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Abstract. It is proved that each group of order 32 that has a maximal subgroup isomorphic to C2 ×C2 ×C2 ×C2 or C4 ×C4 is
determined by its endomorphism semigroup in the class of all groups.
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1. INTRODUCTION

It is well known that all endomorphisms of an Abelian group form a ring and many of its properties can be
characterized by this ring. An excellent overview of the present situation in the theory of endomorphism
rings of groups is given by Krylov et al. [5]. All endomorphisms of an arbitrary group form only a
semigroup. The theory of endomorphism semigroups of groups is quite modestly developed. In a number
of our papers we have found some classes of groups that are determined by their endomorphism semigroups
in the class of all groups. Note that if G is a fixed group and an isomorphism of semigroups End(G) and
End(H), where H is an arbitrary group, always implies an isomorphism of G and H, then we say that the
group G is determined by its endomorphism semigroup in the class of all groups. There exist also groups
that are not determined by their endomorphism semigroup in the class of all groups.

We know a complete answer to this problem for finite groups of order less than 32. It was proved in [12]
that among the finite groups of order less than 32 only the alternating group A4 (also called the tetrahedral
group) and the binary tetrahedral group ⟨a, b | b3 = 1, aba= bab⟩ are not determined by their endomorphism
semigroups in the class of all groups. These two groups are non-isomorphic, but their endomorphism
semigroups are isomorphic. It was natural to consider the groups of order 32.

All groups of order 32 were described by Hall and Senior [4]. There exist exactly 51 non-isomorphic
groups of order 32. In [4], these groups are numbered by 1, 2, . . . , 51. We shall mark these groups by
G1, G2, . . . , G51, respectively. The groups G1 − G7 are Abelian, and, therefore, are determined by their
endomorphism semigroups in the class of all groups ([6], Theorem 4.2). In [2], it was proved that
the groups of order 32 presentable in the form (C4 ×C4)hC2 (Ck – the cyclic group of order k) are
determined by their endomorphism semigroups in the class of all groups. The groups of this type are
G3, G14, G16, G31, G34, G39, G41. In [3], it was proved that the groups of order 32 presentable in the form
(C8 ×C2)hC2 are determined by their endomorphism semigroups in the class of all groups. The groups
of this type are G4, G17, G20, G26, G27. In [13], Theorem 1.1, it was proved that the groups of order 32 that

∗ Corresponding author, peeter.puusemp@ttu.ee



2 Proceedings of the Estonian Academy of Sciences, 2016, 65, 1, 1–14

have a maximal subgroup isomorphic to C4 ×C2 ×C2 are determined by their endomorphism semigroup
in the class of all groups. The groups of this type are G2–G4, G8–G14, G16, G18, G20, G36–G 38. In [14],
Theorem 1.1, it was proved that the groups of order 32 that have a maximal subgroup isomorphic to C8×C2
are determined by their endomorphism semigroup in the class of all groups. The groups of this type are

G4, G5, G6, G17, G19, G20, G21, G22, G26, G27, G28, G29, G30, G32.

In this paper, we consider the groups of order 32 that have a maximal subgroup isomorphic to
C4

2 =C2 ×C2 ×C2 ×C2 or C2
4 =C4 ×C4 and prove the following theorem:

Theorem 1.1. Each group of order 32 that has a maximal subgroup isomorphic to C2 ×C2 ×C2 ×C2 or
C4 ×C4 is determined by its endomorphism semigroup in the class of all groups.

The groups of order 32 that have a maximal subgroup isomorphic to C2 ×C2 ×C2 ×C2 or C4 ×C4 are:

G1 −G3, G5, G8, G11, G14 −G16, G19, G21, G31, G33 −G35, G39 −G41.

To prove the theorem, the characterizations of these groups by their endomorphism semigroups will be
given. These characterizations will be used in the proof of the theorem.

We shall use the following notations:
G – a group;
End(G) – the endomorphism semigroup of G;
Ck – the cyclic group of order k;
Qn = ⟨a, b | a2n

= 1, a2n−1
= b2, b−1ab = a−1⟩ – the generalized quaternion group (n ≥ 2);

Q = Q2 – the quaternion group;
Dn = ⟨a, b | b2 = an = 1, b−1ab = a−1⟩ – the dihedral group of order 2n;
Zk – the ring of residual classes modulo k;
⟨K, . . . , g, . . .⟩ – the subgroup generated by subsets K, . . . and elements g, . . .;
[a, b] = a−1b−1ab (a, b ∈ G);
G ′ – the commutator-group of G;
ĝ – the inner automorphism of G, generated by an element g ∈ G;
o(g) – the order of an element g ∈ G;
I(G) – the set of all idempotents of End(G);
K(x) = {z ∈ End(G) | zx = xz = z};
J(x) = {z ∈ End(G) | zx = xz = 0};
H(x) = {z ∈ End(G) | xz = z, zx = 0};
C(x) = {z ∈ End(G) | zx = xz};
K(x)∗ – the group of all invertible elements of the semigroup K(x) with identity x, where x ∈ I(G);
VK(x)∗(y) = {z ∈ K(x)∗ | zy = y}.

