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MICHAEL L. O'DELL, TOMMI NIEMINEN (Tampere)

REASONS FOR AN UNDERLYING UNITY IN RHYTHM DICHOTOMY

1. Preface: Rhythm dichotomy or not?

Speech rhythm commonly refers to a temporal patterning of elements, typically
syllables, in the flow ofspeech. Such patterning requires that syllables be classified

into at least two categories, such as stressed vs. unstressed, or strong vs. weak.

Since Pike 1945, in what may be called the traditional account of speech rhythm,
languages have been categorized eitheras stress-timed or syllable-
t im e d. Stress-timed languages are supposed to have a simple rhythmical pattern
with stresses (or, tobe precise, the rhythmical beats of the stressed syllables) at

equal distances, whereas syllable-timed languages are supposed to have a simple
rhythmical pattern with equal-length syllables. In short. the dichotomy presents
speech rhythm ultimately as a simple phenomenon of equal beats connected with

either of two linguistic units.

This notion has been widelyrejected on the basis of empirical data (see Eriks-

son 1991 : 20—36 for summary: Roach 1982). since attempts to verify instrumen-

tally tendencies toward regular intervals either of stresses or of syllables have

been less than successful. Many researchers have abandoned the speech dichotomy
as too simplistic. claiming that speech rhythm can only be regarded as a complex
and multi-variabled phenomenon. Therefore, no simple rhythm-generator should

be available to study, and the perceived rhythm, whatever it is like. should not

manifest simple patterning of elements. For example, R. M. Dauer (1987) sees

rhythm as "the result of the interaction of a number of components”, and trans-

forms the dichotomy into a difference between languages with "stronger” or "weaker”

rhythm (1987 : 447).

However, there is also an empirical finding that seems to suggest an underly-
ing unity in the rhythms of different languages. There appears to be a strong sta-

tistical tendency for duration of the stress group (measuredas interstress

interval or ISI ie. the duration between two successivestresses) to be a sim-

ple linear functionI = a + bn of the number of syllables (n) contained in #, with lan-

guages differing mainly in the constant term of the function (Eriksson 1991 : 40—

441). A. Eriksson used linear regression to reanalyze R. M. Dauer’s (1983) data of

the mean durationsof n-syllable stress groups, with n ranging from 1 to 4. in five

1 A linear relation for total duration is also compatible with the "minimum duration” equa-
tions used by D. H. Klatt (eg. 1973) and others.
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languages (”stress-timed” English and Thai and ”syllable-timed” Spanish, Greek, and
Italian). Theresults of the regression analysis are given in Table 1. As can be seen,

the values cluster around 100 ms for the slope coefficient b and 100 ms or 200 ms

for the constant a. The only thing markedly differing between languages is the con-

stant, which falls roughly into two groups following the traditional timing dichotomy:
for syllable-timed languages it is about 100 ms, for stress-timed languages about

200 ms.

Thebenefits ofthis analysis can be summarized thus: (a) the traditional timing
dichotomy without a common term is transformed into a one-variable scale;
(b) this scale groups the languages in exactly the same way as the timing dichotomy
so that (c) an empirical validation is given to the traditional dichotomy w it ho u t

the suggestion of simple rhythmical organization of the stress groups. The corre-

lation coefficients (r) are remarkable, ranging from 0.973 inThai to 1.000 in Greek

and Italian, but one must remember that the formulas were calculated from aver-

aged data. Admittedly, A. Eriksson’s is not the first proposal for changing the tim-

ing dichotomy to a one-variablescale, but it differs from most others by deriving
its impetus from empirical data. Of course, definite conclusions as to the general-
izability of the account can only be reached when languages from outside the

stated timing distinctions are studied — languages such as ”mora-timed” Japanese
(Port, Dalby, O’Dell 1987; Han 1994) or ”foot-timed” Finnish and Estonian (Lehiste
1990; Wiik 1991) — but even with this reservation, A. Eriksson can be claimed to

have found a feature worth further research. (T. Nieminen (1996 : 92) calculated a

linear regression forFinnish material, resulting in / = 132 + 143n, which isroughly
midway between the stress- and syllable-timed extremes, as far as the constant is

concerned. This could be expected considering that Finnish has been notoriously
difficult to place in the timing dichotomy— cf. Miller 1984).

