https://doi.org/10.3176/oil.1994.3.08

REVIEW

V. YEFIMOV, I. ROOKS, H. ROOTALU

DEVELOPMENT OF THE OIL SHALE PROCESSING INDUSTRY IN ESTONIA AFTER WORLD WAR II

Before World War II, oil shale processing in Estonia was oriented predominantly to the production of liquid fuels [1]. The early post-war development was characterized by introduction of synthetic domestic gas production. This process utilized high temperature gasification of oil shale in chamber ovens of special design. The predominant production of liquid fuels was gradually replaced by non-fuel products and specialty chemicals derived from shale oil. As seen from Table 1, the physically and economically outdated units were gradually closed down and new ones were erected.

For the first time in worldwide practice, synthetic domestic gas was produced from oil shale at the oil shale processing plant at Kohtla-Järve (now a state joint-stock company, the RAS "Kiviter"). In November, 1948, the first gas was supplied to Leningrad (St. Petersburg), and some time later also to Tallinn. During this period, the amount of oil shale processed increased due to the introduction of chamber ovens and a number of vertical retorts (formerly traditionally referred to as "oil shale generators"). At Kohtla-Järve 12 vertical retorts were built (GGS-5), and 8 retorts at Kiviõli (now the RAS "Eesti Kiviõli"). About one million tons of oil shale were retorted annually in pre-war Estonia. In 1965 - 1966, the maximum level of processing was reached - 4 million tons per year (Tables 2 and 3). A maximum of 500 million m³ of domestic gas was produced per year.

Later, relatively cheap natural gas was found to be more economical for meeting the needs of northwest Russia. The share of oil shale gas started decreasing rapidly. Since the 1970's the production of gas was gradually reduced, and, in 1987, the operation of chamber ovens was completely stopped.

The rapid development of the oil and gas industry in the Soviet Union in the 1960's forced the economic feasibility of orienting the Estonian oil shale industry from the production of fuels towards manufacturing value-added chemical products. This was accomplished with due consideration of the specific properties of kukersite shale oil. Since the early 1960's, the share of fuel products in the total value of production was gradually reduced to 10%, and even lower. At the same time, the manufacture of products based on phenols extracted from shale oil progressed rapidly [2].

The number of various products derived from oil shale totalled about 50. Besides fuel oils and synthetic domestic gas, the oil shale processing plants started manufacturing antiseptic oils for wood impregnation, electrode coke, roofing and construction mastics, a chemical soil conditioner "Nerosin", rubber softeners, casting binders, etc. The shale oil phenols (alkyl resorcinols) were used as feedstocks for epoxy and other adhesive resins and glueing compounds, synthetic tanning agents, plugging compounds, rubber modifiers, etc.

Plant	Unit	Throughput rate, t/day	Number of retorts/ovens	Start-up	Cease of operation
Kohtla- Järve, RAS	Experimental vertical retort (generator)	7-8	1	3.08.21	December, 1924
"Kiviter"	GGS-1	33	6	24.12.24	30.07.85
Kohris	GGS-2	40	8	31.03.36	30.07.85
	GGS-3	40	16	28.05.38	
(journal)	GGS-4	45	20	1943	of birdy supra
hid besiling	Commercial-scale experimental retort	100	1	1946	1955
And produced	GGS-5	100	12	22.07.51	The maintaine
Lecievdaari	Chamber ovens	15	276	5.11.48	August, 1987
w ones wer	Tunnel ovens	400	2	1956	1968
on beurbo	First 1000 TPD retort	1000	1	18.01.81	real administration
is joint-stoo	GGS-6	1000	2	18.01.87	bill ist slack li
Kiviõli, RAS "Eesti	Experimental tunnel oven section	nder, 1940 e later also	1	1926	In the 1930's
Kiviõli"	Commercial-scale experimental tunnel oven	75	amol) and selfer the	1927	in amount of oil as a munice o chernion of the
34P816.42%	Commercial tunnel	250	2	1931	The last oven
Stavel min	oven	350	2	1935	was closed down in 1975
In the plant	GGS	100	4	Sept Oct., 1953	of an anothin of
TSRIN gille	BASIN MANAGER	REAL PROPERTY	2	1954 - 1956	rion to attain a
u chise Pan	Philip The Shippy of	100	1	June, 1962	Side and Ty 10
osotarola era Esterishtrin	completely utiliz	100	lo lo anu	November, 1963	pendion of char
	Solid-Heat-Carrier units (SHC): SHC-200 SHC-500	200 500	1 1	29.10.53 November,	1963 1.07.81
10000000	ier disc the sum	a milerando	g rown to bin	1963	a da hondia, 31
Sillamäe	Commercial tunnel	270	1	1928	Mostlikely
如何 一	ovens	500	evical atomb	1938	during World War II
Kohtla-	Davidson horizontal	25	4	1931	1961
Nõmme	rotary retorts	25	4	1934	1961
Narva, Estonian Thermal Power Plant	SHC-3000	3000	2 and and alloy	30.06.80	indensionale. The poors and ether logging compos