The set K(x) is a subsemigroup of End(G). If x ∈ I(G), then K(x) is a monoid with unit x. We shall
write the mapping to the right of the element on which it acts.

2. GROUPS THAT HAVE A MAXIMAL SUBGROUP C2 ×C2 ×C2 ×C2 OR C4 ×C4

In this section, using results obtained by Hall and Senior [4], the list of all groups of order 32 that have a
maximal subgroup isomorphic to C2 ×C2 ×C2 ×C2 or C4 ×C4 is given. To this end, denote

G16,1 = ⟨a, b, c | a4 = b2 = c2 = 1, ab = ba, bc = cb, c−1ac = a−1b⟩.

The group G16,1 is a group of order 16. The groups of order 32 that have a maximal subgroup isomorphic to
C2 ×C2 ×C2 ×C2 are
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• G1 =C2 ×C2 ×C2 ×C2 ×C2, G2 =C2 ×C2 ×C2 ×C4;
• G8 =C2 ×C2 ×D4, G11 =C2 ×G16,1;
• G33 = ⟨a, b, c, d, g | a2 = b2 = c2 = d2 = g2 = 1, ab = ba, ac = ca,

ad = da, bc = cb, bd = db, cd = dc, g−1ag = b, g−1cg = d ⟩.
The groups of order 32 that have a maximal subgroup isomorphic to C4 ×C4 are
• G3 =C2 ×C4 ×C4, G5 =C4 ×C8, G14 =C4 ×D4, G15 =C4 ×Q;
• G16 = ⟨a, b, c | a4 = b4 = c2 = 1, ab = ba, cb = bc, c−1ac = ab2 ⟩

= (⟨a⟩×⟨b⟩)h ⟨c⟩= (C4 ×C4)hC2;
• G19 = ⟨a, b | a4 = b8 = 1, ab2 = b2a, b−1ab = ab4 ⟩

= ⟨a, b | a4 = b8 = 1, a−1ba = b5 ⟩= ⟨b⟩h ⟨a⟩=C8 hC4;
• G21 = ⟨a, b | a4 = b8 = 1, b−1ab = a−1⟩= ⟨a⟩h ⟨b⟩=C4 hC8;
• G31 = ⟨a, b, c | a4 = b4 = c2 = 1, ab = ba, c−1ac = b⟩

= (⟨a⟩×⟨b⟩)h ⟨c⟩= (C4 ×C4)hC2;
• G34 = ⟨a, b, c | a4 = b4 = c2 = 1, ab = ba, c−1ac = a−1,

c−1bc = b−1 ⟩= (⟨a⟩×⟨b⟩)h ⟨c⟩= (C4 ×C4)hC2;
• G35 = ⟨a, b, c | a4 = b4 = 1, ab = ba, c2 = a2, c−1ac = a−1,

c−1bc = b−1 ⟩= ⟨b⟩h ⟨a, c⟩=C4 hQ;
• G39 = ⟨a, b, c | a4 = b4 = c2 = 1, ab = ba, c−1ac = ab2,

c−1bc = ba2 ⟩= (⟨a⟩×⟨b⟩)h ⟨c⟩= (C4 ×C4)hC2;
• G40 = ⟨a, b, c | a4 = b4 = 1, ab = ba, c2 = a2b2, c−1ac = a−1,

c−1bc = b−1a2 ⟩;
• G41 = ⟨a, b, c | a4 = b4 = c2 = 1, ab = ba, c−1ac = a−1b2,

c−1bc = ba2 ⟩= (⟨a⟩×⟨b⟩)h ⟨c⟩= (C4 ×C4)hC2.
It is known that the following groups are determined by their endomorphism semigroups in the class

of all groups: finite Abelian groups ([6], Theorem 4.2), dihedral 2-groups ([8], Theorem 3.1), generalized
quaternion groups ([9]), finite groups of order 16 ([11]). On the other hand, if the groups G1, G2, . . . , Gn
are determined by their endomorphism semigroups in the class of all groups, then so is their direct product
G1 ×G2 × . . .×Gn ([6], Theorem 1.13). Therefore, the groups G1 −G3, G5, G8, G11, G14, and G15 are
determined by their endomorphism semigroups in the class of all groups. In [2], it was proved that the
groups of order 32 presentable in the form (C4×C4)hC2 are determined by their endomorphism semigroups
in the class of all groups. Therefore, the groups G16, G31, G34, G39, and G41 are determined by their
endomorphism semigroups in the class of all groups. In [10], Theorem, it was proved that the semidirect
product G = Cpn hCm, where p is a prime number, n and m are some positive integers, is determined by
its endomorphism semigroup in the class of all groups. Hence the groups G19 and G21 are determined by
their endomorphism semigroups in the class of all groups. To prove Theorem 1.1, we have to prove in
addition that the groups G33, G35, and G40 are determined by their endomorphism semigroups in the class of
all groups. It is done in theorems 4.2, 5.2, and 6.2.

3. PRELIMINARY LEMMAS

For convenience of reference, let us recall some known facts that will be used in the proofs of our main
results.

Lemma 3.1. If x ∈ I(G), then G = Kerxh Imx and Imx = {g ∈ G |gx = g}.