The formulas obtained mathematically from empirical data do not explain
anything by themselves, they are just a means of categorizing languages. Expla-
nation demands at least a suggestion of the mechanism underlying the

rhythmical units; A. Eriksson acknowledges thistoo. The main difference between

the language groups seems tobe in the constant term. The ”natural” interpretation
(as A. Eriksson says) is that the constant termrepresents an extra duration included

in the stressed syllable. This would mean that the difference between stress-timed

and syllable-timed languages is only that stressed syllables are longer in stressed-

timed languages. Actually it is easy to demonstrate that the figures given in Table 1,

especially as they are mean values of a speech sample, do not tell us anything about

the internal organization of the stress group (Eriksson 1991 : 46—47). We cannot

say if there is syllabic compression at all, and if there is, which syllables it applies to.

The ”extra” duration could be a part of the stressed syllable, part of the stress

group as a unit (for instance, as final lengthening), distributed evenly to all sylla-
bles, or even to various syllables at random. In fact, the ”natural” interpretation is

contradicted by empirical data. For instance in French (allegedly a syllable-timed

English / = 201 + 102n r = 0.996

Thai I =220 + 97n r = 0973

Spanish [ = 76 + 119n r = 0997

Greek [ = 107 + 104n r = 1.000

Italian I = 110 + 105n r = 1.000

Table 1

Linear regression equations and correlation coefficients for five languages
using R. M. Dauer’s (1983) data
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language) the stressed syllables are markedly longer than the unstressed ones,

even more so than in the stress-timed languages (Delattre 1966 : 190, 193). Also, it

has long been established that in numerous languages compression does occur (in

all syllables) as the number of syllables increases (cf. eg. Lehiste 1970 : 40—41;

Nooteboom 1972 : 62—71 and references therein).

2. Coupled oscillators and APD theory

In recent years there has been much success in the modelling of biological rhyth-
mic behavior using coupled oscillators. The basic idea is to assume the existence of

subrhythms which would exhibit simple oscillatory behavior if observed in isola-

tion. When oscillators are combined into larger systems so that they influence

each other, the resulting patterns of rhythm may be much more complex than

those of the component oscillators. In some cases, enough is known about the

mechanisms underlying a particular behavior, that detailed models of component
oscillators and the ways they influence each other (coupling) may be attempted. In

many other cases the mechanisms leading to rhythmic behavior are not under-

stood in detail, or can only be guessed at. Fortunately, however, much of the

macroscopic behavior of systems of oscillators is relatively insensitive to the exact

details of the oscillators or the couplings involved. A mathematical technique called

APDtheory (for averaged phase difference)hasbeen developed
which is abstract enough to derive gualitative conclusions about collections of oscil-
lators in spite of minimal knowledge of the details of the components (cf. Kopell
1988). The essence of this technigue is twofold. First, any descriptionsof oscillating
subsystems are reparameterized in coordinates of phase relative to the system's
own limit cycle attractor, or ”natural oscillation”, reducing the variables involved to

phase. If no previous physical description is available we may assume this trans-

formation has been applied and start with a simple phase description. Operating on

its own, such a subsystem will be characterized by

д - © ()

that is, the derivative (or rate of change) of the oscillator’s phase (6) is a constant (w)
expressing the oscillator’s "natural” rhythm or eigenfrequency. The next step 15 Ю0

consider the interaction of two (or more) such oscillators, each with its own eigen-
frequency. Even with the above simplification, this interaction could in general be
a complicated functionof the phases of each of the subsystems. but a further sim-

plification is utilized in APD theory. For each subsystem the effects at each.phase
difference areaveraged over an entire cycle, giving a simple characterization

of the total system in terms of constant eigenfrequencies (w) along with couplings
dependent only on phase differences (¢). For instance, for a coupled system of two

oscillators, we have

9:1 = @, + Hı(g)

86 = w +H,(-@); d = - (2)

It then becomes possible to study the behavior of a relatively simple model
which nonetheless qualitativelyreflects the behavior of the more complex under-

lying system in a widerange of situations and with verymild assumptions. Using
this technique it should be possible to model speech rhythms as collections of

coupled oscillators, and possibly draw some general conclusions. In the case of syl-
lables and stress groups, we need a coupling function which changes according to
the number of (intended) syllables per stress group. In other words, the idea will
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be to assume a ”stressgroup oscillator” and a ”syllable oscillator” coupled together
by a function that depends on n, the number of syllablesper stress group. Each oscil-

latorwill have its own eigenfrequency which we designate ол for the stress group
oscillator and w; for the syllable oscillator. We assume the coupling influences

may be expressed as a function of a quantity

фп = 92-'lOl (3)

with n the number of syllablesper stress group. If we further assume that the two

coupling functions are identical in form but opposite in sign, varying only in rela-
tive strength, we arrive at the following system:

