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Abstract. There exist exactly 14 non-isomorphic groups of order 36. In this paper we will prove that three of them are not
determined by their endomorphism semigroups in the class of all groups. All groups that have an endomorphism semigroup
isomorphic to the endomorphism semigroup of a group of order 36 are described.
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1. INTRODUCTION

It is well known that all endomorphisms of an Abelian group form a ring and many of their properties can
be characterized by this ring. An excellent overview of the present situation in the theory of endomorphism
rings of Abelian groups is given by Krylov et al. [3]. All endomorphisms of an arbitrary group form
only a semigroup. The theory of endomorphism semigroups of groups is quite modestly developed. In
a number of our papers we have made efforts to describe some classes of groups that are determined by
their endomorphism semigroups in the class of all groups. Let G be a group. If for each group H such that
the semigroups End(G) and End(H) are isomorphic implies an isomorphism between G and H, then we
say that the group G is determined by its endomorphism semigroup in the class of all groups. Examples of
such groups are finite Abelian groups ([4], Theorem 4.2), generalized quaternion groups ([5], Corollary 1),
torsion-free divisible Abelian groups ([6], Theorem 1), etc.

We know a complete answer to this problem for finite groups of order less than 36. The alternating group
A4 (also called the tetrahedral group) and the binary tetrahedral group B = ⟨a, b | b3 = 1, aba = bab⟩ are the
only groups of order less than 32 that are not determined by their endomorphism semigroups in the class of
all groups [12]. These two groups are non-isomorphic, but their endomorphism semigroups are isomorphic.
We have proved that each group of order 32 is determined by its endomorphism semigroup in the class of all
groups: it has partly been made in published papers [13,14] and partly in papers to be published. The groups
of orders 33 and 35 are cyclic, and, therefore, are determined by their endomorphism semigroups in the class
of all groups ([4], Theorem 4.2). There exist two non-isomorphic groups of order 34: the cyclic group of
order 34 and the dihedral group of order 34. Both are determined by their endomorphism semigroups in the
class of all groups ([4], Theorem 4.2 and [10], Section 5).
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In this paper, we present a solution to the problem whose groups of order 36 are determined by their
endomorphism semigroups. The group theoretical computer algebra system GAP contains the ‘Small
Groups Library’, which provides access to descriptions of all groups of order 36 ([17]). There exist exactly
14 non-isomorphic groups of order 36. Throughout this paper, let us denote these groups by G1, G2, . . . , G14,
respectively. The last three groups among them are

G12 = ⟨a, b, c | c9 = b2 = a2 = 1, ab = ba, c−1ac = b, c−1bc = ab⟩,
G13 =C3 ×A4,

G14 = ⟨a, b, c | c4 = a3 = b3 = 1, ab = ba, c−1ac = b, c−1bc = a−1⟩,

where C3 is the cyclic group of order 3 and A4 is the alternating group of order 12 (the tetrahedral group).
In this paper, the following theorem is proved:

Theorem 1.1 (Main theorem). The following statements hold for a group G:
(1) if the endomorphism semigroups of G and Gi, i ∈ {1, 2, . . . , 11} are isomorphic, then G and Gi are

isomorphic;
(2) the endomorphism semigroups of G and G12 are isomorphic if and only if G = G12 or

G = ⟨a, b, c | c9 = a4 = 1, a2 = b2, b−1ab = a−1, c−1bc = a, c−1ac = ab⟩;

(3) the endomorphism semigroups of G and G13 are isomorphic if and only if G = G13 or G =C3 ×B, where
B = ⟨a, b | b3 = 1, aba = bab⟩ is the binary tetrahedral group;

(4) the endomorphism semigroups of G and G14 are isomorphic if and only if G = G14 or

G = ⟨a, b, c, d | c4 = a3 = b3 = d3 = 1, ab = bad, c−1ac = b,

c−1bc = a−1, cd = dc, ad = da, bd = db⟩.

We shall use the following notations:
G – a group;
Z(G) – the centre of a group G;
G ′ – the derived subgroup of G;
[a, b] = a−1b−1ab (a, b ∈ G);
CG(a) – the centralizer of a in G;
End(G) – the endomorphism semigroup of G;
Ck – the cyclic group of order k;
A4 – the alternating group of order 12 (the tetrahedral group);
Dn = ⟨a, b | b2 = ak = 1, b−1ab = a−1⟩ – the dihedral group of order n = 2k;
B = ⟨a, b | b3 = 1, aba = bab⟩ – the binary tetrahedral group;
Zk – the residue class ring Z/kZ;
Zk[x] – the polynomial ring over Zk;
⟨K, . . . , g, . . .⟩ – the subgroup generated by subsets K, . . . and elements g, . . .;
ĝ – the inner automorphism of G, generated by an element g ∈ G;
I(G) – the set of all idempotents of End(G);
K(x) = {z ∈ End(G) | zx = xz = z};
J(x) = {z ∈ End(G) | zx = xz = 0};
V (x) = {z ∈ Aut(G) | zx = x};
D(x) = {z ∈ Aut(G) | zx = xz = x};
H(x) = {z ∈ End(G) | xz = z, zx = 0};
[x] = {z ∈ I(G) | xz = z, zx = x}, x ∈ I(G);
G = AhB – G is a semidirect product of an invariant subgroup A and a subgroup B.

The sets K(x),V (x), D(x), and J(x) are subsemigroups of End(G); however, V (x) and D(x) are
subgroups of Aut(G). We shall write the mapping right from the element on which it acts.



A. Leibak and P. Puusemp: On endomorphisms of groups of order 36 239

2. PRELIMINARIES

For the convenience of the reader, let us recall some known facts that will be used in the proofs of our main
results.

Lemma 2.1. If x ∈ I(G), then G = Kerx h Imx and Imx = {g ∈ G | gx = g}.

Lemma 2.2. If x ∈ I(G), then [x] = {y ∈ I(G) | Kerx = Kery}.

Lemma 2.3. If x ∈ I(G), then

K(x) = {y ∈ End(G) | (Imx)y ⊂ Imx, (Kerx)y = ⟨1⟩}

and K(x) is a subsemigroup with the unity x of End(G), which is canonically isomorphic to End(Imx).
Under this isomorphism element y of K(x) corresponds to its restriction onto the subgroup Imx of G.

