants and their average spectrum. (A male speaker Al; test vowel [2] from sdde ‘ray’).
	Figurc Ib. A comparison of two averaged spectra: with “well-shaped” (good) and "not well-shaped” (bad) formants. 3 Linguistica Uralica 3 1998
	Table I Experimental arrangements (speakers, their linguistic backgrounds, speech material and recording devices) in the three investigations.
	Table II Comparison of the female speakers HA and MA (16 phones within one sentence) SoundScope constant options: sampling rate 22.050; filter 45 Hz; TW = 33 ms; resolution 1054 points (= actually 213 points within 5 kHz); low smoothing; PreEmphasis; one snap from the temporal mid point of the speech sound concerned (exept the bursts of [k] and [t]).
	Table 111 Phones and words used in study Correlation coefficients (r) of some options are shown in different spectral bands. Column "same” shows the intra-speaker correlations, and column "diff” the inter-speaker correlations. Three snaps were always averaged.
	Table IV Phones and words used Correlation coefficients (r) of one option — 300 Hz, 512 points — in different spectral bands are shown. Column "same” shows the intra-speaker correlations, and column "diff” the interspeaker correlations. Three snaps were always averaged.
	MODELING FINNISH MICROPROSODY WITH NEURAL NETWORKS
	Untitled
	Untitled
	Untitled
	relative time relative time
	Untitled
	relative time
	Figure 2. Estimated pitch and actual values for [a] in the words knalli and tase, for [e] in tase and [l] in Jadata, gallup and tuuli. The vowels are estimated with a network that was trained on all voiced phones; the l-estimates represent a specialized network trained only on [l] phones. The triangles represent neural network estimates and the circles (or N) the actual F0 values. The x-axis represents the nine estimation frames for each phone.
	Untitled
	Untitled
	relative time relative time Figure 3. Estimated loudness and actual values for [a] in the words kahdeksan and arlanda. The triangles represent neural network estimates and the circles the actual loudness values. The x-axis represents the nine estimation frames for each phone.
	Untitled
	Untitled
	Untitled
	Figure 1. The neural network input, coding and architecture. The example shows the coding for the vowel /a/ in the word fakassakin ’in the fire-place, too’. A seven-phoneme window is used; the three features for the vowel are phoneme identity (a = /a/), its class (BV = back vowel) and its length (. = short). The additional information in the training vector includes: the estimated phoneme’s place in the word, the length of the word and the estimated frame’s position in the phoneme.
	Table 1 Network estimation results (average absolute error) for pitch and loudness for two male speakers (MK and MV)

	FINNISH SPEECH SYNTHESIS USING WARPED LINEAR PREDICTION AND NEURAL NETWORKS
	Figure 1. A realisable WIIR structure with first-order allpass delays and a single unit delay.
	Untitled
	0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Hz Figure 2. LP and WLP spectra of vowel /a/ for different filter orders.
	Figure 3. Configuration of the speech synthesis system using warped linear prediction and specialised neural nets.
	Table 1 Lattice coefficient error vs. network specialisation Figure 4. WLP spectra (dB vs. Bark scale) at a certain time instant in an [e]—]i] transition of word /keinu/. The top curve is the target spectrum and the other ones are neural net generated cases (Table 1) in order of decreasing specialisation.
	Untitled

	SPEECH ANALYSIS BY USING A NOVEL, BLOCK RECURSIVE ALGORITHM FOR AUDITORY SPECTROGRAMS (BRASS)
	Q 10 20 30 40 50 60 70 Figure 1. Auditory spectrogram of five synthetic glottal pulses.
	Figure 2. Auditory spectrogram of Finnish //.
	Figure 3. Auditory spectrogram of the Finnish sentence memo päälle.
	Figure 4. Normalized Euclidean distance function between the model pitch period and all the other pitch periods (or equivalent subrfames) of the sentence (see text).
	Figure 5. Segment boundary indicated by combining distance measures of neighboring segments.

