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Abstract. In this article we use artificial neural networks (ANN) in durability analysis of porous bearings. First, we present briefly 
the results of durability tests of porous sleeves impregnated with synthetic ester oil under different duration of the tests (100, 500, 
and 1000 h) and bearing temperature (60, 80, and 130 °C) at a rotational speed of 1000 rpm. After each durability test oil samples 
were removed from the bearings and some chosen parameters were checked (Fourier Transform Infrared spectra and total acid 
number). In the second stage, the collected data were used in the design of ANN, i.e. work parameters as the inputs and oil 
properties as the outputs. The tests of various ANN types were performed to achieve the smallest training error and the best 
performance. The best parameters were achieved for multilayer perceptrons neural networks, and also quite good prediction of oil 
parameters after the test was observed. The achieved results, i.e. the ANN designed, algorithms, and oil parameters used, were 
compared with those observed in the previous tests for mineral oil. 
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1. INTRODUCTION * 
1.1. Porous  bearings  characteristics 
 
One of the various types of conventional sliding bearings 
is porous bearing, having its structure filled with oil. 
The lubricant should be chosen carefully, regarding 
work conditions, as the properties of the lubricant can 
affect the main features of the bearing – self-lubricating 
ability and durability [1,2]. The crucial parameters of  
oil influencing the characteristics of porous bearings  
are its volatility, oxidation resistance, and lubricating 
properties [2,3]. 

Tests of porous bearings lifetime have been conducted 
rather seldom because this is an expensive and time-
consuming study. However the published results show 
that the oxidation of oil was much deeper [3,4] after 
work under boundary conditions and essential lubricant 
additives could be damaged, as revealed by the tests  
of the Fourier Transform Infrared (FTIR) spectrum [5]. 

                                                                 
* Corresponding author, artur.krol@wat.edu.pl 

Moreover, the prediction models of porous bearings 
durability [6] and oil state after durability tests have 
been presented [7]. 

 
1.2. Artificial  neural  networks 

 
Artificial neural networks (ANN) are believed to be a 
useful and flexible mathematic tool [6–9]. An interest in 
ANN use in data analysis is growing and a great number 
of ANN-implemented models are observed in various 
disciplines, e.g. medicine, finance, mechanics, tribology, 
and logistics [9]. The popularity of ANN use derives 
from their special features [8,10] such as the ability to 
approximate nonlinear functions, fast and effective multi-
processing of large amounts of data, and the ability to 
learn and adjust a final model to given real data. 

The human biological neuron is the foundation of 
ANN structure and main terms. It receives an electrical 
or chemical signal by synapsis of dendrites and transfers 
it through the soma (main body) and axon, by synapsis 
to the subsequent neurons. As a consequence, the 
mathematical model of a single neuron is presented as a 
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single nonlinear and parametrized function, according to 
the following formula: 

 

1 2 1 2( , , , ; , , , ),n ky f x x x w w w                (1) 
 

where 1 2, , , nx x x  represent variables (inputs), 

1 2, , , kw w w  are parameters (connections or weights), 
and ( ; )f x w  is the activation function, setting the output 
( )y  of the neuron to the appropriate ranges. However, the 
structure of ANN could be more complex with the input 
layer, collecting signals and entering them to the network, 
the hidden layer, with neurons transforming data and the 
output layer of neurons working out the output signals. 

There are various types of ANN architecture [10]: 
 feedforward networks (static), e.g. multilayer per-

ceptrons (MLP) networks,  
 feedback or recurrent (dynamic) networks, e.g. 

Hopfield networks, 
 competitive learning networks, e.g. Self Organizing 

Feature Map (SOFM or Kohonen). 
The feedforward MLP networks are useful in the 

analysis of technical systems, e.g. mechanics, electronics, 
informatics, and also in various aspects of tribology, 
especially in fault detection and diagnosis in 
machinery [11]. A number of learning rules are available, 
but the main algorithm of the learning process of MLP 
is the back-propagation method (BP) [10–12]. The 
method involves the calculation of connection weights 
and the determining of connection patterns. Signals 
from the inputs through the hidden layer reach the 
outputs, and then are again transferred back to the inputs 
for learning. The non-linear relationship among the 
inputs and the outputs is estimated by adjusting the 
weight values and finally it is generalized for the inputs, 
not comprised in the training data. The BP algorithm 
searches for a minimum of the error function adjusting 
the weights by the method of gradient descent [12]. 

