
Oil Shale, 2005, Vol. 22, No. 2 Special  ISSN 0208-189X 
pp. 197-208  © 2005 Estonian Academy Publishers 

SEARCH FOR THE PARETO POINT BASED  
ON THE MAXIMIN PRINCIPLE OF IMPROVEMENT 
RATES OF OBJECTIVE FUNCTIONS 

A. TAUTS, L. KRUMM* 

Department of Electrical Power Engineering 
Tallinn University of Technology 
5, Ehitajate Rd., Tallinn 19086, Estonia 

The aim of this paper is to find the Pareto point for the numerical value of 
objective functions )(),...(1 xFxF n with the argument x belonging to a certain 
Hilbert space. Starting from a fixed point x0, the optimization trajectory is 
chosen in such a way that on every step the improvement rate of the value of 
the slowest improvement of the objective function be possibly great. It is 
proved that on every step one has to choose the non-negative coefficients 

nαα ,...1 with the constraint ∑
=

=
n

i
i

1
1α , so that the norm of the gradient of the

function ∑
=

n

i
ii xF

1
)(α is minimal, and then to make the next step in the direction

of the chosen gradient. 

Introduction 

As known, optimization means finding such a point in some space of 
parameters where the objective function attains the best value. In the literature 
written in Estonian, the monograph [1] could give a good overview of the 
conventional optimization theory. Unlike common optimization, poly-
optimization deals with more than one objective function. Although the space 
of parameters is the same for all these functions, as a rule, the best points of 
objective functions are different. In this case, a certain compromise point must 
be found in the space of parameters. 

By setting the problem, two principally different cases should be 
distinguished. In the first case, the same stakeholder applies for the best values 
of all objective functions and thus finding the compromise point is an internal 
business. In the second case, different stakeholders stand behind different 
objective functions, but the point in the parameter space can be chosen based 
on the consensus only. If the consensus has not been reached, the problem 
tends to shift to the field of game theory that we shall not consider here. 
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In both cases, the only solution could be some Pareto point of the 

parameters space. The point x is called the Pareto point or Pareto optimum 
when no point y can be found where the one value at least of one objective 
function would be better and that for the rest not worse than at the point x. This 
point y would be better than x in any sense and the latter would be of no 
interest any more. The set of all Pareto points is called the Pareto region. As a 
rule, it includes also the optimum of each single objective function.  

Kotarski [2] gives a good summary about the present state of the search (or 
selection) theory of the Pareto optimum. This work pays a special attention to 
the results of Georgian mathematician Salukwadze [3–4]. However, these 
solutions are suitable for the first above-mentioned case where, based on a 
single man decision, the point can be freely shifted in the parameters space. 
For the consensus, shifting from the existing point can be in question only in 
such a way that the value of no objective function will deteriorate. This article 
is devoted first of all to this problem. 

Our results reflect the studies initiated within the Baltic–German 
–Portuguese co-operation project within the Copernicus program in 
1993–1996 [5–6]. 

In numerous cases, including the one in this project [5, 6], the problem 
set-up is even more general, so that the objective functions are given partially 
in the implicit form. Namely, the explicit functions H1(z),…,Hn(z), z∈Z have 
been given, but Z is a space with a larger dimension than the actual domain of 
the functions. The dimension is namely constrained with the system of 
equations W(z) = 0 where the number of equations is less than the dimension 
of space Z. These equations determine the surface S⊂ Z, the dimension of 
which is less than that of the space Z by the number of equations. The surface 
S is the actual domain of the objective functions. 

In this case a subspace consisting of the components of the space Z is 
chosen with its dimension coinciding with the dimension of the space S. The 
vector x with these coordinates of the point z, which belongs to the said 
subspace, is called a vector of independent coordinates. The equations W give 
thus the implicit function φ, which determines the whole point z according to 
the vector x of independent coordinates of the point z in such a way that W 
(φ(x)) = 0. The objective functions Hi(z) will change now into the implicit 
functions of the vector x: Fi(x) = Hi(φ(x)). 