	A TOOL FOR AUTOMATIC LABELLING OF FINNISH SPEECH
	Figure 1. Block diagram of the automated labelling system
	Figure 3. Examples of diphone detector network outputs for the word /yyteri/.
	Figure 4. Histogram оё phoneme boundary deviations between automatic and hand labelling.
	Figure 2. The configuration of a single diphone detector neural net.
	Table 1 Error decomposition of the 188 evaluation words sorted according to the average absolute error (AvgAbsErr) in seconds (N indicates the number of occurrences found in a specific coarse-category 37 out of a possible 64 coarse-categories existed in the word set)

	QUALITY OF STANDARD ESTONIAN VOWELS IN STRESSED AND UNSTRESSED SYLLABLES OF THE FEET IN THREE DISTINCTIVE QUANTITY DEGREES*
	Untitled
	Figure 1. Average spectral values of the Estonian stressed-syllable vowels of Q 1 (©), Q 2 (D) and Q 3 (A) feet plotted onto the acoustic space of Fl, F 2 and F 3. On the lower part of the Figure phoneme boundaries are designated by straight lines defined on the basis of matching experiments (Eek, Meister 1994 : Fig. 6); phoneme targets as reference points in the two-formant perception space are marked by a dot (®).
	Figure 2. F 1 and calculated F2’ average values of Estonian vowels in the stressed syllables of Q 1 (), Q 2 (O) and Q 3 (A) feet plotted onto the perception space (3 male speakers). Phoneme boundaries are designated by straight lines defined on the basis of matching experiments (Eek, Meister 1994); phoneme targets as reference points are marked by a dot (*).
	Figure 3. Average sgectral values of the Estonian unstressed-syllable vowels of (š (?h)’ PZ (El?an ?3 (A) feet plotted onto the acoustic space of Fl, F 2 and F 3. On the ower ä)art of the Figure fhoneme boundaries are designated bšstraight lines defined on the basis of ma chinš experiments (Eek, Meister 1994); E oneme ta:qets as reference points in the two-formant perception space are marked by a dot (9).
	Figure 4. F 1 and calculated F2' average values of Estonian vowels in the unstressed syllables of Q 1 (¢), Q 2 (O) and Q 3 (A) feet plotted onto the perception space (3 male speakers). Phoneme boundaries are designated by straight lines defined on the basis of matching experiments (Eek, Meister 1994); phoneme targets are marked by a dot (®).
	Table 1 Average durations (ms) and formant frequencies (Hz) of the stressed-syllable vowels of Ql, Q 2 and Q 3 feet (3 male speakers)
	Table 2 Average durations (ms) and formant frequencies (Hz) of the unstressed-syllable vowels of Ql, Q 2 and Q 3 feet (3 male speakers)
	VOWEL REDUCTION IN SOUTH ESTONIAN
	Chart 1. The articulation space of the male informant of Karksi.
	Chart 2. The articulation space of the female informant of Karksi.
	Chart 3. The articulation space of the Vastseliina informant.
	Untitled
	Untitled
	Table 1 Formant positions of vowels with varying duration in non-initial syllables in Karksi and Vastseliina

	ABOUT THE PHONETIC PECULIARITIES OF SHORT VOWELS IN THE VORU DIALECT
	Diagram 1. Location of short monophthongs of the first syllable of Vastseliina in the formant space.
	Diagram 2. Position of short monophthongs of the second syllable in the formant space in Vastseliina.
	Diagram 3. Position of short monophthongs of the third syllable in the formant space in Vastseliina.
	Table 1 Mean formant values for vowels in the first syllable in Vastseliina together with standard deviations (in Hz)
	Table 2 Mean formant values for vowels in the second syllable together with standard deviations (in Hz)
	Table 3 Mean formant values for vowels in the third syllable together with standard deviations (in Hz)

	ABOUT THE ACOUSTICS OF LONG AND OVERLONG VOWELS IN THE VORU DIALECT
	Figure 1. Location of long vowels in the formant space.
	Figure 2. Location of overlong vowels in the formant space
	Table 1 Mean formant values of long vowels in Hz with standard deviations
	Table 2 Mean formant values of overlong vowels in Hz with standard deviations

	ELECTROPALATOGRAPHIC INVESTIGATIONS OF THREE FINNISH CORONAL CONSONANTS
	Table 1 The means obtained for /t/ as a function of V; (in each V; context, N = 300)
	Table 2 The means obtained for /£ / as a function of V 2 (in each V 2 context, N = 300)
	Table 3 The means obtained for /d/ and /n/ as a function of Vı (for both consonant in each Vi context, N = 300)
	Table 4 The means obtained for /d/ and /n/ as a function of V 2 (for both consonant in each V 2 context, N = 300)
	Table 5 The mean fronting of contact during occlusion of /d/ and /n/ as a function of Vı
	Table 6 The mean fronting of contact during occlusion of /d/ and /n/ as a function of V 2

