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ANTTI lIVONEN, TUIJA NIEMI-LAITINEN, KIRSI HARINEN (Helsinki)

EVALUATION OF SIMILARITY DEGREE BETWEEN SPEAKERS

ON THE BASIS OF SHORT TIME FFT SPECTRA

1. Introduction

We concentrate on the question, to which extent speaker specific features and indi-

vidual differences can be found in the short time FFT spectra in the cases in which

the speakers tobe compared sound very similar. Ourpaper includes three contri-

butions according to three authors.

We have investigated the effect of the analysis options in order to reveal which

options yield the best results for comparison. Certain options are kept unchanged.
Because telephone speech is the type of speech most often occurring in the foren-

sic applications, we have included also the real recordings via telephone (Kirsi
Harinen) and the simulation of the telephone band (300—3400 Hz; all authors) in

the comparison. Other spectral bands were used, too.

It can be assumed that quite big amount of the speaker’s individual character-
istics is included in the single sound spectra. Because the sound spectra are physi-
cal correlates to the phonological entities (phonemes), it is understandable that the

spectra of the same phoneme must be similar to certain extent in two speakers. The

additional individualdifference is interesting for the speaker verification, identifi-

cation, and discrimination. It would be ideal, if the similarity of the tokens of the

same linguistic structure remains great within the same speaker, but gets lower,

when another speaker produces the same structure. Different speech sound types
may indicate more individual variation than the others (Nolan 1983; Paliwal 1983).

2. Programs and measurements applied in the analysis

We have utilized the SoundScope speech analysis program (GW Instru-

ments) and the option short time FFT spectrum (snap; cf. Altosaar, Meister 1995). In

the averaging procedure, the effect of the number of the single snaps was investi-

gated (3 or 6 snaps within a short period of time, e.g. 50 ms). We kept in all analyses
the following options unchanged: the sampling rate 22050, the band 5 kHz, the win-

dow type Hamming, Pre Emphasis (6 dB/octave). The variable options were: filter

band (45 Hz which corresponds to 33 ms time window or 300 Hz/5 ms time win-

dow), smoothing (none or low). The single snaps were always taken from the
middle portion of a sound (except the plosives in which the bursts were analyzed).

The digital representations of the single spectra were exported (copy wave
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text) intothe Spectral Comparison program, created by means of the
Futureßasic II programming language. This programcalculates the mean of eigen
value differencesat differentresolution points (within the selected frequency band),
their standard deviation and the correlation coefficient (Pearson) between two

spectra. It is possible to first calculate an average spectrum of several single spec-
tra and then to compare two averaged spectra with each other. For the compari-
son of two spectra (or two averaged spectra), the program applies the principle of

the best fit by averaging all differences at the measurement points (on the fre-

quency scale) and making one of the two spectra more similar with the other one

by subtracting the average value from all values of the other spectrum.

3. Factors affecting the properties of single sound spectra (sources of error)

Among other things, the following factors affect the shape ofthe spectrum ofa single
speech sound: the temporal location of the measurement point within the speech
sound, the surrounding speech sounds (coarticulation), degree of stress, height of
the fundamental frequency, the locationwithin a single period (in resonant sounds),
voice quality, emotion, random variation, the type of the analysis option, record-

ing circumstances, recording devices, and speech style. Several single spectra can be

gathered at intervals of 10 ms or at the same pitch synchronous measurement

points (the single snaps from different periods, but always at the same location
within a period) and make an averaged spectrum of those in order to avoid casual
and minute (unimportant) variations. Hence, a more stable spectral form can be

obtained. When single snaps are averaged, the principle of ”the bestformant shape
visually observed” can be manually applied in the gathering (Figure 1). Otherwise

undesired extra variation will be obtained. For obtaining a more stable picture, the

smoothing option seems to yield good results.

Figure la. Three single spec-
tral (snaps) and the averaged
spectrum with ”well-shaped”
formants and their average
spectrum. (A male speaker Al;
test vowel [2] from sdde ‘ray’).