In addition, the boundary conditions zmin ≤ z ≤ zmax may be set to the 
variables z where the inequalities between vectors mean inequalities for all the 
components at the same time. Then it means for the vectors x inequalities 
zmin ≤≤ )(xϕ zmax. In the space of independent coordinates as many pairs of 
constraints appear then as large is the dimension of the space Z, while the 
constraints corresponding to the independent coordinates are planar, and the 
constraints relative to dependent coordinates are in general curved. 

Since the distribution of coordinates into dependent and independent ones 
is in general free, when fixing at a certain point of the surface S, we shall 
consider first of all these coordinates independent relative to which the point 
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is on the boundary. When moving along this surface S to some other point 
located on the boundary of some hitherto dependent coordinate, we shall state 
this coordinate to be independent now and consider dependent any other 
independent coordinate relative to which the new point is not on the boundary. 
Therefore, we shall ensure that we have always-direct contact with planar 
boundaries. 

Let us name herewith an extremely essential and efficient application that 
has been implemented in practice already, and that, as a matter of fact, turned 
our attention to the necessity of the following theory and led to its elaboration. 
Namely in the complex optimal control theory of big power systems (PS) and 
interconnected power systems (IPS), this approach has been implemented 
most widely and efficiently for solving hierarchic sub-problems of 
optimization within the framework of the so-called Generalized Reduced 
Gradient Method (GRGM) where, in addition to the implicit functions theory, 
a rational choice of a basis is used (i.e., the composition of the components of 
vectors of dependent and independent parameters) for speeding up  the 
finding of  an optimal solution [9–11].  

In the Baltic–German–Portuguese joint project within the framework of 
the Copernicus program, a basis was laid for the generalization and 
development of GRGM providing the Pareto optimal correction of so-called 
trans-national equilibriums (determined by a certain free market mechanism) 
of IPS (first of all the Baltic IPS with its interstate dispatching center DC 
BALTIJA located in Riga) in behalf of all the partners under their certain 
consensus conditions [6–8]. 

Reduction of Poly-Optimization to Mono-Optimization 

Let us have a certain finite number of objective functions F1,…Fn defined in 
the same space of parameters. Let us assume that it is the Hilbert space. Let 
the objective for each Fi be to find an x, such that the value of Fi(x) would be 
as great as possible (in case the objective for some function is the diminution 
of its value, some mathematical transformation would enable to get a certain 
new function, the increase of which is equal to the decrease of the initial 
function). Let us assume also that the metrics of the values of various 
functions Fi is unified in a certain natural way so that the changing of their 
values can be mutually compared (for example, if the values are profits of 
various parties involved, the statement will be valid in case the currency 
exchange rates are fixed). 

It is known (e.g., the proof can be found in [1]) that the point x is the Pareto 
optimum of the given functions just in case if and only if there exist numerical 

coefficients 0,,...1 ≥in ααα  for each i and ∑
=

n

i
i

1
α = 1, so that x is the optimum 



200   A. Tauts , L. Krumm  

 
of the function i

n

i
i F∑

=1
α . Thus the choice of the Pareto point is reduced to the 

selection of the numerical coefficients nii ≤≤1,α . 
It is favorable for each specific Fi that its coefficient would be possibly 

great. If for example 1=iα and the rest of coefficients are zeros, we get the 
optimum point of Fi. The transition from one Pareto point to another means 
changing of the coefficients iα . As a rule, these objective functions whose 
coefficient increases win, and those whose coefficient decreases loose. Thus 
when one has reached some Pareto point already, one cannot move to another 
based on the consensus. It is easy to conclude from here that when the initial 
point from where we started optimization is close to some point in the Pareto 
region, only the Pareto points close to the initial point will be taken into 
account.  

Considering this, the value of some objective function is always worse at 
the distant Pareto points than at those close to it as it inevitably is when 
moving from one point to another in the Pareto region and therefore evidently 
worse than at the initial point and that would make moving there based on the 
consensus impossible. The intuition tells that when approaching the Pareto 
region as orthogonally as the position of the Pareto region relative to the initial 
point allows, the direction of approach in respect to the gradients of all 
objective functions is acutely angled, and thus the values of all objective 
functions will be greater. Adding some component parallel to the Pareto 
region to the direction of movement, we may impair some objective function. 
Namely, we shall try to shift the point in the domain of definition of objective 
functions in such a way that the improvement rate of the most slowly 
improving objective function would be as high as possible. We call it the 
maximin principle of the improvement rate of objective functions.  

