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MATI HINT (Tallinn)

WHY SYLLABIC QUANTITY? WHY NOT THE FOOT?

1. The alternatives

The research into Estonian quantity has reached a point where many scholars have

abandoned the doctrine of three phonological quantity degrees for all Estonian

vowels and consonants.

Now, besides the doctrine of ternary contrasts there are other competing theories

of quantity in Estonian: 1) the quantity patterns are defined by the segmental structure

and prosody of the stressed syllable, and 2) the quantity patterns are realized in the

two-syllable sequence (or the foot. or the stress group, or the Sprechtakt), the ratio of
durations of the firstand the second syllables being the most important cue in the per-

ception of quantity degrees. The second view is strongly supported by phoneticians
Arvo Eek, Einar Meister. Ilse Lehiste and Kalevi Wiik.

The paper propounds arguments in favourofthe syllable: the domain ofprosodic
patterns in Estonian is the foot (stress group, Sprechtakt), but only the structure of the

stressed syllable is relevant in determining the quantity degree of both the syllable
and the foot; the second or/and third syllable(s) ofthe foot have no direct influence on

the quantity of the first stressed syllable, except the fact that the feet with the first

syllable in Q 1 or Q 2 must have at least two syllables. But this is a phonotactic con-

straint. The unstressed second (and third, if there is any) syllables have no distinc-
tive prosodic structure. all they have is segmental structure.

Why syllabic quantity. why not the structureof the whole foot? |
1. The feet in O 1 and O 2 must consist of two syllables, but may consist of three, and

adding a third syllable does not influence the guantity of the first syllable at all:

kalale, kaalutleb. A recent paper by Ilse Lehiste does not confirm the importance
of the foot structureas a whole in durational patterns: the duration of the three-syl-
lable foot in Finnish folk songs is approximately 40% longer than that of the two-

syllable foot. There is almost no tendency to accommodate the durationof a foot

to some timing measure of the foot (Lehiste 1997c). The third syllable of the foot

does not influence the quantity of the first syllable. But what about the second syl-
lable?
2. You may alter the structure of the second syllable, and this does not influence
the quantity of the firstsyllable either: the first syllable in kala — kalas — kalast —

kalaks or kaalu — kaalun — kaaluks are in Q 1 or Q 2 irrespective of the structure

of the second syllable. And if the duration of the open second syllable is predictable
from the quantity of the first syllable, this is exactly what a phonologist regards
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as dependent features. In conclusion: the structure of the first stressed syllable
determines the phonotactical mustsand maybes of the following syllable(s), not vice

versa.

3. You may have monosyllabic Q 3 feet (Sprechtakte), which are both phonetically
and phonologically parallel with disyllable Q 3 feet: Taks — ‘raksu — ‘raksus —

‘raksuks (non-standard pronunciation) are all in Q3. You may have monosyllabic
Q 3 feet in succession in connected speech ( ‘kehv "kohn ‘poiss “liks `Верр “kdes; “tou

“suur ‘selts kond 'likkus; ‘rohtpalksein, jalgpall. 'välk 'matt) or followed by
two-syllable feet ( ‘kunst likkus, ‘mdes tikke, "kont‘serte). The assertion by A. Eek
and E. Meister (1997 : 93, 95) that a stress foot must be at least disyllabic proceeds
from the foot theory, and not from the fact that a syllable in Q 3 may make up a

foot.

4. The phonological rules for the description of the production ofwell-formed Eston-

ian word forms do not need any reference to the ratio of durations of the firstand

second syllables. The unstressed syllable, whether open or closed, is fully describ-

able as a chain of segmental phonemes only. It is not plausible that the phonolog-
ical theories of production and perception are different and make use of different

phonological concepts. The description of Estonian cannot proceed from the con-

viction that in Estonian everything may be fundamentally different from all the
other languages (as it does in the theory of ternary quantity oppositions of vowels

and consonants).

2. Why not the foot?

The ratio theory has a half a century long history. Not fully believing in the theo-

retical possibility ofternary oppositions and searching for binary solutions, already
Lauri Posti (1950) proposed a binary explanation for Estonian quantity contrasts.