Lemma 2.4. If x ∈ I(G), then

H(x) = {y ∈ End(G) | (Imx)y ⊂ Kerx, (Kerx)y = ⟨1⟩}.

Lemma 2.5. If x ∈ I(G), then

J(x) = {z ∈ End(G) | (Imx)z = ⟨1⟩, (Kerx)z ⊂ Kerx}.

Lemma 2.6. If x ∈ I(G), then

D(x) = {y ∈ Aut(G) | y|Imx = 1|Imx, (Kerx)y ⊂ Kerx}.

Lemma 2.7. If z ∈ End(G) and Imz is Abelian, then ĝ ∈V (z) for each g ∈ G.

We omit the proofs of these lemmas because these are straightforward corollaries from the definitions.

Lemma 2.8 ([4], Theorem 4.2). Every finite Abelian group is determined by its endomorphism semigroup
in the class of all groups.

Lemma 2.9 ([4], Theorem 1.13). If G and H are groups such that their endomorphism semigroups
are isomorphic and G splits into a direct product G = G1 × G2 of its subgroups G1 and G2, then H
splits into a direct product H = H1 ×H2 of its subgroups H1 and H2 such that End(G1) ∼= End(H1) and
End(G2)∼= End(H2).

From here follow Lemmas 2.10–2.13.

Lemma 2.10. If groups G1 and G2 are determined by their endomorphism semigroups in the class of all
groups, then so is their direct product G1 ×G2.

Lemma 2.11 ([10], Section 5). The dihedral group Dn is determined by its endomorphism semigroup in the
class of all groups.

Lemma 2.12 ([9], Theorem, Lemmas 4.5–4.8). Let

G = ⟨a,b | apn
= bv = 1, b−1ab = ar⟩= ⟨a⟩h ⟨b⟩=Cpn hCv,

where p is a prime, p > 2, and let G∗ be another group such that the endomorphism semigroups of G and
G∗ are isomorphic. Assume that x is the projection of G onto its subgroup ⟨b⟩ and x∗ corresponds to x under
the isomorphism End(G)∼= End(G∗). Then G and G∗ are isomorphic and

G∗ = ⟨c,d | cpn
= dv = 1, d−1cd = cr∗⟩= ⟨c⟩h ⟨d⟩=Cpn hCv,

where Imx∗ = ⟨d⟩, Kerx∗ = ⟨c⟩, and ⟨r⟩= ⟨r∗⟩ in the group of units of Zpn .
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Lemma 2.13 ([2], Theorem 2.1 and Lemma 2.2). If G is a group such that G/Z(G) is Abelian, then

[g, hk] = [g, h] · [g, k], [hk, g] = [h, g] · [k, g],

(gh)m = gmhm[h, g]m(m−1)/2,

[g, h]m = [gm, h] = [g, hm]

for each g, k, h ∈ G and positive integer m.

3. GROUPS OF ORDER 36

The group theoretical computer algebra system GAP provides access to descriptions of small order
groups [17]. At present, the library of small order groups contains the groups of order at most 2000, except
for order 1024 (423 164 062 groups).

There are 14 pairwise non-isomorphic groups of order 36. Following [17], they are

G1 ∼=C36; G2 ∼=C18 ×C2; G3 ∼=C12 ×C3; G4 ∼=C6 ×C6;

G5 = ⟨a, b | a4 = b9 = 1, a−1ba = b−1⟩ ∼=C9 hC4;

G6 = ⟨a, b, d | a4 = b3 = d3 = 1, a−1dad = 1, b−1a−1ba = 1, d−1b−1db = 1⟩;

G7 = ⟨a, b, c | a2 = b2 = c9 = 1, (ac−1)2 = 1, (ba)2 = 1, c−1bcb = 1⟩;

G8 = ⟨a, b, c, d | a2 = b2 = c3 = d3 = 1, (ad)2 = 1, (bc)2 = 1, (ba)2 = 1,

c−1aca = 1, d−1bdb = 1, d−1c−1dc = 1⟩;

G9 = ⟨a, b, c, d | a2 = b2 = c3 = d3 = 1, (ad)2 = 1, (ba)2 = 1,

c−1aca = 1, c−1bcb = 1, d−1bdb = 1, d−1c−1dc = 1⟩;

G10 = ⟨a, c, d | a4 = c3 = d3 = 1, a−1cac = 1, a−1dad = 1,

d−1c−1dc = 1, (a−1c)2a−2 = 1, c−1da−1dc−1a = 1⟩;

G11 = ⟨a, b, c, d | a2 = b2 = c3 = d3 = 1, (ac)2 = 1, (ad)2 = 1,

(ba)2 = 1, c−1bcb = 1, d−1bdb = 1, d−1c−1dc = 1⟩;

G12 = ⟨a, c | a9 = c2 = 1, (a−1c)2 ·a2c = 1⟩;

G13 = ⟨a, b, c | c2 = b3 = a3 = 1, (ca)3 = 1, (a−1c)3 = 1,

b−1a−1ba = 1, cb−1cb = 1⟩;

G14 = ⟨a, c | a4 = c3 = 1, a−1ca2ca−1 = 1, a−1caca−1c−1ac−1 = 1⟩.

One of the main ideas to prove the main theorem is to use Lemmas 2.1–2.13. Therefore, we present
some of the groups Gi (1 ≤ i ≤ 14) in the form suitable for these lemmas.
(1) The group G6. It follows from the determining relations of G6:

ab = ba, bd = db; a−1dad = 1 =⇒ a−1da = d−1,

and, therefore,
G6 = ⟨b⟩× (⟨d⟩h ⟨a⟩)∼=C3 × (C3 hC4). (3.1)
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(2) The group G7. It follows from the determining relations of G7:

(ba)2 = 1 =⇒ ab = ba, c−1bcb = 1 =⇒ bc = cb,

(ac−1)2 = 1 =⇒ ac−1ac−1 = 1 =⇒ ac−1a = c =⇒ aca = c−1 =⇒ a−1ca = c−1.