Table 1. Start-up of Oil Shale Processing Units in Estonia

nes
ton
thousand
П,
War
World
after
stonia
E
s in
Plant
orting
it Ret
20
ocessir
Pr
I Shale
O
le 2.
Tabl

Ka,	1	-		11/2					1		-		6.5	aib	all the	y B	7	hes	8s	6			1.61	pain 1
Total volume	of oil shale	processed	「「「「「」」」	2647	3368	3740	4106	4499	4478	4203	4347	4182	4039	4043	4045	3723	3527	3313	3162	2478	2646	2451	2138	2493
Estonian	TPP, SHC-	m		101	-	-	1	1	-	-	1	1	1	-		4	16	51	77	128	311	374	309	500
Total in	Vertical	ICCOLES	三日間の	1189	1526	1794	1989	2066	2080	2060	2153	2159	2156	2223	2223	2138	2199	2222	2300	1960	2335	2077	1829	1993
	total		「「「「	539	701	802	891	942	938	862	949	794	635	589	580	579	531	479	484	496	420	387	386	391
sti Kiviõli"	SHC-200	and	SHC-500	1	13	26	86	122	111	127	134	145	135	130	105	94	53	1000	-	SHOTON T	-	1	E	
RAS "Ee	tunnel	ovens	04 m	372	444	467	444	445	446	372	410	210	52	1	1	1	1	1	1	Internet	-	1	L	
The search of	vertical	retorts	1250	167	244	309	361	375	381	363	405	439	448	459	475	485	478	479	484	496	420	387	386	391
	total		3284	2108	2667	2938	3215	3557	3540	3341	3398	3388	3404	3454	3465	3140	2980	2783	2601	1854	1915	1690	1443	1602
er"	Davidson	horizontal	rotary retorts	53	53		1			1	1	lo	1	1	1	1	1	1. 1.	The state	-			CODUCTO NE A	
RAS "Kivit	tunnel	ovens	1945	T	219	222	227	225	161	1	1	1	1	1	1	1	I	-1	1		1	1	inst-	1
	chamber	ovens	Z 20 5	983	1111	1236	1360	1641	1680	1644	1650	1668	1696	1690	1717	1487	1259	1040	788	390	-	1	Not a	
and and a	vertical	retorts	8269	1072	1284	1480	1628	1691	1699	1697	1748	1720	1708	1764	1748	1653	1721	1743	1813	1464	1915	1690	1443	1602
Year	1984	1982	10461	1955	1960	1962	1964	1966	1968	1970	1972	1974	1975	1976	1978	1980	1981	1982	1984	1986	1988	1990	1992	1993

Development of the Oil Shale Processing Industry in Estonia ...: V. Yefimov et al.

-
83
ž
H
9
H
-
60
2
P
0
4
+
•
-
1
00
2
-
P
E
8
-
3
-
2
a.
4
-
92
-
.99
3
H
8
-1
-
-
••••
S
ts i
nts i
ants i
lants i
Plants i
Plants i
ig Plants i
ng Plants i
ting Plants i
rting Plants i
orting Plants i
torting Plants i
etorting Plants i
Retorting Plants i
Retorting Plants i
t Retorting Plants i
at Retorting Plants i
at Retorting Plants i
d at Retorting Plants i
ed at Retorting Plants i
ced at Retorting Plants i
iced at Retorting Plants i
luced at Retorting Plants i
duced at Retorting Plants i
oduced at Retorting Plants i
roduced at Retorting Plants i
Produced at Retorting Plants i
Produced at Retorting Plants i
il Produced at Retorting Plants i
Dil Produced at Retorting Plants i
Oil Produced at Retorting Plants i
· Oil Produced at Retorting Plants i
le Oil Produced at Retorting Plants i
ale Oil Produced at Retorting Plants i
nale Oil Produced at Retorting Plants i
hale Oil Produced at Retorting Plants i
Shale Oil Produced at Retorting Plants i
Shale Oil Produced at Retorting Plants i
3. Shale Oil Produced at Retorting Plants i
3. Shale Oil Produced at Retorting Plants i
e 3. Shale Oil Produced at Retorting Plants i
ole 3. Shale Oil Produced at Retorting Plants i
ble 3. Shale Oil Produced at Retorting Plants i
able 3. Shale Oil Produced at Retorting Plants i
Table 3. Shale Oil Produced at Retorting Plants i