L. Posti proceeded from the binary oppositions both in the first and the second

syllables: short and long contrasting in the first syllable (Ist and non-Ist quantity
degree), and a half-long vowel contrasting with a short vowel in the second syllable
(differentiating the IT and 111 degrees ofquantity in a two-syllable sequence). In this

explanation the phonetically half-long vowel of the second syllable mustbe con-

sidered phonologically long (as L. Posti does), or it has to be regarded as an inde-

pendent degree of phonological length (one more phonological quantity degree in

Estonian!). Either solution is impossible for many reasons, including the predictabil-
ity of this half-length and the inconsistence of its occurrance. Paavo Ravila (1961)

analyzed L. Posti's theory and considered the whole structure of the two-syllable
sequence to be relevant for quantity distinctions, but he did not say how to inter-

pret the relations within this two-syllable unit phonologically.
Georg Liiv published many reliable experimental data about the duration rela-

tions of vowels in the first and second syllables (V : V2) in words of different degrees
of quantity (e.g. Liiv 1961: 1962).

The concept of the phonological word or speech tact (synonimous with stress

group, Sprechtakt, foot) in Estonian was elaboratedat the end of 1960 s in differ-

ent works by M. Hint (Hint 1968; 1973: cf. Lehiste 1965). The phonological word

was considered as the domain of prosodic patterns: stress and quantity patterns
manifest themselves and are repeated within the boundaries of the phonological
word.

But the views about what is phonologically relevant and what is phonologically
redundant (dependent) within the boundaries of this unit for determining the quan-

tity degrees are not unanimous.
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The author of this paper has advocated a phonological interpretation according
to which the domain of prosodic patterns is the speech tact (phonological word,

stress group, Sprechtakt, foot), but the segmental and prosodic composition of the

first stressed syllable alone bears on the quantity degree (Hint 1997a; 1997b). The

length of the vowel of the second syllable isredundant, dependent, and predictable;
the unstressed nature of the second syllable following the first syllable in Q 1 or Q2
is predictable as well.

_

In the 1980—90 s the concept of the two-syllable sequence as the domain of Eston-

ian quantity patterns was again advocated in many papers by Kalevi Wiik, Arvo

Eek, Einar Meister, Ilse Lehiste (most recently, e.g., Lehiste 1997 a : 27 ff.; Eek,

Meister 1997 : 75, 83 ff.; Wiik 1997! : 323—324).
The new things in these publications are the more detailed experimental data

and an innovated terminology pertaining to the foot or stress group.
But the main phonological problems remain unsolved: how to interpret ratios

of syllable durationsphonologically, how to explain monosyllabic Q 3 feet, how to

phonologize segments in the second syllable of the foot, how to harmonize the

theories of speech perception and speech production for Estonian, how to avoid ad

hoc phonological theories for Estonian.

The theory of ternary oppositions of Estonian vowels and consonants is a

perfect example of an ad hoc phonological theory, which leads towards a chain of

assertions beginning with the words "unlike any other language, in Estonian there

is/are ...” If the ratio theory cannot solve the aforenamedproblems, it will turn into

just anotherad hoc theory which heavily relies upon the absolute exceptionality of

the Estonian language.

3. Why syllabic quantity?

My argumentation in favour of feet as the carriers, or domains, ofprosodic structure,

and the stressed syllable as the only bearer of quantity is supported by parallels of

stress patterns: stress and weak stress are manifested in a chain of syllables,but stress

is present or absent in any concrete syllable (not in a foot as a whole); although stress

is perceived as contrast between stressed and unstressed syllables, there are pho-
netic parametres within stressed syllableswhich allow to identify them as stressed;
in the same way the quantity degree is dependent only upon the structure of the

stressed syllable, not upon the structureof the two- or three-syllable sequence.
This argumentation is phonological, but recent papers by the phoneticians Ilse

Lehiste, Arvo Eek and Einar Meister are taken into account. Contrary to Ilse Lehiste,
I do not consider the third degree of quantity an exception in respect of the number
of syllables in the foot (Lehiste 1997 a : 11): the length of the foot in the case of Q1
and Q 2 is two or three syllablesand in the case ofQ 3 one syllable ( kehv, `Ваа) ог

two ( raske) or (?) three ( kaalusin) syllables. In any case, if Q 3 is an exception, the

phonological theory of Estonian cannot put this exception aside, because almost all
the problems of quantity in Estonian phonology are connected with syllables and

feet in Q3.