Lemma 3.2. If x ∈ I(G), then

K(x) = {y ∈ End(G) | (Imx)y ⊂ Imx, (Kerx)y = ⟨1⟩}

and K(x) is a subsemigroup with the unity x of End(G) that is canonically isomorphic to End(Imx). In this
isomorphism element y of K(x) corresponds to its restriction on the subgroup Imx of G.
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Lemma 3.3. If x ∈ I(G), then

J(x) = {z ∈ End(G) | (Imx)z = ⟨1⟩, (Kerx)z ⊂ Kerx}.

Lemma 3.4. If x ∈ I(G), then

H(x) = {y ∈ End(G) | (Imx)y ⊂ Kerx, (Kerx)y = ⟨1⟩}.

Lemma 3.5. If x ∈ I(G), then

P(x) = {y ∈ End(G) | y|Imx = 1Imx, (Kerx)y ⊂ Kerx}.

We omit the proofs of these lemmas because these are straightforward corollaries from the definitions.

Lemma 3.6. If
D4 = ⟨a, b, c | a2 = b2 = c2 = 1, ab = ba, c−1ac = b⟩ (3.1)

and x ∈ I(D4) such that Imx = ⟨c⟩, Kerx = ⟨a⟩×⟨b⟩, then 10 K(x)∼= End(C2) and 20 |{u ∈ End(D4) | xu =
u, ux = 0}|= 4. Conversely, if x ∈ I(D4) satisfies 10 and 20, then there exist a, b, c ∈ D4 such that

D4 = Kerxh Imx, Imx = ⟨c⟩ ∼=C2, Kerx = ⟨a⟩×⟨b⟩ ∼=C2 ×C2

and (3.1) holds.

Lemma 3.6 is obtained by easy calculations in the group D4.

Lemma 3.7. ([9], Theorems 2.1 and 3.1) Assume that a group G decomposes into a semidirect product

G = H h ((G1 × . . .×Gn) h K), n ≥ 2, (3.2)

where
⟨Gi, K⟩= Gi h K (i = 1, 2, . . . , n). (3.3)

Denote by x and xi the projections of G onto K and Gi hK (i = 1, 2, . . . , n), i.e.

Imxi = Gi h K, Kerxi = H h
n

∏
j=1, j ̸=i

G j, (3.4)

Imx = K, Kerx = H h (G1 × . . .×Gn), (3.5)

Gi = Kerx∩ Imxi, H = ∩n
j=1 Kerx j. (3.6)

Then
xix j = x jxi = x; i, j = 0, 1, . . . , n, i ̸= j, (3.7)

and for each i, j ∈ {1, 2, . . . , n}, i ≠ j, there exists zi j = z ji ∈ I(G) that satisfies the following properties:
10 xi, x j ∈ K(zi j),
20 there exists a unique pair Vi,Vj of subgroups of K(zi j)

∗ with properties

(i) Vi ⊂C(xi), Vj ⊂C(x j);
(ii) Vixi =VK(xi)∗(x), Vjx j =VK(x j)∗(x);
(iii) xivxi = xi for each v ∈Vj;
(iv) x jux j = x j for each u ∈Vi.
Conversely, suppose that there exist idempotents x, x1,..., xn of End(G) such that (3.7) holds and for 

each i, j ∈ {1, 2,..., n}, i ̸= j, there exists zi j = zji ∈ I(G) that satisfies the properties 10 and 20. Then the 
group G decomposes into the semidirect product (3.2), where the equalities (3.3)–(3.6) are true. In this case 
the set B = {y ∈ I(G) | x1,..., xn ∈ K(y)} is non-empty and there exists a unique z ∈ B such that zy = yz = z 
for each y ∈ B. This z is the projection of G onto its subgroup (G1 × ... × Gn) h K and Kerz = H.
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Denote by C (x; x1, . . . , xn) the set of the conditions for x; x1, . . . , xn given in the second part of
Lemma 3.7 (i.e. equalities (3.7) and 10, 20). If the condition C (x; x1, . . . , xn) is satisfied, denote by πC

the projection of G onto its subgroup (G1 × . . .×Gn)hK. The endomorphism πC is a unique z ∈ B such
that zy = yz = z for each y ∈ B. Denote by C0(x; x1, . . . , xn) the condition C (x; x1, . . . , xn) with πC = 1G
(i.e. H = ⟨1⟩).

4. GROUP G33

In this section, we shall characterize the group

G33 = ⟨a, b, c, d, g | a2 = b2 = c2 = d2 = g2 = 1, ab = ba, ac = ca,

ad = da, bc = cb, bd = db, cd = dc, g−1ag = b, g−1cg = d⟩

by its endomorphism semigroup. The group G33 is a group of order 32 and the numbers of its elements of
orders 2 and 4 are 19 and 12, respectively ([4]). Clearly,

G33 = (⟨a⟩×⟨b⟩×⟨c⟩×⟨d⟩)h ⟨g⟩ ∼= (C2 ×C2 ×C2 ×C2)hC2;
G33 = (⟨c⟩×⟨d⟩)h ((⟨a⟩×⟨b⟩)h ⟨g⟩); (⟨a⟩×⟨b⟩)h ⟨g⟩ ∼= D4;
G33 = (⟨a⟩×⟨b⟩)h ((⟨c⟩×⟨d⟩)h ⟨g⟩), (⟨c⟩×⟨d⟩)h ⟨g⟩ ∼= D4.