Figurc Ib. A comparison of

two averaged spectra: with

“well-shaped” (good) and "not

well-shaped” (bad) formants.
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The mean value of the differencesat the frequency points and their standard devia-
tion as well as the correlation analysis of the two (averaged) spectra of the two

speakerswere used in the comparison. Certain number of speech sounds can be

analyzed and they can be arranged according to their similarity degree. Certain

sounds may show great similarity and certain other sounds show greater differ-

ence (cf. Table II below). In order to show the meaning of the correlation coeffi-

cients, it isnecessary to compare them interindividually and intraindividually. The

similarity degree between two speakers and within a speaker iscompared in Tables
IH—IV below.

5. Test arrangements and results

Speakers, recording devices, and material are presented in Table I. Male and female

speakers were chosen. High qualityrecording devices were utilized, but also a tele-

phone answering machine (K. Harinen). Selected Finnish vowels and consonants

were analyzed (including bursts of [t] and [k]).

5.1. Evaluation of the similarity degree between two female speakers
(Antti livonen)

The two female speakersHA and MA produced a coherent text. The sounds selected
from the text and the corresponding words are listed in Table 11. The average dif-

ference of the spectracompared concerns the band o—sooo Hz. The correlation coef-

ficient r of the bands o—sooo, o—lsoo, 300—3400 (= simulating the telephone), and

1500—3400 Hz are indicated.

Table II shows that the average difference and standard deviation vary in dif-
ferent speech sounds and that the correlation coefficient r between the spectra pro-
duced by two speakers varies. A greater variation at the freguency measurement

experiment. experimentby

arrangements A. Iivonen K. Harinen T. Niemi-Laitinen

code of HA MA MAN AK N TP
speaker
sex, age female, 19 female.19 male, 41 male, 34 female, 31 female. 41

lin%:xistic Standard Standard Standard North Standard Standard
background Ostro Häme Karelian South South

Bothnia Karelian Karelian

material reading of a coherent text word list

phonemes a selection of consonants and vowels

recorder Revox A700 Marantz
> TEAC W-440-C

microphone AKG C451E AKG acoustics C567 E

tape BASF> TDK AD TDK AD _
telephone * DORO 1133 *

answering * Panasonic EASA- *

machine PHONE

4. Methods used in the comparison

Table I

Experimental arrangements (speakers, their linguistic backgrounds,
speech material and recording devices) in the three investigations.
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pointscorresponds to the smaller correlationbetween the spectra. The same phoneme
(cf. the burst of /k/) can give different correlations in different contexts. Thebest

inter-speaker variation was found in [ii]/ liikkuvat. The closer examination of the

corresponding spectra revealed a nasal formant at 1100 Hz in the speaker HA'’s

spectrum. The larger frequency bands showed greater difference between the

speakers than the more narrow bands.

5.2. Similarity evaluation of two male speakers and telephone speech
(Kirsi Harinen)

Two male speakers tobe compared sound alike. Vowels [a, i, ee] as well as con-

sonants [ll, rr. mm] were used in this study (see Table 111 below). SoundScope
spectral options 300 Hz — 1024 points. 300 Hz — 512 points as well as 45 Hz — 1024

points were used. The last option was still devided into two groups: smoothing
none and smoothing low. Correlations between the average spectra were calcu-

lated in two spectral bands (o—s kHz and the simulated telephone band) and corre-

sponding correlations were calculated from a real telephone speech sample (recorded
simultaneously: cf. Harinen 1996). Table 111 below shows an example of these mea-

surements.

All the mean ”same” correlation values (intra-speaker variation) are greater
than ”diff” correlation values (inter-speaker variation) in all spectral bands. This

means that there is more spectral variation between speakers (same utterance)
than within one speaker’srepetition of the same word. The highest mean ”same”
values (low intra-speaker variation, mean r over 0.90 = bolded) compared to mean

"diff” values in differentspectral bands (including all the SoundScope analysis options
used) are as follows:

3.