Thus, a question arises how to choose the coefficients so that the optimum 

of the function i

n

i
i F∑

=1
α  would be close to the initial point. The constraint 

∑
=

n

i
i

1
α = 1 creates a situation where only the proportion of the coefficients iα is 

significant. Since the gradient of the function at the optimum point is a zero 
vector and close to the optimum point a vector with a small norm, the 

optimum of the function i

n

i
i F∑

=1
α  is evidently close to the initial point if the 

choice of the coefficients iα is such that the gradient norm of i

n

i
i F∑

=1
α  at the 

initial point is small. 
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Selection of the Direction for the Next Optimization Step 

Fixing some point in the space of parameters, we must choose the direction of 
the next optimization step. By mono-optimization the gradient of objective 
function determines the direction, because in this direction the objective 
function improves most rapidly. According to the considerations given in the 

previous subsection, the direction of the gradient of the function ∑
=

n

i
i

1
α Fi must 

be chosen for the direction while the coefficients αi must be chosen in such a 
way that the norm of this gradient would be minimal. 

Denoting the gradient vector of each objective function Fi by iF ′ , we can 

see that first of all the quantity ∑
=

′
n

i
ii F

1
α  must be minimized with the selection 

of the coefficients iα  under the conditions 0≥iα  for each i and 1
1

=∑
=

n

i
iα . 

The gradient vectors iF ′  have naturally been computed at the point where we 
were before the next step. This is minimization of the value of a quadratic 
form, and this will not create any principal problem. 

In case this point lies on a certain boundary (as known, we can assume that 

this is a flat boundary), and for the selected coefficients iα  the vector i

n

i
i F ′∑

=1
α  

is directed outward the allowed domain, then assuming the continuity of the 
maximin of improvement rates of objective functions, we can see that the best 
among the allowed directions must lie just on the boundary. Then this 
boundary must be considered in the part of the space of independent 
coordinates at this step and the coefficients iα  calculated to take the step in 
this space of a smaller dimension. For this purpose, the similar norm 
minimization must be repeated, only each iF ′  will be replaced by its 
projection onto this boundary. 

If there are more than one boundary where this point lies, and free 
minimization of the norm gives a direction outward the feasible domain, 
among the boundaries passing that point the number of such boundaries must 
be chosen so that when minimizing the norm by the above mentioned method 
at the intersection of these boundaries as in a separate subspace, we can get the 
direction, which is an allowed direction also for the rest of boundaries where 
the point lies.  

Having fixed the point under the conditions named in the space of 

coefficients iα  that minimizes the quantity ∑
=

′
n

i
ii F

1
α , we shall separate those 

that we name ‘fixed to zero’ from among the coefficients iα . The coefficient 

jα  is called ‘fixed to zero’ when the following conditions are met 
a) ;0=jα  
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b) Abandoning the constraint 0=jα  for this certain j, in the space of the 

coefficients iα  some shift can be made, and in this case ∑
=

′
n

i
ii F

1
α  will still 

decrease. 
Let us split the indices 1 ≤ i ≤ n into two groups, I1 and I2. The indices i 

where iα  has not been fixed to zero belong to the group I1, the rest to the 
group I2. At that I2 may prove to be empty. 

Improvement Rate of Objective Functions  
in the Preference Direction 

The rate of change of a function in some direction is the scalar product of the 
gradient of this function and the unit vector of that direction. Let the direction 

be i

n

i
i F ′∑

=1
α  where the coefficients iα  have been obtained in the way shown in 

the previous section. Let us call this direction a preference direction. 
Let k∈I1 be such that 0>kα . Such an index can certainly be found. In the 

case where k is not the only element of 1I , we shall choose an arbitrary 
kjIj ≠∈ .1 and compare the rate of change of the objective functions in the 

preference direction. 