Our aim is to prove the following theorem.

Theorem 4.1. A finite group G is isomorphic to G33 if and only if there exist x, y, z ∈ I(G) that satisfy
condition C0(x; y, z) and the following properties:
10 K(x)∼= End(C2);
20 K(y)∼= K(z)∼= End(D4);
30 |{u ∈ K(y) | xu = u, ux = 0}|= |{u ∈ K(z) | xu = u, ux = 0}|= 4.

Proof. Necessity. Let G = G33. We have to prove that there exist x, y, z ∈ I(G) that satisfy condition
C0(x; y, z) and properties 10–30 of the theorem.

Denote
K = ⟨g⟩, G1 = ⟨a⟩×⟨b⟩, G2 = ⟨c⟩×⟨d⟩, H = ⟨1⟩.

Since ⟨a, b, g⟩ ∼= ⟨c, d, g⟩ ∼= D4, we have

G = H h ((G1 ×G2) h K),

⟨G1, K⟩= G1 h K ∼= D4, ⟨G2, K⟩= G2 h K ∼= D4.

We can use now Lemma 3.7 for the case n = 2. By Lemma 3.7, there exist x, y, z ∈ I(G) (x1 = y, x2 = z)
that satisfy condition C0(x; y, z):

Imx = K ∼=C2, Imy = G1 hK ∼= D4, Imz = G2 hK ∼= D4.

Lemma 3.2 implies that

K(x)∼= End(C2), K(y)∼= End(D4), K(z)∼= End(D4).

Hence properties 10 and 20 of the theorem hold. In view of Lemma 3.6 (use it for the groups Imy and Imz),
property 30 is also true. The necessity is proved.

Sufficiency. Let G be a finite group and there exist x, y, z ∈ I(G) that satisfy property C0(x; y, z) and
properties 10–30 of the theorem. Our aim is to prove that G ∼= G33.
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By Lemma 3.7, G decomposes into the semidirect product

G = (G1 ×G2)hK,

where
Imx = K, Imy = G1 hK, Imz = G2 hK,

Kerx = G1 ×G2, Kery = G2, Kerz = G1.

In view of Lemma 3.2 and properties 10 and 20,

End(K) = End(Imx)∼= End(C2),

End(G1 hK) = End(Imy)∼= End(D4),

End(G2 hK) = End(Imz)∼= End(D4).

Since each finite Abelian group and dihedral 2-groups are determined by their endomorphism semigroups
in the class of all groups ([6], Theorem 4.2 and [8], Theorem 3.1), we have

K = ⟨g⟩ ∼=C2, G1 hK ∼= G2 hK ∼= D4

for some g ∈ G.
Let us use Lemma 3.6 for the groups Imy ∼= D4 and Imz ∼= D4. In view of Imx ∼= C2 and property

30, conditions 10 and 20 of Lemma 3.6 are satisfied. Therefore, there exist a, b ∈ G1 = Imy∩Kerx and
c, d ∈ Imz∩Kerx such that

Imy = (⟨a⟩×⟨b⟩)h ⟨g⟩= ⟨a, b, g | a2 = b2 = g2 = 1, ab = ba, g−1ag = b⟩,

Imz = (⟨c⟩×⟨d⟩)h ⟨g⟩= ⟨c, d, g | c2 = d2 = g2 = 1, cd = dc, g−1cg = d⟩.

We have proved that

G = ⟨a, b, c, d, g | a2 = b2 = c2 = d2 = g2 = 1, ab = ba, ac = ca,

ad = da, bc = cb, bd = db, cd = dc, g−1ag = b, g−1cg = d⟩,

i.e. G ∼= G33. The sufficiency is proved.
The theorem is proved.

Theorem 4.2. The group G33 is determined by its endomorphism semigroup in the class of all groups.

Proof. Let G∗ be a group such that the endomorphism semigroups of G∗ and G33 are isomorphic:

End(G∗)∼= End(G33). (4.1)

Denote by z∗ the image of z ∈ End(G33) in isomorphism (4.1). Since End(G∗) is finite, so is G∗ ([1],
Theorem 2). By Theorem 4.1, there exist x, y, z ∈ I(G33) that satisfy condition C0(x; y, z) and properties
10–30 of the theorem. In view of isomorphism (4.1), the endomorphisms x∗, y∗, z∗ satisfy condition
C0(x∗; y∗, z∗) and properties 10–30, where x, y, and z are always replaced by x∗, y∗, and z∗, respectively.
Using now Theorem 4.1 for G∗, it follows that G∗ and G33 are isomorphic. The theorem is proved.