otal volume	produced	328	426	456	512	548	550	510	527	488	450	466	445	409.3	398.4	397	399	331	409	373	327	366
Estonian T	Estonian 1 TPP, SHC-3000		1	-	1	1	1	1	1	1	1	1	1	0.3	1.4	9	10	15	36	43	39	65
Total in	Total in vertical retorts S		218	252	285	303	313	315	327	329	330	344	330	316	321	335	342	296	373	330	288	301
- 420 -	total		113	117	138	146	148	132	143	109	69	69	99	67	59	52	52	63	63	64	64	64
ti Kiviõli"	SHC-200 and SHC-500	1	2	3	11	16	14	17	18	20	18	18	14	13	7	I	1	I	1		-	
RAS "Ees	tunnel ovens	74	84	83	87	87	06	74	80	41	1	1	1	1	1	1	1	1	1	1	ŀ	1
420	vertical retorts	20	27	31	40	43	44	41	45	48	51	51	52	54	52	52	52	63	63	64	64	64
5161	total	204	313	339	374	402	402	378	384	379	381	397	379	342	338	339	336	253	310	266	224	237
E	Davidson horizontal rotary retorts	10	10	1		1	1	1		1	1		4	4	teri - gou	1	Di the same	1	I	1	1	1
AS "Kiviter	tunnel ovens	1	45	45	46	45	32	1	1	1	1	1	1	1	1	-	1	1	1			1
R	chamber ovens	59	67	73	83	97	101	104	102	98	102	104	101	80	69	56	46	20	1	1		
1 5164	vertical retorts	165	191	221	245	260	269	274	282	281	279	293	278	262	269	283	290	233	310	266	224	237
Year	1985 1985 1985	1955	1960	1962	1964	1966	1968	1970	1972	1974	1975	1976	1978	1980	1981	1982	1984	1986	1988	1990	1992	1993

Under the economic conditions of that time, making effective use of the unique properties of kukersite provided not only economic stability for the Estonian oil shale industry, but even allowed for its successful expansion. This was based on manufacture of non-fuel products not easily obtainable from petroleum, coal or oil shales other than kukersite. At that time, the production of shale oil gasoline lost its viability. Cheap, better quality, petroleum-derived motor fuels appeared on the market. This was one of the reasons why tunnel ovens for retorting kukersite were finally closed. These were characterized by high labour and energy consumption as well as difficult and unhealthy working conditions.

During the entire post-war period, the vertical retorts underwent a long process of development. As a result of several reconstructions the daily throughput of the retorts at GGS-5 (Kohtla-Järve) and GGS (Kiviõli) was increased from 90 - 100 tons to 180-200 tons of oil shale. The throughput rate of the retorts at GGS-3 and GGS-4 was also almost doubled. In the early reconstructions the concept of central inlet of the heat carrier was used followed by a new concept of heat carrier gas cross flow in the retort (the Kiviter process). The significant increase in retort throughput rate was accompanied by an increase in the shale oil yield from 65-70 % to 75-80 % of the Fischer Assay oil.

In the mid-1970's, it was planned to build oil shale processing plants of high capacity for an annual throughput of 5 million tons of oil shale. This goal, however, could not be achieved using retorts of low unit capacity. Therefore, a compelling need arose for developing large capacity retorts providing high productivity combined with significantly lower processing costs. As a result of a joint effort by science and industry (Oil Shale Research Institute and RAS "Kiviter", Kohtla-Järve, together with Lengiproneftekhim, St. Petersburg) a prototype 1000 ton-per-day Kiviter retort was developed and started operation at RAS "Kiviter" followed later by two similar retorts (GGS-6).