Since the given choice of coefficients iα  minimizes the quantity 
2

1
∑
=

′
n

i
ii Fα , 

when changing it in such a way that kα will be replaced by the difference 
εα −k  and jα  by the sum εα +j  (the sign of ε being arbitrary), we obtain 

instead of 
2

1
∑
=

′
n

i
ii Fα the expression 

22

1

2

1
),(2 kji

n

i
ikj

n

i
ii FFFFFF ′−′+′′−′+′ ∑∑

==
εαεα , which attains the minimum 

for ,0=ε  because j∈I1 allows to exclude the restriction 0≥iα , thereby 

without any change of the minimum point. Therefore ( i

n

i
ikj FFF ′′−′ ∑

=1
, α ) = 0, 

i.e., ( i

n

i
ij FF ′′ ∑

=1
, α ) = ( i

n

i
ik FF ′′ ∑

=1
, α ) must be valid. 

Thus the scalar product of F’
j and F’k by the vector i

n

i
i F ′∑

=1
α , and also by the 

unit vector in the same direction are equal, i.e., Fj and Fk change equally in the 
preference direction. 
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As for 02 =∈ iIi α , then 

2

1
∑
=

′
n

i
ii Fα = ( ∑

∈
′

1Ij
jj Fα , i

n

i
iF′∑

=1
α ) = ∑

∈ 1Ij
jα ( jF′ , i

n

i
iF′∑

=1
α ). 

As for a given k∈I1 ( jF′ , i

n

i
i F′∑

=1
α ) = ( kF ′ , i

n

i
iF′∑

=1
α ) is also valid for each 

j∈I1, we can present the final form of the considered expression as follows 

∑
∈ 1Ij

jα ( kF ′ , i

n

i
iF′∑

=1
α ) = ( kF ′ , i

n

i
iF′∑

=1
α ) ∑

∈ 1Ij
jα = ( kF ′ , i

n

i
iF′∑

=1
α ), since ∑

∈ 1Ij
jα = 1. 

Thus ( kF ′ , i

n

i
iF′∑

=1
α ) =

2

1
∑

=
′

n

i
iiFα  and for each j∈I1, 

jF ′( , i

n

i
iF′∑

=1
α ≥′= ∑

=

2

1
)

n

i
iiFα 0. 

The last inequality is strict when the direction vector of the preference 
direction is not a zero vector, i.e., when this point remains outside the Pareto 
region.  

Let us formulate the result as follows. 

Theorem 1. In the preference direction all the objective functions Fj, j∈I1 will 
improve and do it with equal rate. 

Let us choose now j∈I2 and this time 0>ε . If now to replace kα with the 
difference εα −k  and jα  with the sum εα +j , the square of the norm 

gradient of the function ∑
=

n

i
i

1
α Fi can only increase, because the change 

remained within the allowed range of restrictions. Thus, the linear or principal 

part of the change ∑
=

′′−′
n

i
iikj FFF

1
),(2 αε  must be non-negative. It means that 

( jF ′ , i

n

i
i F ′∑

=1
α ) ≥ ( kF ′ , i

n

i
iF′∑

=1
α ), which shows that Fj will improve in the 

preference direction at least as fast as an arbitrary Fk, k∈I 1 . 
Moreover, since j∈I2, a shift is possible in the space of the coefficients iα  

by eliminating the restriction 0>jα  so that the square of the norm of the 

gradient ∑
=

n

i
ii F

1
α  will decrease. In this case jα  will be replaced by the 

difference ,0, >− εεα j  while for each iji α,≠ , iα will be replaced by the 
sum ii εα + , whereby ∑

≠
=

ji
i εε  and for these ji ≠ where ii εα ,0= must be 

certainly non-negative. Then the principal changing part of the square of the 



204   A. Tauts , L. Krumm  

 
norm of the above gradient is 2( i

ji
iF ′∑

≠
ε – jF ′ε , i

n

i
iF′∑

=1
α ), which must be 

negative. Thus, ∑
≠ ji

iε ( iF ′ , ∑
=

n

h
h

1
α hF ′ )<ε ( jF ′ , h

n

h
h F ′∑

=1
α ). 