band 0 — 5000 Hz correlation coefficient z of different bands

phone—word
av. diff sd 0—5000 0—1500 telephone 1500—3400

[ssl—parvissa 25 13 97 72 93 98

[k1]—kevätkalan 3.2 2.2 90 .90 92 .97

[a2]1—kevätkalan 2.8 1.8 .87 .78 84 .98

[e1—kevätkalan 2.4 1.6 .86 .95 74 .96

[a1] —kevätkalan 4.7 2.1 .81 .98 .89 97

[mm]—kalamme 4.0 24 81 77 .76 92
[vl—kevdtkalan 3.1 14 .80 .79 74 .94

[a2]—kalamme 44 24 .79 .95 84 .98

[1—kevdtkalan 4.9 2.0 77 .70 .70 .93

[el—kevdtkalan 3.1 1.8 74 92 .69 .96

[tl—kevdtkalan 4.7 2.3 61 .82 55 .85

[k2]—kevdtkalan 6.4 3.0 .58 .86 51 88

[k]—kalamme 9.0 4.7 42 .86 .58 .93

[1}—kalamme 8.7 3.8 .41 44 .18 .87

[r}l—parvissa 5.9 3.6 .34 72 53 93

liil—/iikkuvat 8.7 4.4 25 72 45 .79

MEANS 4.9 2.6 .68 .81 .68 91

Table II

Comparison of the female speakers HA and MA (16 phones within one sentence)

SoundScope constant options: sampling rate 22.050; filter 45 Hz; TW = 33 ms; resolution 1054

points (= actually 213 points within 5 kHz); low smoothing; PreEmphasis; one snap from the

temporal mid point of the speech sound concerned (exept the bursts of [k] and [t]).
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1. 45 Hz — 1024 points/telephone speech. smoothing low r=l.o /0.70
2. 45 Hz — 1024 points/band o—s kHz. smoothing low — г= 0.97/0.41
3. 300 Hz — 1024 points/band telephone r = 0.96/0.54
4. 300 Hz — 1024 points/telephone speech r = 0.96/0.60
5. 300 Hz — 1024 points/band o—s kHz r = 0.95/0.45
6. 300 Hz — 1024 points/band telephone r = 0.94/0.46

According to the results, the SoundScope FFT option 45 Hz shows the greatest
intra-speaker similarity. The first two in the list above consist the telephone band

(the first in telephone speech and the second using the telephone band for nor-

mally recorded speech). It also seems, that the "smoothing low” option (45 Нг —

1024 points) is far better than the "smoothing none” option. The mean "same” cor-

relation values using the option "smoothing none” were in all cases r = 0.70—0.79.

Within the single phonemes and their correlations (Table III), the simulated

telephone band and telephone speech seem to yield a veryrobust correlation for

[a] among vowels (high "same” score and low "diff” score including also the other

tables which are not shown in this paper). [mm] shows considerable great differ-

ences in all options. The trill [r] seems to be veryrobust among consonants within

both telephone band and o—s kHz band. Trills are quite difficult phonemes to

measure spectrally because of their open and close phases. It is very important to

measure the spectra always at the same location within a period.

5.3. Similarity evaluation of two sisters (Tuija Niemi-Laitinen)

The two female speakers to be compared sound alike (they are in fact sisters; cf.
Niemi 1994). Vowels [а, 1, o] as well as consonants [s, r, nn] were used in this

study (see Table IV below). SoundScope options 300 Hz — 1024 points, 300 Hz —

512 points as well as 45 Hz — 1024 points were used. No smoothing option was

used. Correlations between the average spectra were calculated in every spectral
band (o—s kHz, 0—1.5kHz, telephone band and 1.5—3.4 kHz). Table IV shows an

example of these measurements.

300 Hz — 1024 300 Hz — 1024 — 300 Нг — 1024— 45 Нх — 1024 — 45 Нг — 1024

0—5 kHz telephone simulated smoothing smoothing
speech telephone none low

(teleph. band simulated simulated

band) telephone telephone

BR. ET— ——— band—
phone—word same diff same diff same diff same — @## same —&

[a1]— alla 1.0 065 093 051 096 045 082 035 099 0.46

[11]—a/la 099 0.65 1.0 0.82 093 083 08 057 099 . 072

feel—teeri 084 048 091 051 093 057 061 052 1.0 0.86

li1)—pilli 098 043 098 088 1.0 069 081 055 095 0.69

[rr]—parras 097 037 098 059 093 045 063 022 0.51 0.28

[mm]—tamma 088 009 098 023 099 026 068 019 099 0.27

mean 095 045 096 0.60 0.96 054 073 040 091 0.55

same/diff ratio 211 1.60 1.78 1.83 1.65

(meanvalues)