Therefore,
G7 = ⟨b⟩× (⟨c⟩h ⟨a⟩)∼=C2 ×D18. (3.2)

(3) The group G8. Rewriting the determining relations of G8, we get

a−1da = d−1, b−1cb = c−1, ab = ba, ac = ca, bd = db, dc = cd.

Hence
G8 = (⟨d⟩h ⟨a⟩)× (⟨c⟩h ⟨b⟩)∼= D6 ×D6. (3.3)

(4) The group G9. It follows from the determining relations of G9:

dc = cd, db = bd, bc = cb, ac = ca,

(ad)2 = 1 =⇒ a−1da = d−1 =⇒ ⟨a, d⟩= ⟨d⟩h ⟨a⟩ ∼= D6,

G9 = ⟨a, d⟩×⟨c⟩×⟨b⟩ ∼= D6 ×C3 ×C2 ∼= D6 ×C6. (3.4)

(5) The group G10. It follows from the determining relations of G10:

a−1ca = c−1, a−1da = d−1, cd = dc,

(a−1c)2a−2 = a−1ca−1ca−2 = a−1c ·a−1ca ·a−3

= a−1c · c−1 ·a−3 = a−4 = 1,

c−1da−1dc−1a = c−1d ·a−1da ·a−1c−1a = c−1d ·d−1 · c = 1.

Hence
⟨c⟩h ⟨a⟩ ∼= ⟨d⟩h ⟨a⟩ ∼=C3 hC4

and
G10 = (⟨c⟩×⟨d⟩)h ⟨a⟩= ⟨c⟩h (⟨d⟩h ⟨a⟩)

= ⟨d⟩h (⟨c⟩h ⟨a⟩)∼= (C3 ×C3)hC4.

(6) The group G11. It follows from the determining relations of G11:

dc = cd, db = bd, bc = cb, ab = ba,

(ad)2 = 1 =⇒ a−1da = d−1; ⟨a, d⟩= ⟨d⟩h ⟨a⟩ ∼=C3 hC2 ∼= D6,

(ac)2 = 1 =⇒ a−1ca = c−1; ⟨a, c⟩= ⟨c⟩h ⟨a⟩ ∼=C3 hC2 ∼= D6,

⟨a, c, d⟩= (⟨c⟩×⟨d⟩)h ⟨a⟩= ⟨c⟩h (⟨d⟩h ⟨a⟩) = ⟨d⟩h (⟨c⟩h ⟨a⟩),

G11 = ⟨b⟩×⟨a, c, d⟩ ∼=C2 × ((C3 ×C3)hC2).

(7) The group G12. It follows from the determining relations of G12:

a−1ca−1ca2c = 1 =⇒ ca−1ca2 = ac =⇒ ca−1ca = aca−1,
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a−1ca−1ca2c = 1 =⇒ ca2c = aca,

c = a−1 ·aca ·a−1 = a−1 · ca2c ·a−1 = a−1ca ·aca−1

= (a−1ca)−1 ·aca−1 =⇒ a−1ca · c = aca−1 = c ·a−1ca,

⟨c, a−1ca⟩= ⟨c⟩×⟨a−1ca⟩ ∼=C2 ×C2,

a−1 ·a−1ca ·a = a−2 · ca2 = a−2 ·acac = a−1ca · c,
G12 = (⟨c⟩×⟨a−1ca⟩)h ⟨a⟩ ∼= (C2 ×C2)hC9.

Denote the elements a, c, and a−1ca by c, a, and b, respectively. Then we get

G12 = ⟨a, b, c | c9 = b2 = a2 = 1, ab = ba, c−1ac = b, c−1bc = ab⟩

= (⟨a⟩×⟨b⟩)h ⟨c⟩ ∼= (C2 ×C2)hC9.

(8) The group G13. It follows from the determining relations of G13:

ab = ba, bc = cb, ⟨a, b⟩= ⟨a⟩×⟨b⟩ ∼=C3 ×C3,

(ca)3 = 1 =⇒ cacaca = 1 =⇒ a−1ca−1 = cac,

(a−1c)3 = a−1ca−1 · ca−1c = cac · ca−1c = 1,

a−1ca · c = a−1 · cac = a−1 ·a−1ca−1 = aca−1,

c ·a−1ca = ca−1c ·a = (cac)−1 ·a = (a−1ca−1)−1 ·a = aca ·a = aca−1,

⟨c⟩×⟨a−1ca⟩ ∼=C2 ×C2,

a−1 ·a−1ca ·a = a−2ca2 = aca−1 = c ·a−1ca,

G13 = ⟨b⟩× ((⟨c⟩×⟨a−1ca⟩)h ⟨a⟩)∼=C3 × ((C2 ×C2)hC3).

Denote the elements a−1ca, c, a, and b by b, a, c, and d, respectively. Then

⟨a, b, c⟩= ⟨a, b, c | c3 = b2 = a2 = 1, ab = ba, c−1ac = b, c−1bc = ab⟩= A4,

G13 = ⟨d⟩× ((⟨a⟩×⟨b⟩)h ⟨c⟩)∼=C3 ×A4.

(9) The group G14. It follows from the determining relations of G14:

a−1ca2ca−1 = 1 =⇒ ac−1 = a−1ca2 =⇒ a−2ca2 = c−1,

a−1caca−1c−1ac−1 = 1 =⇒ a−1ca = c ·a−1ca · c−1 =⇒
=⇒ c ·a−1ca = a−1ca · c,

⟨c, a−1ca⟩= ⟨c⟩×⟨a−1ca⟩ ∼=C3 ×C3,

a−1 · c ·a = a−1ca, a−1 ·a−1ca ·a = a−2ca2 = c−1,

G14 = (⟨c⟩×⟨a−1ca⟩)h ⟨a⟩ ∼= (C3 ×C3)hC4.

Denote the elements c, a−1ca, and a by a, b, and c, respectively. Then

G14 = ⟨a, b, c | c4 = a3 = b3 = 1, ab = ba, c−1ac = b, c−1bc = a−1⟩

= (⟨a⟩×⟨b⟩)h ⟨c⟩ ∼= (C3 ×C3)hC4.