If for some 0, <≠ iji ε  (if any found), then 0>iα  and thus 1Ii ∈ . In this 

case ),,(),(
11

h

n

h
hjih

n

h
hii FFFF ′′−≤′′− ∑∑

==
αεαε  because according to the above, this 

inequality between the scalar products is valid and the coefficient ε−−−−  is 
positive. By adding the sides of this non-strict inequality to the corresponding 
sides of the preceding strict inequality, the strict inequality will remain valid. 
Applying the same procedure for each ji ≠ , where 0<iε , in turn, we shall 

get the inequality ∑
≥

≠
0i

ji
i

ε

ε ( iF ′ , h

n

h
h F ′∑

=1
α )<( ∑

≥

≠
0i

ji
i

ε

ε )( h

n

h
hj FF ′∑′

=1
, α ). As in case of 

the above mentioned k∈Il      ( ∑ ′′
=

n

h
hhk FF

1
, α ) ≤ ( ∑ ′′

=

n

h
hhi FF

1
, α ) for each i, then 

replacing all the scalar products on the left-hand side of the strict inequality 

with the scalar product  ( kF ′ , h

n

h
h F ′∑

=1
α ), the strict inequality will remain 

valid. Thus ( ∑
≥

≠
0i

ji
i

ε

ε )( ∑
=

′′
n

h
hhk FF

1
, α )<( ∑

≥
≠

0i

ji
i

ε

ε )( ∑
=

′′
n

h
hhj FF

1
, α ) will be valid. Let us 

note that since ∑
≠

=
ji

iεε , then εε
ε

≥∑
≥

≠
0i

ji
i >0.  

From here ( h

n

h
hk FF ′′ ∑

=1
, α )<( h

h
hj FF ′′ ∑

=1
, α ). The result could be formulated as 

follows. 

Theorem 2. In the preference direction any Fj, j∈I2 will improve faster than an 
arbitrary Fi, i∈I1. 

Change of the Minimum Improvement Rates of Objective Functions  
by the Deviation from the Preference Direction 

Let us examine what happens to the improvement rates when we do not start 
to move in the preference direction in order to take an optimization step, but 
somewhat in another direction. Based on the maximin principle, we are first of 
all interested in the fact how the improvement rate of these objective functions 
will change, which improve with the slowest rate in the preference direction, 
i.e., the objective functions Fi, i∈I1. 

Having fixed a certain direction, we should consider the scalar product of 
the unit vector of this direction and gradient vector iF ′ , i∈I1. It would be the 
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same as to project this unit vector onto the vector iF ′ and multiply this 
projection by the length of iF ′ . 

Let us consider now the subspace formed by the gradient vectors iF ′ , i∈I1. 
Projecting a unit vector of any direction onto a certain vector iF ′  of them, we 
can project it first of all onto the mentioned subspace and then project this 
projection onto the vector iF ′ . The result would be the same. As by projecting 
onto a subspace the length of the vector can only decrease, then, consequently, 
we would get a better result if we elongate the projection of this unit vector 
onto the subspace to the unit length before projecting it onto the vector Fi. This 
is equivalent to the situation where we would have replaced the considered 
direction with its projection onto the mentioned subspace. 

Thus it is reasonable to consider only these directions, which are located in 
the subspace formed by the vectors 1, IiFi ∈′ , so as by the substitution of any 
other direction with its projection onto this subspace the improvement rates of 
all 1, IiFi ∈ , could only increase. 

Let the direction in the mentioned subspace be given in the form i
Ii

i F ′∑
∈ 1

β . 

Since only the proportion of the coefficients βi is essential, we can assume 

∑
∈ 1Ii

iβ = 1, i.e., βi = αi + εi where ∑
∈ 1Ii

iε = 0. In this case, ∑∑
∈∈

′≥′
11 Ii

ii
Ii

ii FF αβ  

and 
2

1

∑
∈

′
Ii

ii Fβ  can be expressed in the form 

  
2

1

∑
∈

′
Ii

iiFα +2( i
Ii

iF′∑
∈ 1

ε , i
Ii

iF ′∑
∈ 1

α )+
2

1

∑
∈

′
Ii

ii Fε . Assuming that ∑
∈ 1Ii

iε = 0, this 

expression must be greater than 
2

1

∑
∈

′
Ii

iiFα or equal to it (if 0=iε  for each i).  