In the 1980's, at RAS "Kiviter", the construction was started on a new oil shale processing plant (GGS-7) consisting of four high capacity modified Kiviter retorts. This also included gas cleaning and utilization, waste water purification facilities, and the spent shale hydrotransport disposal system. Simultaneously, it was decided to gradually close down the retort plants GGS-3, 4, and 5. In 1990, however, the construction of GGS-7 was suspended due to investment problems. By that time, the annual amount of processed oil shale had fallen to a level of 2 million tons. This was due to the worn-out condition of the old retorts and difficulties in marketing shale oil products in 1991-1992.

To ensure further development of oil shale processing, technologies must be available not only for retorting lump shale, but also shale fines. Methods for retorting shale fines have been developed over a period of many years by different research organisations both in Estonia and abroad.

The method of retorting shale fines with a solid heat carrier (the Galoter process) was developed by the Moscow G. M. Krzhizhanovski Institute of Energetics (ENIN). This was tested in 1953-1981 in several stages at RAS "Eesti Kiviõli", in 200 and 500 ton-per-day experimental retorts (UTT-200 and UTT-500, respectively). Based on data and experience obtained from these tests, two commercial Galoter retorts, each with a design capacity of 3000 tons per day (UTT-3000), were erected and put into operation on the site of the Estonian Power Plant near Narva.

Table 4. Properties of	Feed Shale	and Basic	Operational	Data	for	Semicoking
in Retorts of Different	Design'					

Characteristics	RAS "Kiv	iter"	a transfer a	RAS "I	Eesti Kiviõli"	Estonian TPP
theis appeared on th	Chamber	Kiviter	process	, vinia	Galoter proc	cess
	ovens	GGS-5	GGS-6	GGS	SHC-500	SHC-3000
Test number	di shois	2	3 - 1	4	5 1000 011	6
Oil shale: Moisture, %	8.5	8.7	8.9	8.0	17.6	12.0
Conventional organic matter (dry basis), %	35.4	33.5	36.6	27.2	32.0	29.0
Fischer assay oil yield, %	23.8	23.0	24.3	18.1	21.4	19.1
Calorific value (bomb calorimeter), MJ/kg	13.52	13.06	16.86	9.80	12.10	10.88
Yield of products: Shale oil, %: Plant yield (raw shale basis)	4.9	16.4	16.4	11.2	13.6	12.0
Yield of Fischer assay oil	22.7	78.3	74.0	67.2	77.3	72.0
Specific gas vield, m ³ /t	348	507	434	370	40	50
C ₃ hydrocarbons in product gas, g/m ³	65	24	24	20	376	240
Operational data: Feed shale throughput rate, t/day	17.5	182	927	174	463	3000
Temperature, °C: of heat carrier	4, and 3	969	850	850	795	800
in heating chambers	1244	illen to	i bad of	de lio	f praces	Indone loui
of oil vapours at the retort offtake	700	226	225	152	485	480
after condensation system	24	44	31	56	25	50

*SHC — solid heat-carrier; TPP — Thermal Power Plant.

This was traced in 1953-1981 in several stages at RAS "test Rivent" in 200 and 202 ton-pereday experimental retorts (UIT-200 and UIT-500, respectively). Based in data and experience obtained from these basis, Two commercial Galoton retorts, and with a thesign repective of 3000 tens per day (UIT-3000), were status and put nets operationators for site of the former force glast sees Narva.

Properties	(de'l sou) re	Catholo Rib)		Tes	t number	(see Tabl	e 4)	
and the second			1	2	3	4	5	6
Density at 20 °C,	g/cm ³		1.073	0.9998	1.013	1.0132	0.9685	0.978
Viscosity at 75 °C	°E		1.74	2.8	3.3	3.3	1.3	1.4
Flash point, °C		AL	98	104	100	114	2.8	55
Initial boiling point	, °C:	1 2	180	170	195	180	80	92
Distillation, Vol. 9 100 °C	6, at:		2.4			# ,6	3	1
120 °C			-	_		hed by a la	5	2
140 °C			2	-	-	_	6	6
160 °C				_	2-		12	9
180 °C			-	1			16	15
200 °C			2	2	1	1	20	20
220 °C			5	4	4	4	24	24
240 °C			10	6	11	6	29	29
260 °C			16	8	16	11	33	36
280 °C			• 25	12	23	17	37	45
300 °C			30	19	28	29	43	-
320 °C			39	24	36	37	51	
340 °C			44	35	46	54	61	
360 °C			59	60	76	75	82	- HO
Calorific value (bon MJ/kg	mb calorime	eter),	38.6	39.4	39.6	39.5	40.4	39.8
Phenolic compound	ls, %	0.1	19.4	28.1	23.4	24.6	11.5	15.0
Molecular mass, M	1	0.1	235	287	278	302	275	
Elemental composit C	tion, %:	7.6	86.7	83.5	83.3	81.6	83.0	83.6
н			7.7	10.1	9.3	9.4	10.1	10.1
S			0.7	0.7	0.7	0.7	0.8	0.9
O+N (by differ	ence)		4.9	5.7	6.7	8.3	6.1	5.4
24.0 2.2	65.4	66.55	8.63	6.91			and of	м