Table 111

Phones and words used in study

Correlation coefficients (r) of some options are shown in different spectral bands. Column
"same” shows the intra-speaker correlations, and column "diff” the inter-speaker correla-

tions. Three snaps were always averaged.
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All the mean ”same” correlation values (intra-speaker variation) are greater
than "diff” correlation values (inter-speaker variation) in all spectral bands. This

means that there is more spectral variation between speakers (same utterance)
than within one speaker’s repetitions of the same utterance. The highest mean

“same” values (low intra-speaker variation, mean r over 0.90) compared to the

mean “diff” values in different spectral bands (including all the SoundScope analy-
sis options used) are as follows:

1. 300 Hz — 512 points/band 0—1.5 kHz r = 0.99/0.77
2. 300 Hz — 1024 points/band 0—1.5 kHz r = 0.96/0.78
3. 300 Hz —512 points/band telephone r = 0.95/0.63
4. 300 Hz — 1024 points/band telephone r = 0.95/0.62
5. 300 Hz — 1024 points/band o—s kHz r = 0.92/0.70
6. 300 Hz — 512 points/band 1.5—3.4 kHz r = 0.90/0.80

These results show that the SoundScope FFT option 300 Hz shows the greatest
intra-speaker similarity. The first two in the list above compare the lowest channel
(0—1.5 kHz). where there is a lot of linguistic similarity (both intra- and inter-

speaker similarity). Therefore, telephone band results (300 Hz — 512 and 1024 points,
r = 0.95) as well as the whole band results (o—s kHz) show more speaker specific
information. There was not much variation in the correlation results between 300 Hz

— 1024 points and 300 Hz — 512 points. The correlation values werea little bit

smaller with the option 300 Hz — 512 points. Because no smoothing options were

used, the correlations using the option 45 Hz — 1024 points were much smaller than

the others (both inter- and intra-speaker correlations).

Table IV shows that [a] seems tobe the mostrobust one among vowels in tele-

phone band (r same = 0.97 and r diff = 0.62). The trill [r] seems tobe the most robust

among consonants (r same = 0.99 and r diff = --0.25).

6. Summary

In all three cases. clear spectral differences were observed between two speakers
who auditorily sound very similar. The differences in the repetitions of the same

linguistic structures produced by the same spealer yielded much lower values.

300 Hz— 512 points 0—5 kHz 0—1.5 kHz telephone 1.5—3.4 kHz
— 3 spectra ther
phone—word same diff same diff same= diff same—diff

[a]—sara 0.90 0.63 0.96 0.91 0.97 0.62 0.94 0.79

Lil—siru 0.90 0.68 1.0 0.99 0.93 0.75 1.0 0.68

[ol—sokko 0.73 0.84 0.92 0.83 0.89 0.93 0.73 0.87

[5]— ага 0.85 0.94 1.0 0.35 0.92 0.89 0.98 0.94

[r]l—sara 0.95 0.16 1.0 0.71 0.99 -0.25 0.96 0.84

Inn]—manna 0.93 0.85 1.0 0.85 0.98 0.83 0.77 0.70

mean 0.88 0.68 0.99 0.77 0.95 0.63 0.90 0.80

same/diff ratio 129 1.29 154 1.13
(mean values)

Table IV

Phones and words used

Correlation coefficients (r) of one option — 300 Hz, 512 points — in different spectral bands
are shown. Column "same” shows the intra-speaker correlations, and column "diff” the inter-

speaker correlations. Three snaps were always averaged.
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The following preliminary results can be reported: (1) the effect of the number

of the single snaps (3 or 6 snaps within a short period of time) have no significant
effect, but the use of one snap only yields better results only in the combination of

the smoothing option; (2) the following options yield greater differencesbetween

two speakers and a greater similarity in the intra-speaker comparison: a broader

filter (300 Hz compared to 45 Hz), greater number of frequency points within the

same frequencyband. the spectral smoothing; (3) the dissimilarity values get greater.
if the band tobe compared is larger (e.g. o—s kHz and the telephone band): (4) the

telephone band and the simulated telephone band yielded very similar results: (5)

among different speech sounds (phones). certain sounds or sounds in certain con-

texts show greater difference between two speakers than the others: (6) the option
"filter 45 Hz & smoothing” seems to combine the good effects of a stable spectral
form and a relative great independence on the fundamental frequency.
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