	FINNISH AND ENGLISH APPROXIMANTS: THE ACOUSTIC CONTINUUM
	AN UMLAUT PHENOMENON IN THE KARASJOHKA DIALECT OF NORTH SAAMI
	V 4-u & &-о % A-a % A-& $ 4-e B &-1 Figure 1. The formant positions (Fl/F2) of vowel /ä/ in the first syllable in six second syllable vowel contexts. Informant 1. Legend, see figure.
	Figure 2. The formant positions (Fl/F2) of vowel /ä/ in the first syllable in six second syllable vowel contexts. Informant 2. Legend, see figure. Table 3 Frequency values of F 1 and F 2 (Hz) of realizations of vowel /ä/ in contexts with different second syllable vowels. Informant 3
	Figure 3. The formant positions (Fl/F2) of vowel /ä/ in the first syllable in six second syllable vowel contexts. Informant 3. Legend, see figure.
	Table 1 Frequency values of F 1 and F 2 (Hz) of realizations of vowel /ä/ in contexts with different second syllable vowels. Informant 1
	Table 2 Frequency values of F 1 and F 2 (Hz) of realizations of vowel /ä/ in contexts with different second syllable vowels. Informant 2
	Untitled

	INITIALLY- AND FINALLY-STRESSED DIPHTHONGS OF THE GUOVDAGEAIDNU DIALECT OF NORTH SAAMI
	Figure 1. FO maximum and F0 values at the Ist and 2nd segment of initially- and finally stressed diphthongs. Informants A, B, and C.
	Figure 2. Acoustical vowel chart of diphthongs produced by informant C. The Ist segment of the diphthong has been marked by a bigger symbol. Finally stressed diphthongs has been marked by ( ).
	Table 1 Durations of the initially-stressed diphthongs and the Ist and 2nd segment in ms Table 2 Durations of the finally-stressed diphthongs and the Ist and 2nd segment in ms
	Untitled
	Table 3 Durations of the segments of the initially-stressed diphthongs in percent
	Table 4 Durations of the segments of the finally-stressed diphthongs in percent

	CATEGORIZATION, RATING AND DISCRIMINATION OF MUSICAL CHORDS
	Figure 1. Identification of the test chords as either minor or major by Subject 13, a good categorizer. The pitches of the middle notes rise from left to right on the x-axis and the pitches of the tempered (T) and the natural (N) chords are marked with arrows.
	Figure 2. Goodness rating of the test chords as minor or major by Subject 13. The x-axis is the same as in Figure 1. The goodness on the y-axis represents the averages of 15 ratings of each chord on a scale from 1 to 7.
	Figure 3. Discrimination of two chords with a difference of 4 mel in the middle note by Subject 13. The x-axis is the same as in Figure 1.



	PRIORITIES IN VOICE TRAINING: CARRYING POWER OR TONE QUALITY?
	Figure 1. The shape of the long-term average spectrum (LTAS). A male singer, using the singer’s formant technique (top left); a male singer, using the singer’s formant technique inconsistently (top right); a typical female singer (bottom left); a singer who does not use the singer’s formant technique (bottom right).
	Figure 2. The dependence of the carrying power of the voice on the length of training. Horizontal axis: number of years studied, vertical axis: level of the highest peak between 2 and 4 kHz in the LTAS in relation to level of the highest peak in the spectrum. Dots correspond to individual singers, y-formula of linear regression trendline of dots, R? — R sguared value of linear trendline.
	Figure 3. Rating of the voice quality as a function of the length of training. Horizontal axis: number of years studied, vertical axis: the sum of the marks (on a 5-point scale) given by 4 experts. Dots correspond to individual singers.

	PRELIMINARY EVALUATION OF SELECTED ACOUSTIC PARAMETERS AS SENSITIVE INDICATORS OF DIFFERENCES BETWEEN WOMEN WITH AND WITHOUT VOCAL NODULES
	Figure 1. Intragroup variability of relative average perturbation (= RAP) for the vocal nodule and control groups.
	Figure 2 . Correlation of FO and absolute jitter in the vocal nodule group.
	Figure 3. Correlation of SPL and absolute jitter in the normal group.
	Table 1 Mean, standard deviation, minimum and maximum values of acoustic analysis for the normal and vocal nodule groups
	Table 2 Correlation coefficients of fundamental frequency (F 0 sound pressure level (SPL) and other acoustic parameters (* = р < .05, ** = р < .01, *** = р < .001)