Table 5. Properties of Oil Produced by Semicoking Oil Shale

Fractions and compounds	Constance.	Т	est numbe	r (see Tabl	le 4)
	Max	1	2	4	5
Fraction boiling up to 200 °C:			- Carlos - Carlos		
Alkanes and cycloalkanes	198.2.	8	14	15	15
Alkenes	8.5	15	41	31	52
Aromatic hydrocarbons		56	22	31	21
Neutral oxygen compounds	PUT	16	16	19	11
Phenols	170	5	7	4	1
Fraction yield, %		4.5	3.88	2.6	15.7
Fraction boiling at 200-350 °C:	13.5	35.6	1 27.2 3	1.42.4	139.8
Alkanes and cycloalkanes		5	8	9	6
Alkenes	121.0	2	13	10	12
Aromatic hydrocarbons		58	30	33	35
Neutral oxygen compounds	183-08	12	22	21	27
Phenols	1.	23	27	27	20
Fraction yield, %	2	42.70	28.25	33.70	39.30

Table 6. Chemical Group Composition of Light-middle Fractions of Shale Oil, wt. %

Table 7. Characteristics of Retort Gas

Indices	12	17 "	23	1	Te	st number	r (see Tab	ole 4)	280
C. Lyster				1	2	3	4	5	6
Content of a	compon	ents, Vol	. %	1-00-				100	120
CO ₂				15.9	21.8	14.2	16.0	1.7	Traces
H ₂ S				0.8	0.6	0.6	0.6	Traces	Traces
C"H"				6.6	1.0	0.8	0.9	26.3	36.2
Including:	C ₂ H ₄			5.0	0.6	0.5	0.5	12.0	18.4
1 dellander	C ₃ H ₆			1.2	0.3	0.2	0.3	8.9	8.7
BRL	C4H8			0.4	0.1	0.1	0.1	5.4	9.1
O ₂				1.1	0.6	1.0	1.0	0.8	0.2
со				12.5	3.9	7.3	4.7	8.6	8.6
H ₂				26.0	5.5	7.6	9.0	14.5	14.4
C_nH_{2n+2}				17.2	2.8	1.95	2.4	24.1	38.4
Including:	CH.			14.1	1.4	1.5	1.7	14.4	19.8
2.0	C ₂ H ₆			2.8	0.9	0.3	0.4	6.3	11.2
5.4	C ₃ H ₈			0.2	0.3	0.1	0.2	2.2	5.4
University of the second	C4H10			0.1	0.2	0.05	0.1	1.2	2.0
N ₂				19.9	63.8	66.55	65.4	24.0	2.2
Content of I	$H_2S, g/I$	m ³		11	8	8	8	Traces	Traces
Calculated g (without C ₅	ross ca hydro	lorific va carbons)	llue , MJ/m ³	16.7	3.6	3.6	3.0	46.0	53.9

Indices	The second	Test number	(see Table 4)	
	. 1	2	4	5
Density at 20 °C, g/cm ³	0.823	0.7235	0.7183	0.6771
Refraction index, n _D ²⁰	1.468	1.4200	1.4183	1.398
Molecular mass, M	86	89		
Initial boiling point, °C:	50	36	100 - Mar	25
Distillation, Vol. %, at: 30 °C	all. Tak a such	t, at the R.	1.8 ° L. 494	9
40 °C	orfperidates <u>ilo</u> d on	2	in the second second	32
50 °C	The second reserves	8	_	50
60 °C	The second real	16	_	69
70 °C		25	_	78
80 °C	10	36	-	84
90 °C		48	S-Solidness	88
100 °C	50	59	<u>S-opole</u>	90
110 °C		70	ensibatur	+E.1 -
120 °C		79	- 1-001	_ peed
130 °C	L 0.0 1	86	E-purpopol-	1999
140 °C	and the state of the	92	lastr <u>i-sipiss</u>	Pales
150 °C	87	93	Elanandiyrir	- 2-m
200 °C	93	-	-	
Elemental composition, %:	. MII Shatshy 19	11. 961.29	P 10.96	To perda
C	88.2	-		- 102
Н	9.0	-	- 2-00	axon _
S	1.3	-	- 2003	ndea -
O+N	1.5	-	Salar Pate	- oote