By Lemmas 2.8–2.12 and Eqs (3.1)–(3.4), the groups G1–G9 are determined by their endomorphism
semigroups in the class of all groups.
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4. ON ENDOMORPHISMS OF G10 AND G11

In this section, we shall prove the following theorem.

Theorem 4.1. The groups

G10 = ⟨a, c, d | a4 = c3 = d3 = 1, a−1cac = 1, a−1dad = 1,

d−1c−1dc = 1, (a−1c)2a−2 = 1, c−1da−1dc−1a = 1⟩

and
G11 = ⟨a, b, c, d | a2 = b2 = c3 = d3 = 1, (ac)2 = 1, (ad)2 = 1,

(ba)2 = 1, c−1bcb = 1, d−1bdb = 1, d−1c−1dc = 1⟩

are determined by their endomorphism semigroups in the class of all groups.

Proof. Let G be a group and G1, G2, K be subgroups of G such that G decomposes as follows:

G = (G1 ×G2)hK = G1 h (G2 hK) = G2 h (G1 hK). (4.1)

Denote by x, x1, and x2 the projections of G onto its subgroups K, G1 hK, and G2 hK, respectively. Then

Imx = K, Imx1 = G1 hK, Imx2 = G2 hK,

Kerx = G1 ×G2, Kerx1 = G2, Kerx2 = G1.

Assume that G∗ is another group such that the endomorphism semigroups of G and G∗ are isomorphic
and x∗, x∗1, and x∗2 correspond to x, x1, and x2 in this isomorphism. Under these assumptions the group G∗

decomposes similarly to (4.1) [7, Theorems 2.1 and 3.1], i.e.,

G∗ = (G∗
1 ×G∗

2)hK∗ = G∗
1 h (G∗

2 hK∗) = G∗
2 h (G∗

1 hK∗),

Imx∗ = K∗, Imx∗1 = G∗
1 hK∗, Imx∗2 = G∗

2 hK∗,

Kerx∗ = G∗
1 ×G∗

2, Kerx∗1 = G∗
2, Kerx∗2 = G∗

1.

Let us apply this result to the following group G = G(n):

G(n) = ⟨a, c, d | a2n
= c3 = d3 = 1, cd = dc, a−1ca = c−1,

a−1da = d−1⟩= (⟨c⟩×⟨d⟩)h ⟨a⟩= ⟨c⟩h (⟨d⟩h ⟨a⟩)

= ⟨d⟩h (⟨c⟩h ⟨a⟩)∼= (C3 ×C3)hC2n .

Hence
Imx = K = ⟨a⟩ ∼=C2n ,

Imx1 = ⟨a, c | a2n
= c3 = 1, a−1ca = c−1⟩= ⟨c⟩h ⟨a⟩,

Imx2 = ⟨a, d | a2n
= d3 = 1, a−1da = d−1⟩= ⟨c⟩h ⟨a⟩.

By Lemma 2.3,
End(Imxi)∼= K(xi)∼= K(x∗i )∼= End(Imx∗i ). (4.2)

From Lemma 2.12 (in the case of p = 3, n = 1, v = 2n) and from (4.2) we have that

K∗ = Imx∗ = ⟨a0⟩,
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Imx∗1 = ⟨a0, c0 | a2n

0 = c3
0 = 1, a−1

0 c0a0 = c−1
0 ⟩= ⟨c0⟩h ⟨a0⟩,

Imx∗2 = ⟨a0, d0 | a2n

0 = d3
0 = 1, a−1

0 d0a0 = d−1
0 ⟩= ⟨d0⟩h ⟨a0⟩,

G∗
1 = ⟨c0⟩, G∗

2 = ⟨d0⟩.
Therefore,

G∗ = ⟨a0, c0, d0 | a2n

0 = c3
0 = d3

0 = 1, c0d0 = d0c0,

a−1
0 c0a0 = c−1

0 , a−1
0 d0a0 = d−1

0 ⟩.
Hence G∗ ∼= G(n) and the group G(n) is determined by its endomorphism semigroup in the class of all
groups.

By the description of the groups G10 and G11, we have

G10 ∼= G(2) and G11 ∼=C2 ×G(1).

We conclude from Lemmas 2.8 and 2.9 that the groups G10 and G11 are determined by their endomorphism
semigroups in the class of all groups. The theorem is proved.

Hence part (1) of Theorem 1.1 is proved.

5. ON ENDOMORPHISMS OF G12

Let us consider the group

G12 = ⟨a, b, c | c9 = b2 = a2 = 1, ab = ba, c−1ac = b, c−1bc = ab⟩

= (⟨a⟩×⟨b⟩)h ⟨c⟩ ∼= (C2 ×C2)hC9.

In this section, we shall prove the following theorem:

Theorem 5.1. The endomorphism semigroup of a group G is isomorphic to the endomorphism semigroup
of the group G12 if and only if G = G12 or

G = ⟨a, b, c | c9 = a4 = 1, a2 = b2, b−1ab = a−1, c−1bc = a, c−1ac = ab⟩.

Proof. The group G12 is a Schmidt group, i.e., a non-nilpotent finite group in which each proper subgroup
is nilpotent. The structure of the Schmidt groups is well known (see [15,16]). In [8] and [11], the
endomorphisms of Schmidt groups are characterized. To prove the theorem, we present a summary of
necessary results on Schmidt groups.

Each Schmidt group G can be described by three parameters p, q, and v, where p and q are different
primes and v is a natural number, v ≥ 1. A Schmidt group is not uniquely determined by its parameters. Fix
parameters p, q, and v and denote by S the class of all Schmidt groups that have these parameters. There
exist a group Gmax of the maximal order and a group Gmin of the minimal order in the class S . The groups
Gmax and Gmin are uniquely determined up to the isomorphism. A group G belongs to S if and only if it is
isomorphic to the factor-group Gmax/M, where M is a subgroup of the second derived group G

′′
max of Gmax.

Clearly, Gmin
∼= Gmax/G

′′
max. Let us give the description of Gmin.

Assume that ψ(x) is an arbitrary irreducible normalized divisor of the polynomial

xq −1
x−1

= xq−1 + xq−2 + . . .+ x+1 ∈ Zp[x].