 
1.3. Application  of  ANN  in  tribology 

 
The authors of [13] first showed that ANN could be 
used in the detection of rolling bearing faults and even 
ANN of small structure could be a worthy mechanism 
for fault recognition. An extensive summary of the 
ANN applications in bearing fault diagnosis in machines 
is presented in [14]. It clearly explains the rules of 
appropriate selection of inputs and outputs for the ANN 
design and the method for bearing life prediction. 

The use of ANN in the analysis of lubricants 
parameters is presented in [12,15,16], but they have 
been used rather seldom in useful life prediction 
analysis [15]. The authors of [12] put forward the idea 
of transformers oil prediction with ANN and conclude 
that even a lack of sufficient data to train the network 
results in acceptable accuracy levels. The ANN are 
also applied in the prediction of fuels parameters [16] 
using near-infrared spectroscopy. 

1.4. Summary  of  literature  review  and  aim  of  the  
research 

 
The suitability of ANN application in the analysis of 
bearings characteristics and assessment of lubricant 
properties has been confirmed and presented by various 
authors. However, only few articles focus on the durability 
of porous bearings and lubricants used. 

The first attempt to use ANN for the estimation of 
mineral oil state after durability tests was presented 
in [7]. It was reported that the oxidation process of 
mineral gear oil could be predicted with MLP neural 
networks. 

However, the oxidation process of mineral oil was 
much deeper than for synthetic ester oil having better 
oxidation resistance. Therefore, in that stage it was 
assumed that ANN prediction of the chosen parameters 
of synthetic oil with higher oxidation resistance would 
be possible with acceptable performance and fault 
parameters. The main aim of the present article was  
to design ANN for synthetic oil parameters after the 
oxidation process during porous bearing durability tests. 

 
 

2. EXPERIMENTAL  DETAILS 
 

Experimental details of the test stands were presented in 
papers [3,4,7], fully describing the main tester of the 
porous bearing durability and the additional equipment 
used for oil properties research. The views of the research 
module and the tester are presented in Figs 1 and 2. 
 

 

 
 

Fig. 1. View of the research module: 1, steel shaft; 2, porous 
sliding bearing; 3, bearing mounting; 4, needle bearing; 
5, load sensor; 6, arm with weights; 7, sensor of friction force; 
8, thermocouple. 
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The research programme was divided into two  
main stages: experimental tests and ANN analysis. The 
experimental tests were completed for the following 
objects: the porous sliding bearings (Fe powder 97.5%, 
Cu powder 2.5%) having open porosity 21.5%, and the 
bush size was 25–0.1/35.2–0.16  20–0.3 mm; the NC6 steel 
shaft, having 60 HRC hardness; and two oils – mineral 
gear oil (results of ANN analysis presented in [7]) and 
synthetic gear oil. 

First, the basic properties of fresh synthetic and 
mineral gear oil (density, dynamic viscosity, lubricity 
parameter Goz150, total acid number TAN, Noack 
evaporation loss m), presented in Table 1, were tested 
according to the standardized methods [16–21]. 

Then the tribological tests were executed, with 
continuous measurement of the moment of friction and 
bearing temperature, i.e. 1000, 500, and 100 h durability 
tests at 1000 rpm, under the chosen load and three stable 

controlled temperatures (60 °C and 1.12 MPa, 80 °C and 
130 °C under 1.45 MPa). The housing of the bearing 
was equipped with the electric heating module to control 
and stabilize (  5 °C) the temperature during the tests. 
The 1000 h test at stable 80 °C was prolonged to 4008 h, 
as after the 500 h test no significant changes in lubricant 
properties were observed. Additionally, as the temperature 
of 80 °C is believed to be a typical boundary temperature 
of porous bearing filled with lubricant, it was reasonable 
to enhance the tests. 

After the tests the oil samples were extracted and 
collected for the testing of TAN and FTIR spectroscopy 
analysis. The FTIR method is widely used [5,15,16,22] 
in observing the oxidation process of oils, i.e. chemical 
changes in the lubricant base and comprised functional 
additives. The tests were realized with Nicolet iS10 
spectrometer by Thermo Scientific having the IR 
source, DTGS KBr detector, and KBr beamsplitter 

 
 

Table 1. Basic parameters of fresh mineral gear oil [7] and synthetic ester oil 
 

 Density, 
g/cm3 

Dynamic 
viscosity, 

mPa·s 

Oil 

40 °C 100 °C 40 °C 100 °C 

Lubricity 
parameter 

Goz150, MPa 

Total acid 
number, 

mgKOH/g 

Noack 
loss 

m, % 

Mineral 0.880 0.853 171.8 15.30 38.3 1.01 6.5 
Synthetic 0.848 0.838 96.8 12.77 7.8 2.15 15.9 

 

 
 

Fig. 2. General view of the durability tester of porous sliding bearings. 
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(4000–650 cm–1, 32 scans, 4 cm–1 resolution, Happ–
Genzel apodization). The sampling FTIR technique was 
attenuated total reflection, as it is a fast, easy sample 
preparation technique (no dilution required), and radiation 
is not transmitted through the sample [23]. As previously 
in [7], the FTIR analysis was based on American Society 
for Testing and Materials (ASTM) standards [23,24], 
covering practices for monitoring the conditions of in-
service lubricants. 