Table 8. Properties of C₅⁺ Light Gasoline Recovered from Gas

Table 9.	Chemica	al Composition	of C5+	Light	Gasoline	Fraction
Recover	ed from	Gas, wt. %				

Hydrocarbons	Te	Test number (see Table 4)				
	1	2	4	5		
Alkanes:						
n-propane	0.1	-	TRO	11 20 0		
<i>n</i> -butane	0.2	2.9	-	4.1		
n-pentane	1.1	7.5	-	8.7		
n-hexane	1.2	8.4		5.0		
n-heptane	2.3	6.8		3.1		
<i>n</i> -octane	1.7	5.9	-	0.8		
higher paraffins	4.1	-	-			
Tot	al 10.7	31.5	19.3	21.7		
Alkenes:	1			5°0		
propene-1	0.2	-	-	-		
butene-1	0.4	2.9	-	6.6		
trans-butene-2	0.4	1.3	-	4.0		
cis-butene-2	0.3	1.0	- 1	2.8		
1,3-butadiene	-	1.5	-	3.6		
pentene-1	1.3	5.6	-	11.4		
trans-pentene-2	0.5	2.9		6.2		
cis-pentene-2	0.3	1.7	-	3.2		
2-methylbutene-2		0.7	-	2.5		
cyclopentene	_	1.9	-	4.1		
trans+cis-1,3-pentadiene	-	5.8	-	8.4		
hexene-1	1.5	10.7	10 - mart	10.7		
hexene-2	0.6	3.5	10 - 20	2.3		
heptenes	3.7	9.6	19 - 2	5.7		
octenes	2.6	6.1	5-1	0.5		
nonenes	1.1					
isoolefins	0.3	- 1.4	-	-		
diolefins	3.4	- 0.1	- 1	-		
cycloolefins	1.5	- 1	- 1	-		
higher alkenes	0.5		0-1	5-1		
Tot	al 18.6	55.2	57.6	72.0		
Aromatics:						
benzene	39.4	7.3	13.7	3.3		
toluene	14.4	1.9	4.0	0.8		
ethylbenzene	1.4	-	+			
higher aromatics	7.5	-	- 2	0-1		
Tota	al 62.7	9.2	17.7	4.1		
Identified	92.0	95.9	94.6	97.8		
			Contraction of the local division of the loc	Contraction of the local division of the loc		

In the middle of the 1980's a method for retorting fine-grained oil shale (1-5 mm) in fluidized bed was developed by the Oil Shale Research Institute. An experimental retort was built at RAS "Eesti Kiviõli" with a design capacity of 25 tons of oil shale per day. The retort has a simple design, and as the first test runs have shown, is easily operated and controlled. The yield of shale oil was as high as 90% of the Fischer Assay. Further testing and improvement of this retort, however, was suspended because of financial problems.

Technical and economic data on the performance of the retorts erected in the postwar period, as well as physical and chemical properties of the oil shale products, are given in Tables 4-9.

In conclusion, it is pertinent to note that in the 1970's and 1980's technologies were introduced at the Estonian oil shale processing plants for processing imported raw materials other than oil shale. For example, at the RAS "Kiviter" the synthesis of ammonia and urea was introduced based on natural gas as a feedstock. This was followed by the production of sulphuric acid from lump sulphur. Pyrolysis oil (a liquid by-product of ethylene production) was imported to produce aromatic hydrocarbons and various synthetic resins. The production of benzoic acid was started based on liquid-phase oxidation of toluene by proprietary Corporate technology. At the same time, the manufacture of synthetic detergents and formalin was introduced at RAS "Eesti Kiviõli".

REFERENCES

- 1. Yefimov V. Development of oil shale processing industry in Estonia before World War II // Oil Shale. 1993. Vol. 10. No. 2-3. P. 237-246.
- Kret V. V., Kutashov N. A. Efficiency of oil shale thermal processing under conditions of self-financing of enterprises // Problems of designing high-capacity retorts for processing of oil shales. In: Tr. NII Slantsev. 1991. Vol. 25. P. 89 - 96 (in Russian).

Oil Shale Research Institute Kohtla-Järve, Estonia Received February 15, 1994