Suppose that the degree of ψ is u. Denote by Zp[x] the residue class ring Zp[x]/ψ(x)Zp[x]. Then

Gmin = {(i; f (x)) | i ∈ Zqv , f (x) ∈ Zp[x]}, |Gmin|= qv pu,
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and the composition rule in Gmin is

(i; f (x)) · ( j; g(x)) = (i+ j; f (x)+ xi ·g(x))

([15], Proposition 7). If u is odd, then Gmax = Gmin and all Schmidt groups with parameters p, q, and v
are isomorphic. If u is even, say u = 2t, then |Gmax| = qv pu+t and Gmax can be given by generators and
generating relations in which the coefficients of the polynomial ψ(x) are used ([16], Proposition 3).

Fix now the parameters p, q, and v as follows:

p = 2, q = 3, v = 2.

Then
xq −1
x−1

=
x3 −1
x−1

= x2 + x+1 ∈ Z2[x].

Since the polynomial x2 + x+1 is irreducible in Z2[x], we have

ψ(x) = x2 + x+1, u = 2t = 2, t = 1,

Z2[x] = Z2[x]/ψ(x)Z2[x] = {ax+b | a, b ∈ Z2},

|Gmin|= qv pu = 3222 = 36, |Gmax|= qv pu+t = 3223 = 72.

It follows that
S = {Gmin, Gmax}. (5.1)

The group Gmin consists of pairs (i; f (x)), where i ∈ Z9 and f (x) ∈ Z2[x]. Denote c = (1; 0), a = (0; x),
and b = (0; 1). Then Gmin can be given as follows:

Gmin = ⟨a, b, c | c9 = b2 = a2 = 1, ab = ba, c−1ac = b, c−1bc = ab⟩

= (⟨a⟩×⟨b⟩)h ⟨c⟩ ∼= (C2 ×C2)hC9.

Therefore,
Gmin = G12. (5.2)

The group Gmax is given as follows ([16, Proposition 3]):

Gmax = ⟨a, b, c | c9 = a4 = 1, a2 = b2, b−1ab = a−1,

c−1bc = a, c−1ac = ab⟩. (5.3)

The endomorphism semigroups of Gmax and Gmin are isomorphic ([8], Theorem 4.4):

End(Gmax)∼= End(Gmin). (5.4)

Let G∗ be a group such that End(G∗) ∼= End(G12) ∼= End(Gmin). By [11], Theorem 3.2, the group G∗

is also a Schmidt group with the same parameters as Gmin, i. e., G∗ ∈ S . Therefore, G∗ ∼= Gmin
∼= G (12)

or G∗ ∼= Gmax. Isomorphism (5.4) implies the statement of the theorem. The theorem is proved and so is
part (2) of Theorem 1.1.
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6. ON ENDOMORPHISMS OF G13

Let us consider the group
G13 = ⟨d⟩× ((⟨a⟩×⟨b⟩)h ⟨c⟩)∼=C3 ×A4.

In this section, we shall find all groups G such that End(G)∼= End(G13).
Similarly to the previous section, there exist only two Schmidt groups with the parameters p = 2, q = 3,

and v = 1. They are

Gmin = ⟨a, b, c | c3 = b2 = a2 = 1, ab = ba, c−1ac = b, c−1bc = ab⟩= A4,

Gmax = ⟨a, b, c | c3 = a4 = 1, a2 = b2, b−1ab = a−1, c−1ac = b, c−1bc = ab⟩.

Taking in the presentation of the binary tetrahedral group B = ⟨α, β | β 3 = 1, αβα = βαβ ⟩ new generators
c = β , b = αβ−1, a = αβα , we see that B coincides with Gmax. Since the second commutator of B is
B

′′
= ⟨a2⟩ and Gmin

∼= Gmax/G
′′
max, we have

A4 = Gmin
∼= Gmax/G

′′
max = B/B

′′
= B/⟨a2⟩.

Let us identify A4 = B/⟨a2⟩ and denote the elements of the factor-group B/⟨a2⟩ by ḡ = g · ⟨a2⟩, g ∈ B. Then

B = ⟨a, b, c | c3 = a4 = 1, a2 = b2, b−1ab = a−1, c−1ac = b, c−1bc = ab⟩

= ⟨a, b⟩h ⟨c⟩. (6.1)

A4 = ⟨ā, b̄, c̄ | c̄3 = b̄2 = ā2 = 1, āb̄ = b̄ā, c̄−1āc̄ = b̄, c̄−1b̄c̄ = āb̄⟩

= (⟨ā⟩×⟨b̄⟩)h ⟨c̄⟩= (C2 ×C2)hC3. (6.2)

Lemma 6.1. Let G∗ be a group. Then End(G∗) ∼= End(A4) if and only if G∗ = A4 or G∗ = B. The map
T : End(B)−→ End(B/B

′′
) = End(A4) defined by

τT = τ , τ ∈ End(B), ḡτ = gτ, g ∈ B,

is the isomorphism of semigroups.

Proof. The proof of the first statement is the same as in the last part of the proof of Theorem 5.1. The
second statement of the lemma follows from isomorphism (5.4), which is described in ([8], Theorem 4.4).
The lemma is proved.

Lemma 6.2. End(C3 ×B)∼= End(C3 ×A4).

Proof. Assume that C3 = ⟨d⟩. By (6.1) and (6.2),

C3 ×B = ⟨d⟩× (⟨a, b⟩h ⟨c⟩), (6.3)

C3 ×A4 = (C3 ×B)/⟨a2⟩= ⟨d⟩× (⟨ā, b̄⟩h ⟨c̄⟩), (6.4)

where d̄ = d · ⟨a2⟩ is identified with d.
The groups B and A4 satisfy the following two properties:

(1) each 3-element of A4 has the form ḡ, where g is a 3-element of B and the numbers of 3-elements of
groups A4 and B coincide;

(2) if g is a 3-element of B and g ̸= 1, then ⟨g⟩ ∼= ⟨ḡ⟩ ∼=C3 and CB(g) = ⟨g⟩, CA4(ḡ) = ⟨ḡ⟩.
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In view of (6.3) and (6.4), each endomorphism T of C3 ×B has the form