Based on the same assumption ( ∑ ′
∈ 1Ii

ii Fε , i
Ii

i F ′∑
∈ 1

α ) must equal zero, i. e. 

the coefficients ( h
Ih

hi FF ′′ ∑
∈ 1

, α ) of all iε  in this linear form are equal since 

otherwise it could be changed to become negative, changing, if necessary, the 
signs of all iε  to negative, and thereafter by the proportional approximation of 

all iε  to zero make 
2

1

∑
∈

′
Ii

iiFε insignificant in respect of the considered scalar 

product.  
The requirement ∑

∈
=

1

0)( '

Ii
ii Fε  with the condition ∑ =

1

0
Ii

i
ε

ε  means that all 

multipliers of iε  in this linear form, i.e. the scalar products 
),(

1

'' ∑
∈Ih

hhi FF α should be equal, since otherwise we could change this linear 
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form to become different from zero, choosing for the values of jε and kε , 
having different multipliers, the values of ε and ε−  respectively and taking 
the rest of iε  equal to zero. 
 However, ( i

Ii
i F ′∑

∈ 1

ε , i
Ii

i F
i

′∑
∈

α )= ∑
∈ 1Ii

iα ( iF ′ , h
Ih

h F ′∑
∈ 1

ε ). 

 Thus, if ∑
∈ 1Ii

iε = 0, ( h
Ih

hi FF ′′ ∑
∈ 1

, ε ) cannot be strictly positive for each 1Ii ∈ . 

But if for some 1Ii ∈ ( h
Ih

hi FF ′′ ∑
∈ 1

, ε )=( h
Ih

hi FF ′′ ∑
∈ 1

, β ) – ( h
Ih

hi FF ′′ ∑
∈ 1

, α )≤0, then 

( ∑∑
∈∈

′′≤′′
11

,(),
Ih

hhi
Ih

hhi FFFF αβ ).      (*) 

In case this point is not the Pareto point, then based on the Theorem 1 the 
right-hand side of the last inequality is strictly positive. 

If the vectors ∑
∈

′
1Ih

hh Fβ  and h
Ih

hF′∑
∈ 1

α  are replaced with the unit vectors of 

the same direction in the last inequality, then in case if ∑
∈

′
1Ih

hhFβ > ∑
∈

′
1Ih

hhFα , 

the inequality (*) will become strict. It means that for i in this inequality, Fi 
will increase slower in the direction h

Ih
hF′∑

∈ 1

β  than in the preference direction.  

Thus, we have proved the following result: 

Theorem 3. At any deviation from the preference direction there exists at least 
one iF ′ , i∈I1, the improvement rate of which decreases against the preference 
direction.  

Thus based on the maximin principle of improvement rates the direction 

i

n

i
iF′∑

=1
α  is the most preferred direction. 

Implementation 

The given results would be implemented according to the following scheme. 
Let Fl,…Fn be the given objective functions. Let us assume that the initial 

point in the parameter space is x0, which is not the Pareto optimum. Let us find 

the coefficients nαα ,...1  on the condition that for each i 0≥iα  and ∑
=

n

i
i

1
α = 1 

while under these conditions at the point x0 the value of ∑
=

′
n

i
ii F

1
α  would be 

minimal. Then we shall take the optimization step in such a way as for the 
conventional mono-optimization when the objective function would be 

i

n

i
iF∑

=1
α . As shown above, the step will be taken in the direction that proceeds 

from the maximin principle of the improvement rate of objective functions. 
When reaching the point xl with this step, we shall take it for an initial point 
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and repeat the similar procedure. The process will continue until we have 
reached the point where in case of choosing the appropriate quantities of iα  

the value ∑
=

′
n

i
iiF

1
α  is practically zero. 

As mentioned in the introduction, the given conceptions have been used 
for coordinating the performance of power systems of three Baltic countries 
within the Copernicus programme in 1993–1996 with an objective to 
maximize energy conservation in the power systems of each state. In the 
calculations the respective development of GRGM within the programme set 
KORONA at the disposal of SC BALTIJA was used [5,6]. 

To the present time this method has been developed further in the game 
theory approach for the control of international IPS considering both a certain 
consensus of partner coalitions and disagreements of these coalitions, 
especially in case of major disturbances [7, 8]. In the case of disagreements 
between partners instead of the methods given above the methods of game 
theory must be used [12]. 
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