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Abstract. Using a double sequence of modulus functions and a solid double scalar sequence space, we determine F-seminorm and
F-norm topologies for certain generalized linear spaces of double sequences. The main results are applied to the topologization of
double sequence spaces related to 4-dimensional matrix methods of summability.
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1. INTRODUCTION

Let N= {1,2, . . .} and let K be the field of real numbers R or complex numbers C. We specify the domains
of indices only if they are different from N. By the symbol ι we denote the identity mapping ι(z) = z. We
also use the notation R+ = [0,∞).

Let en = (en
k)k∈N (n∈N) be the sequences, where en

k = 1 if k = n and en
k = 0 otherwise. We also consider

the corresponding double sequences en(2) = (en
ki) (n ∈N) such that, for all i ∈N, en

ki = 1 if k = n and en
ki = 0

if k 6= n.
In all definitions which contain infinite series we tacitly assume the convergence of these series.
An F-space is usually understood as a complete metrizable topological vector space overK. It is known

that the topology of an F-space E can be given by an F-norm, i.e., by a functional g : E → R+ with the
axioms (see [6, p. 13])
(N1) g(0) = 0,
(N2) g(x+ y)≤ g(x)+g(y) (x,y ∈ E),
(N3) |α| ≤ 1 (α ∈K), x ∈ E =⇒ g(αx)≤ g(x),
(N4) limn αn = 0 (αn ∈K), x ∈ E =⇒ limn g(αnx) = 0,
(N5) g(x) = 0 =⇒ x = 0.

A functional g with the axioms (N1)–(N4) is called an F-seminorm. A paranorm on E is defined as a
functional g : E → R+ satisfying the axioms (N1), (N2), and
(N6) g(−x) = g(x) (x ∈ E),
(N7) limn αn = α (αn,α ∈K), limn g(xn− x) = 0 (xn,x ∈ E) =⇒ limn g(αnxn−αx) = 0.

A seminorm on E is a functional g : E → R with the axioms (N1), (N2), and
(N8) g(αx) = |α|g(x) (α ∈K, x ∈ E).
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An F-seminorm (paranorm, seminorm) g is called total if (N5) holds. So, an F-norm (norm) is a total
F-seminorm (seminorm).

Unlike the module | · |, following also [8], the seminorm of an element x ∈ E is often denoted by |̇x|̇.
It is known (see [8, Remark 1]) that F-seminorms coincide with paranorms satisfying (N3).
Let X2 be a double sequence of seminormed linear spaces

(
Xki, |̇ · |̇ki

)
(k, i ∈ N). Then the set s2(X2)

of all double sequences x2 = (xki), xki ∈ Xki (k, i ∈ N), together with coordinatewise addition and scalar
multiplication, is a linear space (over K). Any linear subspace of s2(X2) is called a generalized double
sequence space (GDS space). If

(
Xki, |̇ · |̇ki

)
=

(
X , |̇ · |̇

)
(k, i ∈ N), then we write X2 instead of X2. In the

case X =K we omit the symbol X2 in notation. So, for example, s2 denotes the linear space of all K-valued
double sequences u2 = (uki). By s we denote the linear space of all singleK-valued sequences u = (uk). As
usual, linear subspaces of s2 are called double sequence spaces (DS spaces) and linear subspaces of s are
called sequence spaces. Well-known sequence spaces are the sets `∞, c, c0, and `p (p > 0) of all bounded,
convergent, convergent to zero, and absolutely p-summable number sequences, respectively. Examples of
DS spaces are

s̃2 = {u2 ∈ s2 : ũk = sup
i
|uki|< ∞ (k ∈ N)}

and
λ̃ 2 = {u2 ∈ s̃2 : ũ = (ũk) ∈ λ}

with λ ∈ {`∞, c0, `p}. Double sequence spaces are also the sets c2 and c2
0 of all double scalar sequences

which, respectively, converge and converge to zero in the Pringsheim sense. Recall that a sequence (uki)
is said to be Pringsheim convergent to a number L if for every ε > 0 there exists an index n0 such that
|uki−L|< ε whenever k, i > n0 (see [12] or [18, Chapter 8]). In this case we write P-limk,i uki = L.