P. Puusemp and P. Puusemp: On endomorphisms of groups 7

5. GROUP G35

In this section, we shall characterize the group

G35 = ⟨a, b, c | a4 = b4 = 1, ab = ba, c2 = a2, c−1ac = a−1, c−1bc = b−1⟩

by its endomorphism semigroup. The group G35 is a group of order 32 and the numbers of its elements of
orders 2 and 4 are 3 and 28, respectively ([4]). Clearly,

G35 = ⟨b⟩h ⟨a, c⟩= ⟨b⟩hQ, Q = ⟨a, c⟩.

It is easy to check that
G

′
35 = Z(G35) = ⟨a2⟩×⟨b2⟩ ∼=C2 ×C2,

G35/G
′

35 = ⟨aG
′

35⟩×⟨bG
′

35⟩×⟨cG ′
35⟩ ∼=C2 ×C2 ×C2.

Each element of G35 can be presented in the canonical form cia jbk, where i ∈ {0, 1}, j, k ∈ Z4.
Our aim is to prove the following theorem.

Theorem 5.1. A finite group G is isomorphic to G35 if and only if Aut(G) is a 2-group and there exists
x ∈ I(G) such that the following properties hold:
10 K(x)∼= End(Q);
20 J(x)∩ I(G) = {0};
30 |H(x)|= 4;
40 P(x)∼= End(C4).

Proof. Necessity. Let G = G35. It is known that |Aut(G)| = 29, i.e. Aut(G) is a 2-group ([4]). Denote
by x the projection of G onto its subgroup Q = ⟨a, c⟩. Then Imx = Q and Kerx = ⟨b⟩. By Lemma 3.2,
K(x)∼= End(Imx)∼= End(Q), i.e. property 10 holds.

Note that each endomorphism of G is uniquely determined by its images on the generators a, b, and c.
By Lemma 3.3, z ∈ J(x) has the form

cz = az = 1, bz = bi, i ∈ Z4. (5.1)

The map z : G −→ G given by (5.1) preserves the generating relations of G and induces an endomorphism
of G if and only if (bz)2 = 1, i.e. i ≡ 0(mod2). Hence

J(x) = {z | az = cz = 1, bz = b2i0 ; i0 ∈ Z2}.

Since bz2 = b4i20 = 1, we have z2 = z if and only if i0 = 0, i.e. z = 0. Therefore, J(x)∩ I(G) = {0} and
property 20 holds.

By Lemma 3.4, H(x) consists of endomorphisms z : G −→ G such that

az = bi, cz = b j, bz = 1 (5.2)

for some i, j ∈ Z4. The map z given by (5.2) preserves the generating relations of G and induces an
endomorphism of G if and only if b2i = b2 j = 1, i.e. i ≡ j ≡ 0(mod2). Hence

H(x) = {z | az = b2i0 , cz = b2 j0 , bz = 1; i0, j0 ∈ Z2}

and |H(x)|= 4. Property 30 is satisfied.
By Lemma 3.5, P(x) consists of endomorphisms z : G −→ G such that

az = a, cz = c, bz = bi (5.3)
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for some i ∈ Z4. The map z given by (5.3) preserves the generating relations of G and induces an
endomorphism for each i ∈ Z4. Therefore, P(x)∼= End(C4) and property 40 is true. The necessity is proved.

Sufficiency. Let G be a finite group such that Aut(G) is a 2-group and let there exist x ∈ I(G) that satisfies
properties 10–40 of the theorem. Our aim is to prove that G ∼= G35.

Since x ∈ I(G), Lemma 3.1 implies that

G = Kerxh Imx.

By property 10,
End(Imx)∼= End(Q).

Since the quaternion group Q is determined by its endomorphism semigroup in the class of all groups ([7],
Corollary 1), there exist a, b ∈ G such that

Imx = ⟨a, c | a4 = 1, c2 = a2, c−1ac = a−1⟩ ∼= Q,

G = KerxhQ = Kerxh ⟨a, c⟩.

Since Aut(G) is a 2-group, we have ĝ = 1 for each 2
′
-element g ∈ G. Therefore, each 2

′
-element of G

belongs into the centre of G. On the other hand, each 2
′
-element of G belongs into Kerx. Hence G splits into

the direct product G = G2 ×G2′ of its Sylow 2-subgroup G2 and Hall 2
′
-subgroup G2′ . Clearly, a, c ∈ G2

and G2′ ⊂ Kerx. Denote by z the projection of G onto its subgroup G2′ . Then z ∈ J(x)∩ I(G). By property
20, z = 0, i.e. G2′ = ⟨1⟩ and G is a 2-group. Clearly, Kerx ̸= ⟨1⟩.

Denote M = ⟨Kerx, a2⟩. Then

G/M = ⟨aM⟩×⟨cM⟩ ∼=C2 ×C2.

Choose an element d ∈ Kerx of order two and consider the endomorphisms zi j = επi j of G:

zi j = επi j : G ε−→ G/M
πi j−→ ⟨d⟩,

where ε is the natural homomorphism and

(aM)zi j = di, (cM)zi j = d j; i, j ∈ Z2.

The number of such endomorphisms is four and all of them belong to H(x). By property 30,

H(x) = {zi j | i, j ∈ Z2}. (5.4)

Therefore, Kerx has only one element of order two. By [15], Theorem 5.3.6, Kerx is cyclic or a generalized
quaternion group Qn (n ≥ 2).