1 In this review of Hint 1997a, K. Wiikcommits an absolutely unbelievable mistake: he asserts

that according to M. Hint the suprasegmental feature (prosodic phoneme) differentiating
between Q 2 and Q 3 is stress — a syllable in Q 3 is stressed but there is no stress in a syllable
in Q 2 (Wiik 1997 : 323). This is quite erroneous: I have always said that the opposition of Q2
and Q 3 is possibleonly in the stressed syllables, stress being the prerequisite for any Q 2 : Q3
opposition. This is repeatedly discussed in the book K. Wiik reviews, and even on the jacket
of the book there is a scheme which illustrates the same idea.
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When considering syllabic quantity the question is: is the syllabic Q 3 the sum of

segmental quantities, of which at least one has tobe in Q3, or are the syllabic Q2
and Q 3 but prosodiccounterparts having the same segmental structure, Q 3 being
interpreted as a prosodic transformation of a syllable in Q2?

The first conception isclassical in Estonian linguistics; however, it avoids deal-

ing with syllables where diphthongs are in the position ofsyllable nuclei and con-

sonant clusters at the boundary of the first and the second syllables ( laulu, ‘metsa,
‘konksu, “austa): it is not possible. without contradictions, to define the phonolog-
ical segments in such syllable types as belonging to Ql. Q2, or Q3.

Even as late as 1997 Ilse Lehiste repeats her ternary explication of Estonian quan-
tity in word series sada — saada — “saadaand taba — tapa — “tappa, without asking
how quantity works in more complex syllable types(Lehiste 1997a: cf. Lehiste 1965).
In these series it is easy to arrive at a typically phonetic theory ofternary oppositions.

Happily enough there is some progress in this respect: the paper by A. Eek and
E. Meister (1997 : 83—84) proceeds from the parallelism ofsyllables with long vowels

and diphthongs, on the one hand (saada and lauda, 'saada and “lauda), and gem-
inated consonants and clusters, on the other hand (samma and tahma, °samma
and ‘tahma). This turning from segments towards the structure oflong syllables 15

a landmark which manifests the failure of the segmental approach.
Revealing is the wording by I. Lehiste (1997 b : 160): "Segmental durations

alone do not necessarily reveal the quantity degree ofthe word inwhich theyappear.
For example. /t/ inC; position of type 11, vaatate, has the same duration (156 msec)

as /p/ in C; position of type 5.kepiga (154 msec): but vaatate is in Q 3 and kepiga
is in Q2. V; of the Q 2 word vaadata is 170 msec, while V; of the Q 3 word vaatate is

164 msec. Of course, the contrastive prosodic word types that share a segmental
duration in a given position differ in other respects — structure of the entire metric

foot of which the segments constitute a part. position of FO peak in Vl, value of FO

at the end of V; etc.: the point is that all these featureshave to be specified in order

to assign the word to its prosodic type.”
It is clear that assigning quantity degrees to segments (and not to syllables) is an

inadequate solution. The syllable types ofthe first syllables in vaatate and kepiga are

totally different. It is not possible to deduce the phonological quantity degrees of

syllables from the quantities of segments, while it is possible to identify the quantity
degree of the whole syllable. Describing all the phonetic parametres in the disyllabic
sequencecannot be the end point of analysis — it isnecessary to differentiate between

the relevant, independent features, and the redundant, dependent features. I assume

that for quantity the relevant features are located in the stressed syllable.

4. The second and the third syllables of the foot

The same problems are essential in respect of non-first syllables. Up to now the

role of the second syllable in the quantity patterns has been considered mainly
from the point of view of the identification of the quantity degree of the word (or

foot, or phonological word, or stress group). No doubt, the second syllable and the

word structure have a role in the perception of quantity. In a real situation of

Feet before Q3 emerged Feet in contemporary Estonian

/ ” tere, jalga / ‘kehv, “kohn, “poiss, jalg

/\p \p Orava, metsaste / ” tere,ora, jalga

/\pg \pm Orava, metsale, ‘'metsade
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speech perception the identificationof quantity involvesconstant guessing on dif-

ferent linguistic levels, of which semantics and sentence structure are playing an

important role. But this does not mean that these factors shouldbe phonologized
as a part of phonological theory.