The idea of a modulus function was structured by Nakano [11]. Following Ruckle [14] and Maddox [9],
we say that a function φ : R+ → R+ is a modulus function (or, simply, a modulus), if
(M1) φ(t) = 0 ⇐⇒ t = 0,
(M2) φ(t +u)≤ φ(t)+φ(u),
(M3) φ is non-decreasing,
(M4) φ is continuous from the right at 0.

For example, the function ι p(t) = t p is an unbounded modulus for p≤ 1 and the function φ(t) = t/(1+t)
is a bounded modulus.

Since |φ(t)−φ(u)| ≤ φ(|t−u|) by (M1)–(M3), the moduli are continuous everywhere on R+. We also
remark that the modulus functions are the same as the moduli of continuity (see [5, p. 866]).

A GDS space Λ(X2) ⊂ s2(X2) is called solid if (yki) ∈ Λ(X2) whenever (xki) ∈ Λ(X2) and |̇yki |̇ki ≤
|̇xki |̇ki (k, i ∈ N). For example, it is not difficult to see that the sets

s̃2 (
X2) =

{
x2 ∈ s2(X2) : sup

i
|̇xki |̇ki < ∞ (k ∈ N)

}
,

Λ
(
ΦΦ,X2) =

{
x2 ∈ s2(X2) : ΦΦ(x2) =

(
φki

(
|̇xki |̇ki

))
∈ Λ

}
,

and Λ(ΦΦ,X2)∩ s̃2(X2) are solid GDS spaces if Λ⊂ s2 is a solid DS space and ΦΦ = (φki) is a double sequence
of moduli.

Our aim is to determine F-seminorm topologies for GDS spaces of sequences x2 ∈ s2
T (X2) with T x2

in Λ(ΦΦ,Y2) or in Λ(ΦΦ,Y2)∩ s̃2(Y2), where Y2 is another double sequence of seminormed linear spaces,
T : s2

T (X2)→ s2(Y2) is a linear operator defined on a linear subspace s2
T (X2) of s2(X2) and the solid DS

space Λ is topologized by an absolutely monotone F-seminorm. Similar theorems have been proved earlier
in [7,10,13,16] for analogical sets of single number sequences in the case T = ι . The results of this paper
are applied to the topologization of GDS spaces related to 4-dimensional matrix methods of summability.
Some special cases of such spaces are considered, for example, in [1,3,4,15,17].
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2. MAIN THEOREMS

Let λ ⊂ s be a sequence space, Λ⊂ s2 be a DS space, and let ek, ek(2) (k ∈ N) be sequences defined above.
Recall that an F-seminormed space (λ ,g) is called an AK-space, if λ contains the sequences ek (k ∈ N)
and for any u = (uk) ∈ λ we have limn u[n] = u, where u[n] = ∑n

k=1 ukek. Generalizing this definition, we
say that an F-seminormed DS space (Λ,g) is an AK-space if Λ contains the sequences ek(2) (k ∈ N) and
for any u2 = (uki) ∈ Λ we have limn u2[n] = u2, where u2[n] = ∑n

k=1 ukek(2) with uk = (uki)i∈N and ukek(2) =
(ukiek

ji) j,i∈N. It is not difficult to see that c̃2
0 is the AK-space with respect to norm ‖u2‖∞ = supki |uki|.

An F-seminorm g on a sequence space λ ⊂ s is said to be absolutely monotone if for all u = (uk) and
v = (vk) from λ with |vk| ≤ |uk| (k ∈ N), we have g(v) ≤ g(u). Analogously, an F-seminorm g on a GDS
space Λ(X2)⊂ s2(X2) is said to be absolutely monotone if for all x2 = (xki) and y2 = (yki) from Λ(X2) with
|̇yki |̇ki ≤ |̇xki |̇ki (k, i ∈ N) we have g(y2)≤ g(x2).

Soomer [16] and Kolk [7] proved that if a solid sequence space λ ⊂ s is topologized by an absolutely
monotone F-seminorm (or paranorm) g and Φ = (φk) is a sequence of moduli, then the solid sequence space

λ (Φ) = {u = (uk) ∈ s : Φ(u) = (φk(|uk|)) ∈ λ}
may be topologized by the absolutely monotone F-seminorm (paranorm)

gΦ(u) = g(Φ(u)) (u ∈ λ (Φ))

whenever either (λ ,g) is an AK-space or the sequence Φ satisfies one of the two equivalent conditions
(M5) there exist a function ν and a number δ > 0 such that limu→0+ ν(u) = 0 and φk(ut) ≤ ν(u)φk(t)

(0≤ u < δ , t ≥ 0, k ∈ N),

(M6) lim
u→0+

sup
t>0

sup
k

φk(ut)
φk(t)

= 0.