T :


d 7−→ di ·g
a 7−→ aτ
b 7−→ bτ
c 7−→ cτ ·dk

,

where i, k ∈ Z3, τ ∈ End(B), and g is a 3-element of B such that it commutes with cτ , i.e. (a) if cτ = 1, then
g is an arbitrary 3-element of B; (b) if cτ ̸= 1, then, by property (2), g = (cτ) j, where j ∈ Z3. Similarly,
each endomorphism T of C3 ×A4 has the form

T :


d 7−→ di · ḡ
ā 7−→ āτ̄ = aτ
b̄ 7−→ b̄τ̄ = bτ
c 7−→ c̄τ̄ ·dk = cτ ·dk

,

where i, k ∈ Z3, τ ∈ End(B), and g is a 3-element of B such that it commutes with cτ . It follows that

|End(C3 ×B)| ∼= |End(C3 ×A4)|,

ḡT̄ = gT for each g ∈C3 ×B

and it is easy to see that the map T 7−→ T gives an isomorphism End(C3 ×B)∼= End(C3 ×A4). The lemma
is proved.

Theorem 6.1. The endomorphism semigroup of a group G is isomorphic to the endomorphism semigroup
of the group G13 =C3 ×A4 if and only if G =C3 ×A4 or G =C3 ×B.

Proof. Let G be a group such that

End(G)∼= End(G13)∼= End(C3 ×A4).

Since G13 is finite, G is finite, too ([1], Theorem 2). By Lemma 2.12, the group G splits into a direct product
G =C×D such that

End(C)∼= End(C3), End(D)∼= End(A4).

By Lemmas 2.8 and 6.1, C ∼= C3 and D ∼= A4 or D ∼= B. It follows that G ∼= C3 ×A4 or G ∼= C3 ×B. By
Lemma 6.2, the statement of the theorem is true. The theorem is proved and so is part 3 of Theorem 1.1.

7. ON ENDOMORPHISMS OF G14

In this section, we shall consider the group

G14 = ⟨a, b, c | c4 = a3 = b3 = 1, ab = ba, c−1ac = b, c−1bc = a−1⟩

= (⟨a⟩×⟨b⟩)h ⟨c⟩ ∼= (C3 ×C3)hC4. (7.1)

Our aim is to find all groups G such that End(G)∼= End(G14).
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Lemma 7.1. The endomorphisms of G14 are the zero-endomorphism and the following maps:

y :


c 7−→ cbtau

b 7−→ bla−k

a 7−→ bkal

t, u, k, l ∈ Z3; (7.2)

y :


c 7−→ c3btau

b 7−→ b−lak

a 7−→ bkal

t, u, k, l ∈ Z3; (7.3)

y :


c 7−→ c2btau

b 7−→ 1
a 7−→ 1

t, u ∈ Z3.

The maps (7.2) and (7.3), where (k, l) ̸= (0, 0), are automorphisms and

|End(G14)|= 172, |Aut(G14)|= 144.

Each endomorphism of G14 is induced by the images of the generators, and therefore, to prove the
lemma, it is necessary to find conditions under which these images preserve the defining relations of G14.
These easy calculations are omitted.

Consider the group

G0 = ⟨a, b, c, d | c4 = a3 = b3 = d3 = 1, ab = bad, c−1ac = b,

c−1bc = a−1, cd = dc, ad = da, bd = db⟩.

Clearly, Z(G0) = ⟨d⟩ and
G0/⟨d⟩= G0/Z(G0)∼= G14. (7.4)

Lemma 7.2. End(G0)∼= End(G14).

Proof. Immediate calculations show that the endomorphisms of G0 are the zero-endomorphism and the
following maps:

y :


c 7−→ cbtaud(u+t)2

b 7−→ bla−kdw

a 7−→ bkaldr

d 7−→ dk2+l2

t, u, k, l ∈ Z3;

{
w = k(u+ l + t)− lt
r = k(u− l − t)− lt

; (7.5)

y :


c 7−→ c3btaud−(u−t)2

b 7−→ b−lakdw

a 7−→ bkaldr

d 7−→ d−(k2+l2)

t, u, k, l ∈ Z3;

{
w = k(u− t)− l(t − k+u)
r = k(u+ t)− l(t + k−u)

; (7.6)

y :


c 7−→ c2btaud−ut

b 7−→ 1
a 7−→ 1
d 7−→ 1

t, u ∈ Z3. (7.7)
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If τ ∈ End(G0), then the map τ̄ : G0/Z(G0)−→ G0/Z(G0), defined by

(g ·Z(G0)τ̄ = (gτ) ·Z(G0), g ∈ G0,

is an endomorphism of G0/Z(G0). In view of Lemma 7.1, isomorphism (7.4) and endomorphisms (7.5)–
(7.7), the map

T : End(G0)−→ End(G0/Z(G0)), τT = τ̄ , τ ∈ End(G0)

is bijective. Since (τ1τ2)T = (τ1T )(τ2T ), the map T is an isomorphism. Therefore, End(G0) ∼=
End(G0/Z(G0))∼= End(G14). The lemma is proved.

By (7.1), we have G14 = (⟨a⟩×⟨b⟩)h ⟨c⟩. Denote by x the projection of G14 onto its subgroup ⟨c⟩. Then
x ∈ I(G14) and

Kerx = ⟨a⟩×⟨b⟩ ∼=C3 ×C3, Imx = ⟨c⟩ ∼=C4. (7.8)

Lemma 7.3. The projection x given by (7.8) satisfies the following properties:
10 K(x)∼= End(C4);
20 H(x) = {0};
30 J(x) = {0};
40 D(x)∼=C8;
50 |[x]|= 9;
60 y ∈ [x], y ̸= x =⇒ K(x)∩K(y) = {0};
70 V (x) has a subgroup isomorphic to G14;
80 V (x) = A hD(x), where A ∼=C3 ×C3.

Proof. By Lemma 2.3, K(x) ∼= End(Imx) ∼= End(C4) and property 10 is true. Lemma 2.4 and (7.8) imply
property 20. Lemma 2.5 and (7.8) imply that an endomorphism z of G14 belongs to J(x) if and only if cz = 1
and ⟨a, b⟩z ⊂ ⟨a, b⟩, i.e., by Lemma 7.1, z = 0. Hence property 30 holds.