Assume that
Kerx = Qn = ⟨a1, b1 | a2n

1 = 1, a2n−1

1 = b2
1, b−1

1 a1b1 = a−1
1 ⟩.

The map
τ : a 7−→ a2n−2

1 , c 7−→ b1

can be extended to a homomorphism τ : Imx = Q = ⟨a, c⟩ −→ Qn = Kerx and we get the endomorphism
z = xτ of G. Then z ∈ H(x) and z ̸= zi j for each i, j ∈ Z2. This contradicts (5.4) and, therefore, Kerx can
not be a generalized quaternion group. Hence Kerx is cyclic:

Kerx = ⟨b⟩ ∼=C2n , n ≥ 1,

G = ⟨a, b, c⟩= ⟨b⟩h ⟨a, c⟩,
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a−1ba = br, c−1bc = bρ

for some b ∈ Kerx and r, ρ ∈ Z∗
2n .

By Lemma 3.5, the subsemigroup P(x) of End(G) consists of endomorphisms z of G, which can be
presented on the generators as follows:

az = a, cz = c, bz = bk, k ∈ Z2n . (5.5)

The map z given by (5.5) preserves the generating relations of G and induces an endomorphism of G for
each k ∈ Z2n . It follows from here that P(x)∼= End(C2n). By property 40, n = 2, i.e. ⟨b⟩ ∼=C4 and

r =±1, ρ =±1.

Let us consider all possible cases for r and ρ .
The case r = ρ = 1 is impossible, because then G= ⟨b⟩×⟨a, c⟩ and the projection of G onto its subgroup

⟨b⟩ is a non-zero element of J(x)∩ I(G), which contradicts property 20.
Assume that r = ρ =−1, i.e.

a−1ba = b−1, c−1bc = b−1.

Denote a1 = ca−1. Then

a2
1 = ca−1 · ca−1 = c2 · c−1a−1c ·a−1 = c2 ·a ·a−1 = c2,

a4
1 = 1,

c−1a1c = c−1ca−1c = a−1c = a3c = a ·a2c
= a · c2c = ac−1 = (ca−1)−1 = a−1

1 ,

a−2ba2 = a−1(a−1ba)a = a−1b−1a = b, a2b = ba2,

ba1 = bca−1 = c · c−1bc ·a−1 = cb−1a−1 = ca ·a−1b−1a ·a−2

= caba−2 = caba2 = caa2b = ca−1b = a1b.

Therefore, the map
a 7−→ a1, c 7−→ c, b 7−→ b

induces an isomorphism G35 ∼= G, and the statement of the sufficiency is true.
If r = 1, ρ = −1, then G35 ∼= G, because the groups G35 and G have the same generating relations. If

r =−1, ρ = 1, then the map
a 7−→ c, c 7−→ a, b 7−→ b

induces an isomorphism G35 ∼= G. The sufficiency is proved.
The theorem is proved.

Theorem 5.2. The group G35 is determined by its endomorphism semigroup in the class of all groups.

The proof of Theorem 5.2 is similar to that of Theorem 4.2.

6. GROUP G40

In this section, we shall characterize the group

G40 = ⟨a, b, c | a4 = b4 = 1, ab = ba, c2 = a2b2,

{
c−1ac = a−1

c−1bc = b−1a2 ⟩
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= ⟨a, b, c | a4 = b4 = 1, ab = ba, c2 = a2b2, c−1ac = a−1, b−1cb = c−1⟩

by its endomorphism semigroup. The group G40 is a group of order 32 and the numbers of its elements of
orders 2 and 4 are 3 and 28, respectively ([4]). It is easy to check that

G
′

40 = Z(G40) = ⟨a2⟩×⟨b2⟩ ∼=C2 ×C2,

G40/G
′

40 = ⟨aG
′

40⟩×⟨bG
′

40⟩×⟨cG ′
40⟩ ∼=C2 ×C2 ×C2.

Each element of G40 can be presented in the canonical form cia jbk, where i ∈ {0, 1}, j, k ∈ Z4.
Our aim is to prove the following theorem.

Theorem 6.1. A finite group G is isomorphic to G40 if and only if the following properties hold:
10 |Aut(G)|= 28 = 256;
20 |End(G)\Aut(G)|= 26 = 64;
30 x, y ∈ End(G)\Aut(G) =⇒ xy = 0;
40 if z ∈ Aut(G) and zy = y for each y ∈ End(G)\Aut(G), then z2 = 1.

Proof. Necessity. Let G = G40. To prove properties 10–40 for G, we have to find the endomorphisms of G.
An endomorphism of G is fully determined by its action on the generators c, b, and a. Choose z ∈ End(G).
Then

az = cia jbk, bz = c lambn, cz = csatbu, (6.1)

where
i, l, s ∈ {0, 1}; j, k, m, n, t, u ∈ Z4.