	VARIABILITY OF FINNISH SPEECH SPOKEN BY HEARING-IMPAIRED INDIVIDUALS
	INTERPRETATION OF COMMUNICATIVE INTENTS OF AN INFANT
	Table 1 Summary of the testing material Figure 1. The answers (is not intentional” (= EI INT.), ”I don’t know” (= EOS) and "is intentional” (= ON INT.)) of the subjects (n = 33) in the vocalization samples (n = 40) in the auditory section.
	Figure 2. The answers (”is not intentional” (= EI INT.), ”I don’t know” (= EOS) and ”is intentional” (= ON INT.)) of the subjects (n = 33) in the vocalization samples (n = 40) in the auditory-visual section.
	Untitled

	THE ACQUISITION ORDER OF CONSONANTS: A PROBLEMATIC VIEWPOINT
	Table 1 Sini’s very first words (I = imitation)
	Table 2 Sini’s early [t]-words (I = imitation)
	Untitled

	DIFFERENTIATION OF VOWEL LENGTH BY RELATED BILINGUAL CHILDREN
	Table 1 The quantity distinctions of Estonian and Finnish
	Table 2 Cases of utterances by girl H and boy M which meet the 50% lengthening and the > 200 ms condition. Age period 1;11 to 2;5
	Table 3 Cases of utterances by girl H and boy M which meet the 50% lengthening and the > 200 ms condition. Age period 3;0 to 4;4

	DURATIONAL PROPERTIES OF FINNISH DIPHTHONGS AS PRODUCED BY ESTONIAN LEARNERS
	Figure 1. Proportion (per cent) of durations of the Ist and 2nd segment of Finnish diphthongs. Diphthong classes with different extent and direction of glide: low-high (e.g. /®i/), mid-high (/ei/), high-mid (/ie/), and high-high (/iw). Informants A, B (native Estonian speakers) and C, D (native Finnish speakers).
	Table 1. Durations (ms) of the Ist and 2nd segment of Finnish diphthongs
	5. Discussion

	PANORAMA — PROSPECT — PROFILE: ON THE COMPUTER-AIDED DESCRIPTION OF PROSODIC QUALITY OF SPEECH
	Figure 1. Panorama: Obedience training with Veikko, a dachshund. Upper window: signal display; lower window: speech amplitude envelope display with loudness curve. For sample information, see table 1. Transcripted: Veikko! Istu. Hyvd. Seuraa. Seuraa, Veikko! Maahan. Hyvd poika. Todella kiltti koira, hyvd! Ja seuraa! Istu. Hyvd. Ja Veikko on vapaa, kiitos! 'Veikko! Sit. Good. Follow. Follow, Veikko! Go down. Good boy. Very nice dog, good! And follow! Sit. Good. And Veikko is free, thank you!
	Figure 2. (Adapted from Lehessaari 1996 : 180). Z scores for 11 speech parameters: slight intoxication (unfilled symbols, speech sample of 223 syllables) and medium intoxication (filled symbols, speech sample of 224 syllables) compared to sober speech (speech sample of 223 syllables). Speaker C, Finnish-speaking female, 25 years. Parameters: /auof = mean duration, all pauses; puheilmaukset = mean duration, all utterances; puhetahdit = mean length in syllables, all speech measures; art/kaikki, /pnen, /pton = mean duration, all syllables /stressed syllables /unstressed syllables; FO/kaikki, /pnen, /pton = mean fundamental frequency maximum, all syllables /stressed syllables /unstressed syllables; dekl/ensi, /viime = 0.5 – mean fundamental frequency maximum, first stressed /last stressed syllable in a declination unit.
	Table 1 Prospect chart (an example)
	Table 2 Mean duration and standard deviation (ms) (All syllables and all pauses; data adaFted from Lehessaari 1996 : 104, 127) Speaker N, Finnish-speaking female, 33 years, sober and intoxicated
	A FINNISH-TALKING HEAD
	Figure 1. Left: a front view of our facial model uttering a /r/. Right: a side view of the same model uttering a /v/.

	CREATION OF THE ESTONIAN DIPHONE DATABASE FOR TEXT-TO-SPEECH SYNTHESIS*
	Figure 1. A text-to-speech compilative synthesizer based on diphones concatenation.
	Figure 2. An example of diphone segmentation (the word osa separated from the text corpus). 1 — oscillogram of the word osa (spectrogram used in segmentation is not presented in the figure); 2 — phone boundaries marked by vertical strokes; 3 — segmentation of raw segments for the corresponding diphones; 4 — separated diphones saved in diphone database with three measurement values (the numerical values express distances of the vertical strokes from the beginning of the corresponding raw segment: the first stroke — distance of the beginning point, the second stroke — distance of the phones boundary and the third stroke — distance of the end of the diphone from the beginning of the raw segment).
	Untitled