The ANN analysis was performed in the second 
stage with Statistica Neural Networks comprising the 
design of ANN, learning process, and testing process. 
The data vector was based on the data from the 
tribological tests (23 cases) and regression MLP were 
created with different activation functions (sigmoid, 
hyperbolic, exponential, etc.). The crucial matter at this 
stage was to decide about the input and the target 
variables (outputs). As the output parameters should 
depend on the inputs, the inputs were work conditions, 
i.e. p – pressure from the bearing load, v – sliding velocity, 
T – work temperature, t – duration of the test, and the 
outputs were the oil parameters studied after the tests 
(TAN and selected peaks of FTIR spectra). 

The learning process with different iterative 
techniques was to adjust the weights of ANN to produce 
an output which is as close as possible to y for any given 
input data x. The performance of ANN was estimated 
during the testing process (prediction for unseen data), 
which is known as generalization. Therefore the collected 
data were divided for use in the learning (80%) and 
testing process (20%). The process of ANN creation 
consisted of the following steps: 
 presenting to ANN each input–target pair from the 

training data, 
 calculation of the outputs – predictions of ANN for 

the targets, 
 calculation of the error function – (Eq. 2), 
 for better predictions for each input–target pair, the 

adjustment of the ANN weights with the training 
algorithm, 

 use of separate testing data to compute predictions 
and the value of the test error, 

 checking the test error value: if decreasing, continue 
training, if otherwise, stop training, 

 estimation of the training performance Ptr and the 
testing performance Pt for the designed ANN. 
The error function, the difference between the output 

and target values, was calculated according to the 
following formula: 

 

2

1
( ) ,

n

i i
i

E y a


                               (2) 

 
where iy  is the calculated output of the ANN, ia  is the 
target (aim – real value) of the output, i  is the number of 
the consequent case, n  is the total number of cases. 

3. RESULTS  AND  DISCUSSION 

3.1. Tribological  tests 
 

The tribological characteristics were quite stable at 
smaller temperatures, i.e. at 60 and 80 °C. The example 
of the single test presented in Fig. 3, for study at 
constant temperature of 130 °C, shows that the tests at 
the increased temperature were not finished because of a 
bearing seizure. 

After initial stable work, the moment of friction and 
temperature increased rapidly, indicating the seizure 
process (Fig. 3). Thus the 130 °C temperature was 
unacceptable work condition compared to 60 and 80 °C 
and mass loss of oil was very intensive. The probable 
reason was much higher volatility of synthetic oil 
compared to mineral one (Table 1) used in previous 
tests in [7]. 

After the tests, the TAN of oil samples was checked. 
Small fluctuations were observed for temperature and 
test duration increase (the values 1.85–3.89 mgKOH/g 
at 60 and 80 °C and 1.45–2.56 mgKOH/g at 130 °C). 
However, it was clearly seen the TAN did not reach the 
values observed for mineral oil (1.29–4.02 mgKOH/g 
at 60 and 80 °C and even 27.07 mgKOH/g at 130 °C [7]). 

The oxidation process of oil was defined during the 
analysis of FTIR comparative spectra for different work 
conditions (Fig. 4). 

Significant dissimilarities of oil spectra occurred 
at 80 and 130 °C and at prolonged duration of the tests. 
The differences were observed for peaks of oxidation 
resistance additive (1594 and 1530 cm–1) within the 
oxidation range (1800–1670 cm–1) and lubricity additive 
(1164 and 960 cm–1). Work at a higher temperature was 
the main reason for deeper oxidation and resulted in the 
creation of acid carbonyl structure peaks (1710 and 
1770 cm–1) at a strong ester peak (1740 cm–1). The 
selected peaks area and TAN value were consequently 
used as the outputs in ANN creation. 

 

3.2. Design  of  artificial  neural  networks 
 

As mentioned above, ANN had strictly specified inputs, 
as a consequence of performed tribological tests (work 
parameters), i.e. p, v, T, and t. The outputs of ANN were 
parameters of oil investigated after the tests, i.e. the 
TAN value, SAW antiwear additive peak area (960 cm–1), 
SOP oxidation products peak area (1800–1670 cm–1), and 
SEP area of ester peaks (1760–1720 cm–1). Finally, each 
ANN had three inputs and one target. 