The map z given by (6.1) induces an endomorphism of G if and only if it preserves the defining relations of
G. After easy calculations, we obtain:
(1) the proper endomorphisms of G are the maps z, where

az = a2 jb2k, bz = a2mb2n, cz = a2tb2u; j, k, m, n, t, u ∈ Z2; (6.2)

(2) the automorphisms of G are the maps z, where
az = a jbk, bz = ambn, cz = catbu;
j, k, m, n, t, u ∈ Z4,

j ≡ n ≡ 1(mod2), k ≡ 0(mod2), m ≡ u(mod2).
(6.3)

Hence
|Aut(G)|= 28 = 256, |End(G)\Aut(G)|= 26 = 64

and properties 10 and 20 hold.
By (6.2), Imz ⊂ ⟨a2⟩× ⟨b2⟩ ⊂ Kerz for all proper endomorphism z of G. Hence Imx ⊂ Kery for all

proper endomorphisms x and y of G, and, therefore, xy = 0. Property 30 is true.
To prove property 40, choose an automorphism z given by (6.3) and a proper endomorphism y:

ay = a2 j0b2k0 , by = a2m0b2n0 , cy = a2t0b2u0

for some j0, k0, m0, n0, t0, u0 ∈ Z2. Calculating a(zy), b(zy), and c(zy), we get

a(zy) = a2( j j0+km0)b2( jk0+kn0) = a2 j0b2k0 = ay,

b(zy) = a2(m j0+nm0)b2(mk0+nn0),

c(zy) = a2(t0+t j0+um0)b2(u0+tk0+un0).
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Then zy = y if and only if b(zy) = by and c(zy) = cy, i.e.

m j0 ≡ mk0 ≡ 0(mod2), t j0 +um0 ≡ 0(mod2), tk0 +un0 ≡ 0(mod2). (6.4)

It follows that zy = y for each proper endomorphism y if and only if congruences (6.4) hold for each
j0, k0, m0, n0 ∈ Z2. It is possible if and only if m ≡ t ≡ u ≡ 0(mod2), i.e. m = 2m1, t = 2t1, and u = 2u1 for
some m1, t1, u1 ∈ Z2. Let us calculate z2 in this case:

az2 = (a jbk)z = (a jbk) j(ambn)k = a j2+kmbk( j+n) = a,

bz2 = (ambn)z = (a jbk)m(ambn)n = am( j+n)bkm+n2
= b,

cz2 = (ca2t1b2u1)z = ca2t1b2u1 · (a jbk)2t1(ambn)2u1

= ca2t1b2u1 ·a2t1b2u1 = c,

because
n2 ≡ j2 ≡ 1(mod4), km ≡ m( j+n)≡ k( j+n)≡ 0(mod4),

k ≡ m ≡ 0(mod2), j ≡ n ≡ 1(mod2).

Therefore, z2 = 1 and property 40 is true. The necessity is proved.

Sufficiency. Let G be a finite group such that properties 10–40 hold. Our aim is to prove that G ∼= G40.
Property 30 implies that G does not split into non-trivial semidirect product G = MhK, because otherwise
the projection x of G onto K is an idempotent of End(G) such that x ̸= 0, x ̸= 1.

We shall carry out further proof in a number of lemmas.

Lemma 6.1. The group G is a non-Abelian 2-group. The group G has at least two elements of order 2.

Proof. By property 10, ĝ = 1 for each 2′-element g of G. Hence all 2′-elements of G belong into its centre
Z(G). Therefore, the group G splits into the direct product G = G2′ ×G2 of its Hall 2′-subgroup G2′ and
Sylow 2-subgroup G2. Denote by z the projection of G onto its subgroup G2′ . By property 30, z = 0 or z = 1.
Assume that z = 1. Then G = G2′ is Abelian and, again by property 30, G is cyclic, i.e. G =Cn for an odd
integer n. By properties 10 and 20, we have |End(G)| = n = 256+64 = 320. This contradicts the fact that
n is odd. Hence z = 0 and G is a 2-group. The group G is non-Abelian, because otherwise, by property 30,
G is cyclic and |G|= |End(G)|= 2m = 320 for an integer m, which is impossible.

To prove the last statement of the lemma, assume that G has only one element of order 2. By [15],
Theorem 5.3.6, G is a generalized quaternion group because G is non-Abelian. This contradicts property
20 because a generalized quaternion group has only four proper endomorphisms ([7], Lemma 2). It follows
that G has at least two elements of order 2. The lemma is proved.

The factor-group G/G
′
splits into a direct product

G/G
′
= ⟨a1G

′⟩× . . .×⟨anG
′⟩; a1, . . . , an ∈ G\G

′
.

Denote by ε the canonical homomorphism ε : G −→ G/G
′
.

Lemma 6.2. 2 ≤ n ≤ 3.

Proof. Note that G/G
′
is not cyclic ([15], Theorem 5.3.1). Hence n ≥ 2. By Lemma 6.1, G has at least two

elements of order two, for example b and c. We can assume that c ∈ Z(G), i.e., bc = cb. Therefore, G has at
least 4n proper endomorphisms zi1...in j1... jn :

zi1...in j1... jn = επi1...in j1... jn : G ε−→ G/G
′ πi1 ...in j1 ... jn−→ ⟨b, c⟩, (6.5)

(a1G
′
)πi1...in j1... jn = bi1c j1 , . . . , (anG

′
)πi1...in j1... jn = binc jn , (6.6)

i1, . . . , in, j1, . . . , jn ∈ Z2. By property 20, we have 4n ≤ 64 = 26, i.e. 2 ≤ n ≤ 3. The lemma is proved.
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Lemma 6.3. If x ∈ End(G)\Aut(G), then Imx ⊂ G
′ ⊂ Kerx. Each element of order two of G belongs into

G
′
.