The same pertains to the role of the second syllable in perceiving the quantity
degree of the first stressed syllable. Really, in many cases the half-long vowel of the

second syllablemay be an additional clue in determining Q 1 and Q2. The word form is

perceived as a whole. as gestalt. But there are independent and dependent features in

this gestalt. The half-length of the second syllablecannot be used at all times, because

the half-length of V 2 fully depends 1) on the structure of the first syllable (it cannot be

overlong), and, 2) on the structure of the second syllable (it cannot be followed by a

long consonant or a voicelessconsonant cluster, including geminates). In this way, the

half-length is a dependent feature and it is not possible to phonologize half-length as

an independent phonological quantity degree or an independent prosodic feature.

A. Eek and E. Meister (1997 : 89) claim that the information about V; is important
in perceiving quantity of the firstsyllable. Probably this is not the information about
the properties of V 2 which is important, but the fact that short and long (Q 1 and Q2)

syllablecannot exist without a followingunstressed syllable. The structure of this syl-
lable may be very differentand even the ratio of the duration ofthe first and second

syllables may not remain constant: jama.jamal,jamalt,jamaks;jaama. jaamas,jaamast,
Jjaamalt,jaamaks. Neither the half-length nor the ratio of the durations of the first and

the second syllables cannot be a reliable constant cue for quantity degree identification.

The other side of this problem is production. How is a phonologically well-

formed Estonian word produced? What is the phonotactics of this process? Is there a

specific set ofhalf-long vowelphonemes to be introduced into the second syllableafter
the firstsyllable in О1 (and Q2?)? This seems to be impossible. And how to describe

phonologically (and phonotactically) the production of syllable duration ratios?

These are questions which should be answered if one wants to give phono-
logical plausibility to the theory of ratios.

The problem of long obstruent phonemes (particularly stops) after V; is like-

wise intricate. How to interpret phonologically the phonetic geminates at the bound-

ary of the second and third syllables in cases like kadaka. sinepi. valeta?

llse Lehiste prefers to speak about long consonants (in a more detailed terminol-

ogy ambiguously long, that is, neither Q 2 nor Q3: cf. Lehiste 1997 b : 160) which contrasts

with a short consonant in this position. The possibility to contrast these different

degrees oflength at the end ofa word adds to the plausibility of an interpretation of

these contrasts as different quantity degrees of obstruents (cf. Hint 1973 : 73—76):

Short Long = Geminate

/t/ : /tt/ : palad, piigad, palade, piigade — palat, piigat, palati, niidate

/p/ : /pp/: paneb, hiilib — kanep. siirup, kanepi, siirupi
/k/ : /kk/: tulega, viiruga — tulek, viiruk, tuleku, viiruki

/s/ : /ss/ : tulus, kaunis. tulusa, villase — talusse, lillasse

Anyway, the short-long interpretation is possible only in this small subset of

word forms. In the larger vocabulary it becomes evident that the word forms with

a short stop after V 2 are parallel with any word form with any short consonant in

this position: palad : palade, paneb, piigad : piigade, hiilib, tulus : tulusa, parem :

parema, sadul : sadula etc.

Long stops and geminates in this position are parallelwith voiceless consonant clus-

ters in this position: palat : palati, sitrup : siirupi, tulek : tuleku, vanasse belong together
withkalast, alasti, vilets : viletsa, oleks : oleksin, karask : karaski, biitseps : biitsepsi etc.
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Voiceless consonants and consonant clusters in this position form a well-defined

set with long obstruents occuring in complementary distribution with consonant

clusters. This complementarity and structural parallellism between word forms

with long consonants and consonant clusters directs towards phonemicizing long
obstruents as phonological geminates in both positions (that is, between vowels as

well as at the end of word):

/pp/ - - /ps/: /kanepp/, /kaneppi/, /piitsepsi/
- /tt/ — /ts/ : /palatt/, /palatti/, /vilets/, /viletsa/

- — /kk/ /ks/: /tulekk/, /tulekku/, /tuleks/, /tuleksin/
- /st/ /sk/ /ss/: /valesti/, /karask/, /vanasse/, /kuusesse/

This means that the classical scheme by I. Lehiste (1965; repeated in Lehiste 1997 a :
16) which allows two degrees of quantity in positions after unstressed syllables has

tobe supplemented with solutions which take into account the whole vocabulary,
all word forms, including the words with consonant clusters.

When this is done, there is no need any more for quantity degrees in unstressed

syllables. All we need is the phonotactic rules which produce segmentally different

syllables in the unstressed position.
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