This result was generalized in [10] and [13] to the sequence space

Λ(ΦΦ) = {u ∈ s : ΦΦ(u) = (φki(|uk|)) ∈ Λ}
defined by means of a solid DS space Λ and a double sequence of moduli ΦΦ = (φki). Thereby, in the case of
AK-space (Λ,g) it is assumed that ΦΦ satisfies the conditions
(M7) φ̃k(t) = sup

i
φki(t) < ∞ (t ∈ R+, k ∈ N),

(M8) lim
t→0+

φ̃k(t) = 0 (k ∈ N).

In the following we extend these results to the generalized double sequence spaces defined by means
of a linear operator T : s2

T (X2)→ s2(Y2) with T x2 = (Tkix2), and by means of the set s̃2(Y2), where Y2 is
another double sequence of seminormed spaces (Yki, |̇ · |̇ki) (k, i ∈ N).

Theorem 1. Let Λ ⊂ s2 be a solid DS space which is topologized by an absolutely monotone F-seminorm
g. If the double sequence of moduli ΦΦ = (φki) satisfies the condition
(M5’) there exist a function ν and a number δ > 0 such that limu→0+ ν(u) = 0 and φki(ut) ≤

ν(u)φki(t) (k, i ∈ N, 0 < u < δ , t > 0),
then the GDS space

Λ
(
ΦΦ,T,X2,Y2) =

{
x2 ∈ s2

T (X2) : T x2 ∈ Λ(ΦΦ,Y2)
}

may be topologized by the F-seminorm

gΦΦ,T

(
x2) = g

(
ΦΦ

(
T x2)) .

Thereby, if g is an F-norm in Λ, the spaces Yki are normed and T satisfies the condition

T x2 = 0 =⇒ x2 = 0, (1)

then gΦΦ,T is an F-norm in Λ
(
ΦΦ,T,X2,Y2

)
.
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The F-seminorm gΦΦ,T is absolutely monotone if

|̇yki |̇ki ≤ |̇xki |̇ki (k, i ∈ N) =⇒ |̇Tkiy2 |̇ki ≤ |̇Tkix2 |̇ki (k, i ∈ N). (2)

Proof. Similarly to the proof of Theorem 2.2 [10], using also the linearity of T , it is not difficult to show
that the functional gΦΦ,T satisfies the axioms (N1)–(N3). To prove (N4), let limn αn = 0. Then there exists an
index n0 with |αn|< δ for n≥ n0. Since by (M5’) we have

φki

(
|̇Tki(αnx2)|̇ki

)
≤ ν(|αn|)φki

(
|̇Tkix2 |̇ki

)
(k, i ∈ N)

and g is absolutely monotone,

g
(
ΦΦ

(
T

(
αnx2)))≤ g

(
ν(|αn|)ΦΦ

(
T x2)) (n≥ n0).

But this yields limn gΦΦ,T (αnx2) = 0 by limn ν(|αn|) = 0. Thus (N4) holds and gΦΦ,T is an F-seminorm on the
GDS space Λ(ΦΦ,T,X2,Y2).

Now, let g be an F-norm on Λ and let the spaces Yki be normed by the norms ‖ ·‖ki. If gΦΦ,T (x2) = 0, then,
using also (M1), we have

‖Tkix2‖ki = 0 (k, i ∈ N)

which gives x2 = 0 by (1). So, gΦΦ,T is an F-norm in this case.
Finally, let T satisfy (2). If |̇yki |̇ki ≤ |̇xki |̇ki (k, i ∈ N), then

φki

(
|̇Tkiy2 |̇ki

)
≤ φki

(
|̇Tkix2 |̇ki

)
(k, i ∈ N)

and since g is absolutely monotone,

gΦΦ,T (y2) = g(ΦΦ(T y2))≤ g(ΦΦ(T x2)) = gΦΦ,T (x2).

Consequently, F-seminorm (F-norm) gΦΦ,T is absolutely monotone if (2) holds.

Remark 1. It is easy to see that the condition (M5’) in Theorem 1 may be replaced by the equivalent
condition

(M6’) lim
u→0+

sup
t>0

sup
k,i

φki(ut)
φki(t)

= 0.