Tables 2 and 3 present examples of calculations of 
ANN, having the best training performance Ptr, and test 
performance Pt (as close as possible to 1) and the 
smallest training and test error (Etr, Et). The results of 
sensitivity analysis parameters, estimating the importance 
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Fig. 3. The single durability test of the bearing No. 288 (T = const = 130 °C, duration 500 h) – moment of friction and temperature
of the bearing. 

 
 
 

 
 

Fig. 4. Comparison of fresh synthetic oils and oils from bearings after the test at 80 °C (4008 h) and 130 °C (500 h test – seizure
after 336 h). ATR, attenuated total reflection. 
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Table 2. Results of the calculation of artificial neural net-
works (ANN) with pressure (p), duration of the test (t), and 
temperature (T) as inputs and the total acid number (TAN) and 
oxidation products peak area (SOP) as outputs. Ptr, training 
performance; Pt, test performance; Etr, training error; Et, test 
error; AF, activation function 
 

Output – TAN 

ANN Ptr Pt Etr Et AF 

0.952 0.926 0.004 0.007 Tanh 
3-2-1 

Sensitivity analysis of ANN inputs 

 p t T 

 2.09 11.38 1.84 

Output – SOP 

ANN Ptr Pt Etr Et AF 

0.888 0.992 0.012 0.001 Logistic 
3-1-1 

Sensitivity analysis of ANN inputs 

 p t T 

 3.67 1.54 5.10 

 
 

Table 3. Results of the calculation of artificial neural net-
works (ANN) with pressure (p), duration of the test (t), and 
temperature (T) as inputs and antiwear additive peak 
area (SAW) and area of ester peaks (SEP) as outputs. Ptr, training 
performance; Pt, test performance; Etr, training error; Et, test 
error; AF, activation function 
 

Output – SAW 

ANN Ptr Pt Etr Et AF 

0.710 0.999 0.027 0.002 Tanh 
3-1-1 

Sensitivity analysis of ANN inputs 

 p t T 

 1.26 1.71 1.08 

Output – SEP  

ANN Ptr Pt Etr Et AF 

0.917 0.992 0.008 0.001 Identity 
3-3-1 

Sensitivity analysis of ANN inputs 

 p t T 

 2.90 1.54 11.36 

 
 

of the models’ input variables, are also presented and 
output activation functions AF are listed. 

Generally, the achieved ANN had high training 
performance Ptr and testing performance Pt, meaning 
good adjustment of the designed ANN to real data. 
Training and testing errors had also small values for all 
presented ANN with specified outputs. 

The results of sensitivity analysis (Tables 2 and 3) 
showed differed impact of inputs on the specified output. 

The TAN value was under the strongest influence of 
time (t – 11.38), compared to load pressure (p – 2.09), 

and temperature (T – 1.84). The destruction of antiwear 
additive was rather under the same comparable 
influence of all inputs. However, the oxidation products 
area SOP was visible at a higher impact of temperature 
(T – 5.10) and a similar tendency was observed for ester 
products area SEP (T – 11.36). The duration of the test (t) 
was not meaningful for these two outputs. This is the 
consequence of the oxidation process pattern, i.e. small 
changes in the oxidation area and the ester peak area. 

The detailed structures of the achieved ANN are 
presented in Figs 5–8. The figures show all nodes in 
layers and adjusted weight values and bias (activation 
threshold value of the neuron). 

 

 
 

Fig. 5. The structure of 3-2-1 ANN: three inputs (p, t, T) and 
one output (TAN) with weights (black) and (bias) calculations 
and the activation function (AF) – Tanh (hyperbolic tangent 
function). 

 

 
 

Fig. 6. The structure of 3-1-1 ANN: three inputs (p, t, T) and 
one output (SOP) with weights (black) and (bias) calculations 
and activation function (AF) – Logistic (S-shaped sigmoid 
function). 

 

 
 

Fig. 7. The structure of 3-1-1 ANN: three inputs (p, t, T) and 
one output (SAW) with weights (black) and (bias) calculations 
and activation function (AF) – Tanh (hyperbolic tangent 
function). 
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Fig. 8. The structure of 3-3-1 ANN: three inputs (p, t, T) and 
one output (SEP) with weights (black) and (bias) calculations 
and activation function (AF) – Identity (input signals are not 
formed at all). 

 
 
The presented ANN models had MLP structure, 

however, with a different number of hidden neurons, 
weight values, and bias. The structure of the designed 
ANN was rather simple, giving at the same time high 
performance and prediction ability. 