6, = @ +H(p,)
6 = w,—rH(¢,) (4)

where r indicates the relative strength (or dominance) ofthe stress group over the

syllable. To find an equilibrium solution, we set the derivative of ¢, to zero:

ф, = (@› - п) - (г + п)Н(ф,) = 0 (5)

which gives

2—l d
(6)H(g) = 2220

The period of the stress group oscillator (eg. the time from stress to stress, or

interstress interval) at such an equilibrium (if it exists) can then be calculated as a

function of n:

1 r 1
T =—— -—— +—— (7)()

@ + Н(ф.) — го», +o%^ га + OЫ°

The period is thus a linear function in n of the form ! = a + bn used by A. Eriks-

son (1991). Therefore it is tobe expected on the basis of this general model of two

rhythms hierarchicallycoupled (ie. 1 : n) that the period of the slower rhythm will

tend to a linear function of n, at least when there exists a stable solution to equa-
tions (3) апа (4).

2.1. Interpretation of coefficients

If a and b in A. Eriksson’s formula are estimated empirically, as in Table 1, then the

"relative strength” parameter r of equation (4) can be estimated asa/b. On a plot of

a vs. b, this can be seen as the slope of a line through the origin and the point (b, a)

as illustrated inFigure 1 for the coefficients in Table 1. A point for Finnish is also

shown in Figure 1 (filled circle) based on Nieminen 1996. If languages are catego-
rized according to r instead of a, Finnish wouldappear to fit in the "syllable-timed”
group.

If wı and &2 are held constant in the model while r is allowed to vary, a and b
will be inversely proportional with intercepts 1/wj and 1/w. Actually, it would

appear that the languages of Table 1 are rou g hly related in this fashion (cf. the

dashed line in Figure 1), which invites the interpretation that these languagescould
have syllables and stress groups with roughly the same eigenfrequencies, the dif-

ferences being mainly a matter of the relative influence between syllables and

stress groups.
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Figure 1. Relationships between coefficients « and b

2.2. Phase walk-through

The relation expressed in equation (7) depends on the existence of an equilibrium
solution. However, if the coupling function H(¢, ) is finite, there must be an n large
enough that no equilibrium exists. When this happens, a phenomenon known as

"phase walk-through” occurs (Ermentrout, Rinzel 1984) in which the oscillators

don’tkeep step. but continuously "slip” relative to each other. At this point the lin-

ear relation of equation (7) will "break down” and no general formula for the ISI

can be found. It is not clear whether this phenomenon has any relevance for speech,
since it could well be that this phasewalk-through occurs at values ofn not observed

in speech.

3. Modifications of the model

Admittedly the model expressed by equations (3) and (4) is veryabstract. Indeed,
this was the main motivation for using it. What would be the consequences of

adding details in an attempt to make the model more realistic? Under what con-

ditions will the conclusion be upheld that there is a tendency for ISI to be a linear

functionof the number of syllables? We now consider briefly some modifications

of the basic model and their qualitative consequences.

3.1. Duration of stressed syllable

It is well known that in many languages stressed syllables are longer than

unstressed syllables, ceferis paribus. In our model this is equivalent to saying
that the equation for syllable frequency includesa "siress function” K(61) depend-
ing on stress groupphase, which will slow the syllable down in the vicinity of some

particular phase, eg. 61 = 0, representing stress: ¢, = wı — K(61) — rH(¢,). This

change obviously means that the equilibrium point will vary throughout each
stress cycle. However, integrating the stress function over one stress cycle will
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still contribute only a constant value, so that the linear form of the interstress

interval remains unchanged. The same comment applies to any other change
in duration at a particular position within the stress group — such as final length-
ening.