	Table of content

	Illustrations
	Untitled
	Correct case identification Number of correctly identified stimuli Figure 1. Distribution of correct case identifications.
	_Ё П& E a DE K SC ж З K “:ž.;—g'-š RECOGNITION RATE RECOGNITION RATE
	N Z a Ра АЫ :Ё&“ё"' : G š; ? N S.
	RECOGNITION RATE
	x > NO a Õ sd b 1t RECOGNITION RATE Figure 2. Vı duration, Vl/V; duration ratio, percent FO change within Vi and FO peak position (as ratio of Vi duration) in relation to different recognition rates of the guantity degree of the stimulus. Filled sguares = 01, unfilled sguares = 02, filled circles = 03. See text for details.
	Figure la. Three single spectral (snaps) and the averaged spectrum with ”well-shaped” formants and their average spectrum. (A male speaker Al; test vowel [2] from sdde ‘ray’).
	Figurc Ib. A comparison of two averaged spectra: with “well-shaped” (good) and "not well-shaped” (bad) formants. 3 Linguistica Uralica 3 1998
	Untitled
	Untitled
	Untitled
	relative time relative time
	Untitled
	relative time
	Figure 2. Estimated pitch and actual values for [a] in the words knalli and tase, for [e] in tase and [l] in Jadata, gallup and tuuli. The vowels are estimated with a network that was trained on all voiced phones; the l-estimates represent a specialized network trained only on [l] phones. The triangles represent neural network estimates and the circles (or N) the actual F0 values. The x-axis represents the nine estimation frames for each phone.
	Untitled
	Untitled
	relative time relative time Figure 3. Estimated loudness and actual values for [a] in the words kahdeksan and arlanda. The triangles represent neural network estimates and the circles the actual loudness values. The x-axis represents the nine estimation frames for each phone.
	Figure 1. A realisable WIIR structure with first-order allpass delays and a single unit delay.
	Untitled
	0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Hz Figure 2. LP and WLP spectra of vowel /a/ for different filter orders.
	Figure 3. Configuration of the speech synthesis system using warped linear prediction and specialised neural nets.
	Table 1 Lattice coefficient error vs. network specialisation Figure 4. WLP spectra (dB vs. Bark scale) at a certain time instant in an [e]—]i] transition of word /keinu/. The top curve is the target spectrum and the other ones are neural net generated cases (Table 1) in order of decreasing specialisation.
	Q 10 20 30 40 50 60 70 Figure 1. Auditory spectrogram of five synthetic glottal pulses.
	Figure 2. Auditory spectrogram of Finnish //.
	Figure 3. Auditory spectrogram of the Finnish sentence memo päälle.
	Figure 4. Normalized Euclidean distance function between the model pitch period and all the other pitch periods (or equivalent subrfames) of the sentence (see text).
	Figure 5. Segment boundary indicated by combining distance measures of neighboring segments.
	Figure 1. Block diagram of the automated labelling system
	Figure 3. Examples of diphone detector network outputs for the word /yyteri/.
	Figure 4. Histogram оё phoneme boundary deviations between automatic and hand labelling.
	Untitled
	Figure 1. Average spectral values of the Estonian stressed-syllable vowels of Q 1 (©), Q 2 (D) and Q 3 (A) feet plotted onto the acoustic space of Fl, F 2 and F 3. On the lower part of the Figure phoneme boundaries are designated by straight lines defined on the basis of matching experiments (Eek, Meister 1994 : Fig. 6); phoneme targets as reference points in the two-formant perception space are marked by a dot (®).
	Figure 2. F 1 and calculated F2’ average values of Estonian vowels in the stressed syllables of Q 1 (), Q 2 (O) and Q 3 (A) feet plotted onto the perception space (3 male speakers). Phoneme boundaries are designated by straight lines defined on the basis of matching experiments (Eek, Meister 1994); phoneme targets as reference points are marked by a dot (*).
	Figure 3. Average sgectral values of the Estonian unstressed-syllable vowels of (š (?h)’ PZ (El?an ?3 (A) feet plotted onto the acoustic space of Fl, F 2 and F 3. On the ower ä)art of the Figure fhoneme boundaries are designated bšstraight lines defined on the basis of ma chinš experiments (Eek, Meister 1994); E oneme ta:qets as reference points in the two-formant perception space are marked by a dot (9).
	Figure 4. F 1 and calculated F2' average values of Estonian vowels in the unstressed syllables of Q 1 (¢), Q 2 (O) and Q 3 (A) feet plotted onto the perception space (3 male speakers). Phoneme boundaries are designated by straight lines defined on the basis of matching experiments (Eek, Meister 1994); phoneme targets are marked by a dot (®).
	Chart 1. The articulation space of the male informant of Karksi.
	Chart 2. The articulation space of the female informant of Karksi.
	Chart 3. The articulation space of the Vastseliina informant.
	Diagram 1. Location of short monophthongs of the first syllable of Vastseliina in the formant space.
	Diagram 2. Position of short monophthongs of the second syllable in the formant space in Vastseliina.
	Diagram 3. Position of short monophthongs of the third syllable in the formant space in Vastseliina.
	Figure 1. Location of long vowels in the formant space.
	Figure 2. Location of overlong vowels in the formant space
	V 4-u & &-о % A-a % A-& $ 4-e B &-1 Figure 1. The formant positions (Fl/F2) of vowel /ä/ in the first syllable in six second syllable vowel contexts. Informant 1. Legend, see figure.