By Lemma 2.6, D(x) consists of automorphisms y of G14 such that

⟨a, b⟩y = ⟨a, b⟩, cy = c.

In view of Lemma 7.1,

D(x) = {y | cy = c, by = bla−k, ay = bkal; k, l ∈ Z3, (k, l) ̸= (0, 0)}.

Therefore, |D(x)|= 8. Choose z ∈ D(x) as follows:

cz = c, bz = ba−1, az = ba. (7.9)

Then

z2 :


c 7−→ c
b 7−→ a
a 7−→ b−1

z4 :


c 7−→ c
b 7−→ b−1

a 7−→ a−1
,

i.e., z is an element of order 8, and, therefore, D(x) = ⟨z⟩ ∼=C8 and property 40 holds.
Using Lemma 7.1, it is easy to check that I(G14) consists of 0, 1 and the maps

yt,u :


c 7−→ cbtau

b 7−→ 1
a 7−→ 1

t, u ∈ Z3.

Since x = y0,0 and yt,ux = x, xyt,u = yt,u, we have

[x] = {yt,u | t, u ∈ Z3}, |[x]|= 9.
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Choose yt,u ∈ [x], yt,u ̸= x, i. e., (t, u) ̸= (0, 0). Since Imx = ⟨c⟩ and Imyt,u = ⟨cbtau⟩ are Sylow 2-subgroups
of G14, there exists g∈ G14 such that Imyt,u = ⟨g−1cg⟩. We have Imx∩ Imyt,u = ⟨1⟩, because CG14(c

2) = ⟨c⟩.
It follows from here and Lemma 2.3 that K(x)∩K(yt,u) = {0}. Properties 50 and 60 are proved.

By Lemma 2.7, Ĝ14 = {ĝ | g ∈ G14} ⊂ V (x). Since Z(G14) = {1}, we have G14 ∼= Ĝ14 ⊂ V (x) and
property 70 is true.

Since an automorphism y of G14 belongs to V (x) if and only if g−1 ·gy∈Kerx for each g∈G, Lemma 7.1
implies that

V (x) = {y :


c 7−→ cbsat

b 7−→ bla−k

a 7−→ bkal

| k, l ∈ Z3, (k, l) ̸= (0, 0)},

i. e.,
|V (x)|= 8 ·9 = 72

and the Sylow 3-subgroup of V (x) is

A = {zi, j | i, j ∈ Z3}= {b̂ia j | i, j ∈ Z3} ∼=C3 ×C3,

where

zi, j :


c 7−→ cbia j

b 7−→ b
a 7−→ a

.

The Sylow 2-subgroup of V (x) is D(x) = ⟨z⟩ ∼=C8, where z is given by (7.9). We have

c(z−1zi, jz) = (cbia j)z = c(ba−1)i(ba) j = cbi+ ja j−i,

b(z−1zi, jz) = (b−1a−1)(zi, jz) = (b−1a−1)z = b−1ab−1a−1 = b−2 = b,

a(z−1zi, jz) = (ba−1)(zi, jz) = (ba−1)z = ba−1b−1a−1 = a,

z−1zi, jz = zi+ j, j−i,

i.e., A ▹V (x) and V (x) = A hD(x). Property 80 is true. The lemma is proved.

Lemma 7.4. If G is a finite group and there exists x ∈ I(G) such that it satisfies properties 10–80 of
Lemma 7.3, then G is isomorphic to G14 or G0.

Proof. Let G be a finite group such that there exists x ∈ I(G) that satisfies properties 10–80 of Lemma 7.3.
By Lemma 2.1, we have G = Kerxh Imx. Property 10 and Lemma 2.3 imply that End(Imx)∼= End(C4).

In view of Lemma 2.8, Imx ∼=C4 and there exists c ∈ G such that

G = Mh ⟨c⟩, Imx = ⟨c⟩ ∼=C4, M = Kerx.

By Lemma 2.4, each y ∈ H(x) is induced by a homomorphism y : Imx −→ Kerx = M. Property 20

implies that each such homomorphism is zero, i.e., M is a 2
′
-group. Hence Imx = ⟨c⟩ is a Sylow 2-subgroup

of G. In view of Lemmas 2.1 and 2.2, |[x]| is equal to the number of Sylow 2-subgroups of G. Since all Sylow
2-subgroups of G are conjugate, we have |[x]|= [G : CG(c)] = [M : CM(c)]. By property 50, [M : CM(c)] = 9.
If g ∈CM(c), then ĝ ∈ D(x). Since D(x) is a 2-group (property 40) and M is a 2

′
-group, we have ĝ = 1, i. e.,

g ∈ Z(G) and
CM(c)⊂ Z(G), CM(c)▹ G, [M : CM(c)] = |M/CM(c)|= 9. (7.10)

It follows that all {2, 3} ′
-elements of G belong into the centre of G, and, therefore, G splits into a direct

product
G = G1 ×G2,
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where G1 and G2 are a {2, 3} ′
-subgroup and a {2, 3}-subgroup of G, respectively. Denote by z the projection

of G onto its subgroup G1. Then z ∈ J(x) and property 30 implies z = 0. Therefore, G1 = ⟨1⟩, G is a {2, 3}-
group and M is a 3-group.

Since Imx is Abelian, ĝ ∈V (x) for each g ∈ G. Therefore, by (7.10) and properties 40, 80, we get

M/CM(c)∼=C3 ×C3. (7.11)

Our next aim is to prove that
g3 = 1 for each g ∈ M. (7.12)

Assume that k is the smallest positive integer such that g3k
= 1 for each g∈M. To prove (7.12), it is necessary

to show that k = 1. To obtain a contradiction, suppose that k > 1. Define the map y : G = Mh ⟨c⟩ −→ G as
follows:

(cig)y = ci ·g1+3k−1
, g ∈ M, i ∈ Z4.