3.2. Effect of differing syllable types

We may wish to classify differentsyllables according to some apriori scheme in an

attempt to explain some of the variation evident in syllable rate. It is certainly tobe

expected that differentsyllable types will correspond to different values of eigen-
frequency (w2 How can these differences be incorporated into the model? From

equation (6) we can easily solve for the period of the syllable cycle at equilibrium,
giving 72 = a/n + b, with a and b the same as in A. Eriksson’s equation, both

depending оп () (а5 well as wlj). If w 2 is allowed to assume different values for dif-

ferent syllable types, then each syllable type 7 will have its own a; and b;, and in-

terstress interval can be computed as an appropriate sum:

Tl(n) = 2 п,'(%і' + b‚) ‚ n=z n; (8)

with n; syllables of type i. If there are enough cases, the a; and b; parameters can

be estimatedby multiple regression, as illustratedin Nieminen 1996 for short syl-
lables (open syllables with short vowels) vs. long syllables (all other types) in his

Finnish material. In Figure 1 there are two (connected) open circles shown for

Finnish based on T. Nieminen's data: closer to the origin the point a =95, b = 117

for short syllables, farther from the origin the point a = 148, b = 163 for long syl-
lables. If the coupling isassumed tobeconstant, these two points each provide an

estimate of 7 = a,/b; and should lie on a line through the origin. Interestingly the

point for short syllables is roughly in line with the other languages plotted. while
the point for long syllables is markedly different.

3.3. Relaxing the limit cycle requirement

One aspect of the general model which may well be questioned is whether each

subsystem would exhibit oscillation on its own. Actually, APD theory can be

extended to at least some systems with components which are only nearly oscil-

latory (excitable systems or "one shot oscillators”. cf. Kopell 1988). We have found

through computer simulation that a model with a "one shot syllable” can never-

theless exhibit a roughly linear relation between number of syllables and ISI.

3.4. Discrete (multiple pulse) interactions

Also, it may well be that interactions between stress group and syllable production
are not continuous but discrete, confined to a few points around the cycle. Of

course such influences can be formally averaged as APD theory requires, but the

question arises to what extent the (qualitative) behavior of the system is preserved
under this averaging. G. B. Ermentrout and N. Kopell considered this question
(Ermentrout, Kopell 1991) and found that the distortion introduced by averaging
is small providing there are enough interaction pulses around the cycle. Again
using computer simulation, we found that a system with interactions limited to

very few pulses can indeed exhibit a roughly linear relation between number of

syllables and interstress interval.
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3.5. Adding hierarchical levels

What happens to the linear relation between number of cycles (say syllables) at one

level and the period of a superordinate cycle (say interstress interval) when the

model is expanded to include several hierachical levels? This is an interesting ques-
tion, since speech rhythm has often been described, at least for some languages, in

just these terms, for instance with an additional mora level below the syllable, or a

foot levelbetween the syllable and stress group. Ifwe expand the above model to

include & + 1 oscillators instead of two, keeping the assumption of strict hierarchy
so that the oscillators form a chain withcoupling between neighbors only, we get
the following set of equations:

дп =o, + Hi(¢h)

6 = @,—riHy\(¢s)+His)

G = O—reoyHeoy(ser)+Hdb
б = @н — АНкф) (9)

Here @; = 041 - n;0;, and n; is the number of 8;.1 cyclesper 6; cycle, for all i from

1 to k. Setting the derivatives of all the ¢, = O for the equilibrium and solving for

Hi(¢l) leads eventually to an expression for the period of the slowest (61) oscillator

which is a linear function of all the numbers of different subunits contained in it:

Т, = со + cılmı) + c2(mna) +
...

+ cx(mna...ny), of all the numbers of different

(sub)units it contains. The "relative strength” parameters in equation (9) are equal
to the ratios of adjacent coefficients: r; = c,-1/c;. This suggests using multiple
regression on empirical data to estimate the relative strengths of the couplings
between the various levels of such a hierarchical model.

4. Conclusion

The model developed here can be considered a synthesis of the simple and com-

plex conceptions of speech rhythm. We believe that rhythm is indeed a complex
phenomenon influenced by many factors, and the mechanisms responsible for

producing rhythmic patterns may differ in complex ways from language to lan-

guage. However, our model of interacting oscillators leads us to the conclusion that
certain traits of speech rhythms, such as theroughly linear relationship noted by
A. Eriksson, may be very general in spite of differences in details. We suggest this
result may in fact be even more general, reflecting tendencies for any hierarchically
organized rhythmic behavior.
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