	Figure 2. The formant positions (Fl/F2) of vowel /ä/ in the first syllable in six second syllable vowel contexts. Informant 2. Legend, see figure. Table 3 Frequency values of F 1 and F 2 (Hz) of realizations of vowel /ä/ in contexts with different second syllable vowels. Informant 3
	Figure 3. The formant positions (Fl/F2) of vowel /ä/ in the first syllable in six second syllable vowel contexts. Informant 3. Legend, see figure.
	Figure 1. FO maximum and F0 values at the Ist and 2nd segment of initially- and finally stressed diphthongs. Informants A, B, and C.
	Figure 2. Acoustical vowel chart of diphthongs produced by informant C. The Ist segment of the diphthong has been marked by a bigger symbol. Finally stressed diphthongs has been marked by ( ).
	Figure 1. Identification of the test chords as either minor or major by Subject 13, a good categorizer. The pitches of the middle notes rise from left to right on the x-axis and the pitches of the tempered (T) and the natural (N) chords are marked with arrows.
	Figure 2. Goodness rating of the test chords as minor or major by Subject 13. The x-axis is the same as in Figure 1. The goodness on the y-axis represents the averages of 15 ratings of each chord on a scale from 1 to 7.
	Figure 3. Discrimination of two chords with a difference of 4 mel in the middle note by Subject 13. The x-axis is the same as in Figure 1.
	Figure 1. The shape of the long-term average spectrum (LTAS). A male singer, using the singer’s formant technique (top left); a male singer, using the singer’s formant technique inconsistently (top right); a typical female singer (bottom left); a singer who does not use the singer’s formant technique (bottom right).
	Figure 2. The dependence of the carrying power of the voice on the length of training. Horizontal axis: number of years studied, vertical axis: level of the highest peak between 2 and 4 kHz in the LTAS in relation to level of the highest peak in the spectrum. Dots correspond to individual singers, y-formula of linear regression trendline of dots, R? — R sguared value of linear trendline.
	Figure 3. Rating of the voice quality as a function of the length of training. Horizontal axis: number of years studied, vertical axis: the sum of the marks (on a 5-point scale) given by 4 experts. Dots correspond to individual singers.
	Figure 1. Intragroup variability of relative average perturbation (= RAP) for the vocal nodule and control groups.
	Figure 2 . Correlation of FO and absolute jitter in the vocal nodule group.
	Figure 3. Correlation of SPL and absolute jitter in the normal group.
	Table 1 Summary of the testing material Figure 1. The answers (is not intentional” (= EI INT.), ”I don’t know” (= EOS) and "is intentional” (= ON INT.)) of the subjects (n = 33) in the vocalization samples (n = 40) in the auditory section.
	Figure 2. The answers (”is not intentional” (= EI INT.), ”I don’t know” (= EOS) and ”is intentional” (= ON INT.)) of the subjects (n = 33) in the vocalization samples (n = 40) in the auditory-visual section.
	Figure 1. Proportion (per cent) of durations of the Ist and 2nd segment of Finnish diphthongs. Diphthong classes with different extent and direction of glide: low-high (e.g. /®i/), mid-high (/ei/), high-mid (/ie/), and high-high (/iw). Informants A, B (native Estonian speakers) and C, D (native Finnish speakers).
	Figure 1. Panorama: Obedience training with Veikko, a dachshund. Upper window: signal display; lower window: speech amplitude envelope display with loudness curve. For sample information, see table 1. Transcripted: Veikko! Istu. Hyvd. Seuraa. Seuraa, Veikko! Maahan. Hyvd poika. Todella kiltti koira, hyvd! Ja seuraa! Istu. Hyvd. Ja Veikko on vapaa, kiitos! 'Veikko! Sit. Good. Follow. Follow, Veikko! Go down. Good boy. Very nice dog, good! And follow! Sit. Good. And Veikko is free, thank you!
	Figure 2. (Adapted from Lehessaari 1996 : 180). Z scores for 11 speech parameters: slight intoxication (unfilled symbols, speech sample of 223 syllables) and medium intoxication (filled symbols, speech sample of 224 syllables) compared to sober speech (speech sample of 223 syllables). Speaker C, Finnish-speaking female, 25 years. Parameters: /auof = mean duration, all pauses; puheilmaukset = mean duration, all utterances; puhetahdit = mean length in syllables, all speech measures; art/kaikki, /pnen, /pton = mean duration, all syllables /stressed syllables /unstressed syllables; FO/kaikki, /pnen, /pton = mean fundamental frequency maximum, all syllables /stressed syllables /unstressed syllables; dekl/ensi, /viime = 0.5 – mean fundamental frequency maximum, first stressed /last stressed syllable in a declination unit.
	Figure 1. Left: a front view of our facial model uttering a /r/. Right: a side view of the same model uttering a /v/.
	Figure 1. A text-to-speech compilative synthesizer based on diphones concatenation.
	Figure 2. An example of diphone segmentation (the word osa separated from the text corpus). 1 — oscillogram of the word osa (spectrogram used in segmentation is not presented in the figure); 2 — phone boundaries marked by vertical strokes; 3 — segmentation of raw segments for the corresponding diphones; 4 — separated diphones saved in diphone database with three measurement values (the numerical values express distances of the vertical strokes from the beginning of the corresponding raw segment: the first stroke — distance of the beginning point, the second stroke — distance of the phones boundary and the third stroke — distance of the end of the diphone from the beginning of the raw segment).