To prove that y is an endomorphism of G choose cig, c jh ∈ G (i, j ∈ Z4; g, h ∈ M). Using Lemma 2.13
and (7.11), we get

(cig · c jh)y = (ci+ j · (c− jgc j) ·h)y = ci+ j · ((c− jgc j) ·h)1+3k−1

= ci+ j · (c− jg1+3k−1
c j) ·h1+3k−1 · [h, c− jgc j]3

k−1·(1+3k−1)/2

= ci+ j · (c− jg1+3k−1
c j) ·h1+3k−1 · [h3k−1

, c− jgc j](1+3k−1)/2

= ci+ j · (c− jg1+3k−1
c j) ·h1+3k−1

= cig1+3k−1 · c jh1+3k−1

= (cig)y · (c jh)y.

Hence y is an endomorphism of G. Let us find y3:

(cig)y3 = (ci ·g1+3k−1
)y2 = (ci ·g(1+3k−1)2

)y = ci ·g(1+3k−1)3
= cig,

i.e., y3 = 1 and y is an automorphism of G. Clearly, y ∈ D(x). Property 40 implies that y = 1 and, therefore,
g3k−1

= 1 for each g ∈ M. This contradicts the choice of k. It follows that the assumption k > 1 is false and
hence k = 1, i.e., (7.12) holds.

Choose g ∈ M \CM(c). Then xĝ ∈ [x], xĝ ̸= x, Kerx = Ker(xĝ) and Im(xĝ) = ⟨cĝ⟩ = ⟨g−1cg⟩. By
Lemma 2.3, the map y2 defined by

(Kerx)y2 = ⟨1⟩, cy2 = (g−1cg)y2 = g−1c2g

belongs to K(xĝ). Clearly, y2 ̸= 0. If c2 ∈ Z(G), then cy2 = c2 and y2 ∈ K(x)∩K(xĝ). This contradicts
property 60. Therefore, c2 ̸∈ Z(G), ĉ2 ̸= 1 and ĉ is an automorphism of order 4 of G. It follows from (7.10),
(7.11), and Lemma 2.7 that

Ĝ = M̂h ⟨ĉ⟩ ∼= (C3 ×C3)hC4, Ĝ ⊂V (x), |Ĝ|= 36.

We have also that Z(G) =CM(c). By properties 40 and 80, |V (x)|= 72. Hence

[V (x) : Ĝ] = 2. (7.13)

In view of property 70, V (x) has a subgroup B isomorphic to G14. We have

[V (x) : B] = 2 (7.14)
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because |V (x)| = 72 and |G14| = 36. Since D(x) is cyclic, property 80 implies that V (x) has only one
subgroup of index 2. Therefore, by (7.13) and (7.14),

Ĝ ∼= G14 ∼= G/CM(c). (7.15)

It follows from (7.1) and (7.15) that there exist a, b ∈ G such that

M/CM(c) = ⟨a⟩×⟨b⟩ ∼=C3 ×C3,

where
a = a ·CM(c), b = b ·CM(c)

and
c−1ac = b, c−1bc = a−1, c = c ·CM(c).

We can choose
b = c−1ac.

Then
c−1bc = a−1h for some h ∈CM(c).

Denote d = h2. Then d ∈CM(c)⊂ Z(G) and, by (7.12), d2 = h. We have

c−1bc = a−1h = a−1d2,

c−1 ·bd−1 · c = a−1d = (ad−1)−1,

c−1 ·ad−1 · c = c−1ac ·d−1 = bd−1.

Denote the elements ad−1 and bd−1 by a and b, respectively. Then

c−1ac = b, c−1bc = a−1, [a, b] ∈CM(c)⊂ Z(G).

Consider the subgroup
N = ⟨c, a, b, [a, b]⟩= ⟨a, b, [a, b]⟩h ⟨c⟩

of G. Clearly, N ▹ G. The factor-group G/N = (CM(c) ·N)/N is an elementary Abelian 3-group, because
g3 = 1 for each g ∈ M. Assume that N ̸= G. There exist h ∈ CM(c) and L ▹ G such that N ⊂ L and
G/L = ⟨hL⟩ ∼=C3. Consider the endomorphism y of G given as follows:

y = εz : G ε−→ G/L = ⟨hL⟩ z−→ G, (hL)z = a,

where ε is the natural homomorphism. By the construction of y, y ̸= 0 and y ∈ J(x). This contradicts
property 30. Therefore, G = N. Since g3 = 1 for each g ∈ M, we have

G = ⟨c, a, b, [a, b]⟩= ⟨a, b, [a, b]⟩h ⟨c⟩,

where
c4 = 1, a3 = b3 = [a, b]3 = 1, c−1ac = b, c−1bc = a−1, [a, b] ∈ Z(G).

If [a, b] = 1, then

G = ⟨a, b, c | c4 = a3 = b3 = 1, ab = ba, c−1ac = b, c−1bc = a−1⟩= G14.

If [a, b] ̸= 1, then denoting d = [a, b], we have

G = ⟨a, b, c, d | c4 = a3 = b3 = d3 = 1, ab = bad, c−1ac = b,

c−1bc = a−1, cd = dc, ad = da, bd = db⟩= G0.

The lemma is proved.
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Theorem 7.1. The endomorphism semigroup of a group G is isomorphic to the endomorphism semigroup
of the group G14 if and only if G = G14 or G = G0.

Proof. Let G be a group such that
End(G)∼= End(G14). (7.16)

Since G14 is finite, G is finite, too ([1], Theorem 2). By Lemma 7.3 and isomorphism (7.16), there exists
x ∈ I(G) that satisfy properties 10–80 of Lemma 7.3. Lemma 7.4 implies that G is isomorphic to G14 or G0.
It follows from here and Lemma 7.2 that the statement of the theorem is true. The theorem is proved and so
is part (4) of Theorem 1.1.

Theorem 1.1 is proved.
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36. järku rühmade endomorfismidest

Alar Leibak ja Peeter Puusemp

Eksisteerib 14 mitteisomorfset 36. järku rühma. On näidatud, et nendest on ainult 11 määratud oma
endomorfismipoolrühmaga kõigi rühmade klassis. Ülejäänud kolme puhul leidub igaühe jaoks parajasti
üks temaga mitteisomorfne rühm, millel on sama endomorfismipoolrühm (isomorfismi täpsuseni).