Finally, the residuals of the designed ANN were 
analysed. Their values were not always small, meaning 
that the model was not fully satisfactory. The normality 
of residuals distribution was evaluated with the Shapiro–
Wilk test, a good test for measuring power properties. 
The test would reveal if the effectiveness of the designed 
ANN was the same in all the cases. 

 

The full normality analysis of residuals distribution 
is summarized in Table 4. If the W statistic is significant 
(pSW < 0.05), the hypothesis that the respective distribution 
is normal should be rejected. This was observed for 
residuals of ANN with SAW as the output. 

The examples of distribution of the residuals are 
presented in Figs 9 and 10. These show small residual 
values for TAN as the output (Fig. 9) and higher values 
for the antiwear additive area SAW (Fig. 10). 

The designed ANN were compared with the results 
for mineral oil [17]. As previously, the best parameters 
were achieved for MLP neural networks, having also 
simple structure, i.e. the total number of ANN nodes 
was rather small. The same ANN structure for both oils 
was observed for the outputs: TAN (3-2-1), SAW (3-1-1), 
SOP (3-1-1), but the calculated weights had different 
values, as a consequence of dissimilar oxidation processes 
for both oils. 

 
Table 4. Shapiro–Wilk test results for different artificial 
neural networks (ANN) 
 

ANN 
structure 

ANN 
output 

Shapiro–Wilk parameters 

3-2-1 TAN SW–W = 0.9700; pSW = 0.7556 
3-1-1 SAW SW–W = 0.8501; pSW = 0.0053 
3-1-1 SOP SW–W = 0.9434; pSW = 0.2781 
3-3-1 SEP SW–W = 0.9805; pSW = 0.9401 

 
 
 

 
 

Fig. 9. Comparison of the TAN, TAN output, and residuals of 3-2-1 ANN and for consequent cases. 
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The sensitivity analysis of the inputs showed 
completely different results, i.e. the TAN as the output 
was most affected by the duration of the test (t) in the 
case of synthetic oil, but by temperature (T) in the case 
of mineral oil [17]. Regarding SOP as the output, the 
highest influence was exerted by temperature (T) for 
synthetic oil and also for mineral oil. However, the latter 
value was smaller compared to the other parameters. 

 
 

4. CONCLUSIONS 
 
1. Artificial neural networks were designed for synthetic 

oil parameters after the oxidation process during porous 
bearing durability tests. The designed ANN had simple 
structures, but gave high performance, prediction 
ability, and small faults. 

2. It was confirmed that ANN prediction of the chosen 
parameters of synthetic oil, having better oxidation 
resistance than mineral oil, was possible with the 
acceptable performance and fault parameters. 

3. Examples of MLP neural networks designed for both 
mineral and synthetic oils had the same structure 
(number of neurons in layers), but the sensitivity 
analysis of input parameters gave different results, as a 
consequence of the oil oxidation pattern. Moreover, the 
sensitivity analysis could be used as a good mathematic 
tool to discover the meaning of work parameters and 

their influence on the outputs, especially if the number 
of inputs is higher. 

4. The full normality analysis of residuals distribution of 
the achieved ANN should be performed to confirm the 
effectiveness of the network for all cases. 
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Sünteesõli  parameetrite  ennustamine  tehisnärvivõrkude  abil  peale  poorsete  laagrite  
kulumiskindluse  katseid 

 
Artur Król ja Krzysztof Gocman 

 
On kirjeldatud tehisnärvivõrkude (ANN) kasutamise katset poorsete laagrite kulumiskindluse analüüsil. Esiteks  
on lühidalt toodud poorsete laagripukside kulumiskatsete tulemused sünteetilise esterõliga erinevatel katseaegadel 
(100, 500 ja 1000 tundi) ning laagri temperatuuridel (60, 80 ja 130 °C) pöörlemiskiirusel 1000 pööret minutis. Peale 
iga kulumiskatset eemaldati laagritest õli ja määrati mõningad parameetrid (FTIR-i spekter ning üldhappearv (TAN)). 
Järgnevas staadiumis kasutati kogutud andmeid ANN-i disainil, s.o tööparameetrid olid sisendiks ja õli omadused 
väljundiks. Katsetati erinevaid ANN-i tüüpe, saamaks väiksemat hälvet ja parimat vastupanu. Selgus, et parimad 
näitajad saadi MLP närvivõrkude korral. Peale katset täheldati õli parameetrite küllaltki head ennustatavust. Saadud 
tulemusi (disainitud ANN), kasutatud algoritme ja õliparameetreid võrreldi varasemates katsetes saavutatutega 
mineraalõli korral. 

 
 