	Tables
	Table 1 Average duration (in milliseconds) of the vowel of the first syllable, the intervocalic consonant, and the vowel of the second syllable in test words produced by three speakers
	Table 2 Duration ranges (in milliseconds) of intervocalic consonants in test words produced by three speakers
	Table 3 Responses of 50 listeners to 48 test items produced by three speakers
	Table 4 Responses of 50 listeners to test items produced by Speaker 1
	Table 5 Responses of 50 listeners to test items produced by Speaker 2
	Table 6 Responses of 50 listeners to test items produced by Speaker 3
	Untitled
	Figure 1 shows percent Ql, Q 2 and Q 3 answers to stimuli of each of the three degrees of quantity. The general pattern is similar for the three speakers, although the number of correct answers varies. It can be seen that recognizing Q 1 did not cause difficulties and that Q 2 was a little more difficult. More serious difficulties were encountered only in connection with Q 3, particularly with the stimuli of speaker AT. The recognition rate of Q 3 words was very variable: for example, one word could be recognized by all 24 listeners while another, similar word spoken by the same person was not recognized at all. There could be several reasons for this difference, which will be discussed further on. The most obvious reason could lie in the acoustic properties of the stimuli. STIMULUS QUANTITY STIMULUS QUANTITY STIMULUS QUANTITY Figure 1. Percent Ql, Q 2 and Q 3 answers to stimuli of each of these dezrees of quantity. Black = Ql, white = Q 2, and grey = Q 3.
	Untitled
	Table 1 Multiple correlation analysis of four acoustic properties as predictors of the recognition of Q 3 stimuli
	Table 2 Mean temporal and tonal values in stimuli recognized by more than 80% of the listeners
	Untitled
	Table 1 Linear regression equations and correlation coefficients for five languages using R. M. Dauer’s (1983) data
	Untitled
	Table 1 Data on speakers and speech material used in F 0 analysis
	Table 2 Mean values of F 0 and its standard deviation for female speakers (N = 53)
	Table 3 Mean values of F 0 and its standard deviation for male speakers (N = 58)
	Table 4 Results of the basic test run (closed test)
	Table I Experimental arrangements (speakers, their linguistic backgrounds, speech material and recording devices) in the three investigations.
	Table II Comparison of the female speakers HA and MA (16 phones within one sentence) SoundScope constant options: sampling rate 22.050; filter 45 Hz; TW = 33 ms; resolution 1054 points (= actually 213 points within 5 kHz); low smoothing; PreEmphasis; one snap from the temporal mid point of the speech sound concerned (exept the bursts of [k] and [t]).
	Table 111 Phones and words used in study Correlation coefficients (r) of some options are shown in different spectral bands. Column "same” shows the intra-speaker correlations, and column "diff” the inter-speaker correlations. Three snaps were always averaged.
	Table IV Phones and words used Correlation coefficients (r) of one option — 300 Hz, 512 points — in different spectral bands are shown. Column "same” shows the intra-speaker correlations, and column "diff” the interspeaker correlations. Three snaps were always averaged.
	Untitled
	Untitled
	Untitled
	Figure 1. The neural network input, coding and architecture. The example shows the coding for the vowel /a/ in the word fakassakin ’in the fire-place, too’. A seven-phoneme window is used; the three features for the vowel are phoneme identity (a = /a/), its class (BV = back vowel) and its length (. = short). The additional information in the training vector includes: the estimated phoneme’s place in the word, the length of the word and the estimated frame’s position in the phoneme.