Proof. Assume that x ∈ End(G)\Aut(G) and zi1...in j1... jn are given by (6.5) and (6.6). By property 30,

Imx ⊂ ∩y∈End(G)\Aut(G)Kery. (6.7)

Since
∩i1...in j1... jnKerzi1...in j1... jn = G

′
,

(6.7) implies Imx⊂G
′ ⊂Kerx. If g∈G is an element of order two, then there exists a proper endomorphism

y of G such that Imy = ⟨g⟩. For example, y = επ , where

π : G/G
′ −→ G, (a1G

′
)π = g, (aiG

′
)π = 1, i ̸= 1.

By the first part of the proof, Imx = ⟨g⟩ ⊂ G
′
, i.e. g ∈ G

′
. The lemma is proved.

Lemma 6.4. In the group the following properties hold:

g2 ∈ Z(G) for each g ∈ G, G
′ ⊂ Z(G).

Proof. Assume that g ∈ G. By Lemma 6.3,

h(ĝ · x) = (h · [h, g])x = hx

for each h ∈ G and x ∈ End(G)\Aut(G), i.e. ĝ ·x = x for each x ∈ End(G)\Aut(G). Property 40 implies that
ĝ2 = 1, i.e. g2 ∈ Z(G). Therefore, all elements of the factor-group G/Z(G) (except the unity element) are
of order two. This implies that the factor-group G/Z(G) is Abelian and G

′ ⊂ Z(G). The lemma is proved.

Lemma 6.4 implies that [g, h]2 = 1 for each g, h ∈ G, and, therefore,

g2 = 1 for each g ∈ G
′
,

i.e. G
′
is an elementary Abelian group.

Lemma 6.5. G
′ ∼=C2 ×C2 and G/G

′ ∼=C2 ×C2 ×C2.

Proof. Let us prove that n = 3. On the contrary, assume that n = 2, i.e.

G/G
′
= ⟨a1G

′⟩×⟨a2G
′⟩.

By Lemma 6.4, it is clear that G
′
= ⟨[a1, a2]⟩. Hence G

′
has only one element of order two. This contradicts

Lemmas 6.1 and 6.3. Therefore n = 3 and

G/G
′
= ⟨a1G

′⟩×⟨a2G
′⟩×⟨a3G

′⟩.

By property 20, G has 64 proper endomorphisms. Since n = 3, all these proper endomorphisms are
zi1i2i3 j1 j2 j3 given by (6.5) and (6.6), where b and c are different elements of order two. By Lemma 6.3,
b ∈ G

′
, c ∈ G

′
. If G

′
has an element d of order two such that d ̸∈ ⟨b⟩× ⟨c⟩, then there exists a proper

endomorphism y = ετ that does not have the form zi1i2i3 j1 j2 j3 :

G ε−→ G/G
′ τ−→ ⟨d⟩, (a1G

′
)τ = d, (a2G

′
)τ = 1, (a3G

′
)τ = 1.

Since G
′
is an elementary Abelian group, the obtained contradiction implies G

′ ∼=C2 ×C2.
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If there exists i ∈ {1, 2, 3} such that a2
i ̸∈ G

′
, then there exists a proper endomorphism z = εµ that does

not have the form zi1i2i3 j1 j2 j3 :

G ε−→ G/G
′ µ−→ ⟨d⟩, (aiG

′
)µ = a0(ai)/4

i , (a jG
′
)µ = 1, i ̸= j.

This contradicts the fact that all proper endomorphisms have the form zi1i2i3 j1 j2 j3 . Hence a2
i ∈ G

′
for each i

and G/G
′ ∼=C2 ×C2 ×C2. The lemma is proved.

It follows from Lemma 6.5 that |G| = 32 and g4 = 1 for each g ∈ G. By Lemma 6.3, g2 ̸= 1 for each
g ∈ G\G

′
. Therefore, the group G has 3 elements of order two and 28 elements of order four. By [4], only

the group G40 is a non-Abelian group of order 32, which has 28 automorphisms and has this order structure
of its elements. Therefore, G ∼= G40.

The sufficiency is proved. The theorem is proved.

Theorem 6.2. The group G40 is determined by its endomorphism semigroup in the class of all groups.

The proof of Theorem 6.2 is similar to that of Theorem 4.2.
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Maksimaalset alamrühma C4
2 või C2

4 omavate 32. järku rühmade endomorfismidest

Piret Puusemp ja Peeter Puusemp

On tõestatud, et kõik 32. järku rühmad, mille üheks maksimaalseks alamrühmaks on C2 ×C2 ×C2 ×C2 või
C4 ×C4, on määratud oma endomorfismipoolrühmadega kõigi rühmade klassis. Ühtlasi on antud mainitud
rühmade kirjeldused nende endomorfismipoolrühmade kaudu.