	Table 1 Network estimation results (average absolute error) for pitch and loudness for two male speakers (MK and MV)
	Untitled
	Figure 2. The configuration of a single diphone detector neural net.
	Table 1 Error decomposition of the 188 evaluation words sorted according to the average absolute error (AvgAbsErr) in seconds (N indicates the number of occurrences found in a specific coarse-category 37 out of a possible 64 coarse-categories existed in the word set)
	Table 1 Average durations (ms) and formant frequencies (Hz) of the stressed-syllable vowels of Ql, Q 2 and Q 3 feet (3 male speakers)
	Table 2 Average durations (ms) and formant frequencies (Hz) of the unstressed-syllable vowels of Ql, Q 2 and Q 3 feet (3 male speakers)
	Untitled
	Untitled
	Table 1 Formant positions of vowels with varying duration in non-initial syllables in Karksi and Vastseliina
	Table 1 Mean formant values for vowels in the first syllable in Vastseliina together with standard deviations (in Hz)
	Table 2 Mean formant values for vowels in the second syllable together with standard deviations (in Hz)
	Table 3 Mean formant values for vowels in the third syllable together with standard deviations (in Hz)
	Table 1 Mean formant values of long vowels in Hz with standard deviations
	Table 2 Mean formant values of overlong vowels in Hz with standard deviations
	Table 1 The means obtained for /t/ as a function of V; (in each V; context, N = 300)
	Table 2 The means obtained for /£ / as a function of V 2 (in each V 2 context, N = 300)
	Table 3 The means obtained for /d/ and /n/ as a function of Vı (for both consonant in each Vi context, N = 300)
	Table 4 The means obtained for /d/ and /n/ as a function of V 2 (for both consonant in each V 2 context, N = 300)
	Table 5 The mean fronting of contact during occlusion of /d/ and /n/ as a function of Vı
	Table 6 The mean fronting of contact during occlusion of /d/ and /n/ as a function of V 2
	Table 1 Frequency values of F 1 and F 2 (Hz) of realizations of vowel /ä/ in contexts with different second syllable vowels. Informant 1
	Table 2 Frequency values of F 1 and F 2 (Hz) of realizations of vowel /ä/ in contexts with different second syllable vowels. Informant 2
	Untitled
	Table 1 Durations of the initially-stressed diphthongs and the Ist and 2nd segment in ms Table 2 Durations of the finally-stressed diphthongs and the Ist and 2nd segment in ms
	Untitled
	Table 3 Durations of the segments of the initially-stressed diphthongs in percent
	Table 4 Durations of the segments of the finally-stressed diphthongs in percent
	Table 1 Mean, standard deviation, minimum and maximum values of acoustic analysis for the normal and vocal nodule groups
	Table 2 Correlation coefficients of fundamental frequency (F 0 sound pressure level (SPL) and other acoustic parameters (* = р < .05, ** = р < .01, *** = р < .001)
	Untitled
	Table 1 Sini’s very first words (I = imitation)
	Table 2 Sini’s early [t]-words (I = imitation)
	Untitled
	Table 1 The quantity distinctions of Estonian and Finnish
	Table 2 Cases of utterances by girl H and boy M which meet the 50% lengthening and the > 200 ms condition. Age period 1;11 to 2;5
	Table 3 Cases of utterances by girl H and boy M which meet the 50% lengthening and the > 200 ms condition. Age period 3;0 to 4;4
	Table 1. Durations (ms) of the Ist and 2nd segment of Finnish diphthongs
	Table 1 Prospect chart (an example)
	Table 2 Mean duration and standard deviation (ms) (All syllables and all pauses; data adaFted from Lehessaari 1996 : 104, 127) Speaker N, Finnish-speaking female, 33 years, sober and intoxicated
	Untitled