Theorem 2. Let Λ ⊂ s2 be a solid AK-space with respect to an absolutely monotone F-seminorm g. If the
double sequence of moduli ΦΦ = (φki) satisfies (M7) and (M8), then the GDS space

Λ
(
ΦΦ, T̃ ,X2,Y2) =

{
x2 ∈ s2

T (X2) : T x2 ∈ Λ(ΦΦ,Y2)∩ s̃2(Y2)
}

may be topologized by the F-seminorm gΦΦ,T . Thereby, if g is an F-norm in Λ, the spaces Yki are normed and
T satisfies (1), then gΦΦ,T is an F-norm on Λ(ΦΦ, T̃ ,X2,Y2).

The F-seminorm gΦΦ,T is absolutely monotone in Λ(ΦΦ, T̃ ,X2,Y2) whenever T satisfies (2).

Proof. The functional gΦΦ,T : Λ(ΦΦ, T̃ ,X2,Y2)→K obviously satisfies the axioms (N1)–(N3). To prove (N4),
let limn αn = 0 and let x2 be an arbitrary element from the space Λ(ΦΦ, T̃ ,X2,Y2). Then ΦΦ(T x2) ∈ Λ and
since Λ is an AK-space,

lim
n

g
(

ΦΦ(T x2)−ΦΦ(T x2)[n]
)

= 0. (3)
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Using the equality
ΦΦ(T x2)−ΦΦ(T x2)[n] = ΦΦ

(
T x2− (T x2)[n]

)
,

by (3) we can find, for fixed ε > 0, an index m such that

g
(

ΦΦ
(

T x2− (T x2)[m]
))

< ε/2. (4)

The double sequence T x2 ∈ s̃2(Y2) determines the single sequence (zk) of numbers zk =
supi |̇Tkix2 |̇ki (k ∈ N). Since

lim
n

φ̃k(|αnzk|) = 0 (k ∈ N)

by (M8), and g satisfies (N4), we have that

lim
n

g
(

φ̃k (|αnzk|)ek(2)
)

= 0 (k ∈ N). (5)

Further, since g satisfies (N2) and it is absolutely monotone, we may write

g
(

ΦΦ
(
T

(
αnx2))[m]

)
= g

(
m

∑
k=1

(
φki

(
|̇αnTkix2 |̇ki

))
i
ek(2)

)

≤
m

∑
k=1

g
((

φki

(
|̇αnTkix2 |̇ki

))
i
ek(2)

)

≤
m

∑
k=1

g
(

φ̃k (|αnzk|)ek(2)
)

.

This yields
lim

n
g
(

ΦΦ
(
T

(
αnx2))[m]

)
= 0

because of (5). Thus there exists an index n0 such that, for all n≥ n0,

|αn| ≤ 1 and g
(

ΦΦ
(
|αn|

(
T x2)[m]

))
< ε/2. (6)

Now, by (4) and (6) we get

gΦΦ,T (αnx2) = g(ΦΦ(T (αnx2)))

≤ g
(

ΦΦ
(
|αn|(T x2− (T x2)[m])

))
+g

(
ΦΦ

(
|αn|(T x2)[m]

))

≤ g
(

ΦΦ
(

T x2− (T x2)[m]
))

+g
(

ΦΦ
(
|αn|(T x2)[m]

))

< ε/2+ ε/2 = ε

for n≥ n0. Hence limn gΦΦ,T (αnx2) = 0, i.e., (N4) is true for gΦΦ,T .
Similarly to the proof of Theorem 1 we can see that the F-seminorm gΦΦ,T is absolutely monotone when-

ever (2) holds, and gΦΦ,T is an F-norm if g is an F-norm, the spaces Xki are normed and (1) is true.

Remark 2. The investigations of Basu and Srivastava [1] contain, for one modulus φ and for a sequence
p2 = (pki) of positive numbers pki ≤ 1, the GDS space Λ(ΦΦ,X2), where φki(t) = [φ(t)]pki . They assert
(see [1, Theorem 3.2]) that if Λ is topologized by an absolutely monotone paranorm g, then

gΦΦ(x2) = g(ΦΦ(x2))



126 Proceedings of the Estonian Academy of Sciences, 2014, 63, 2, 121–132

is a paranorm on Λ(ΦΦ,X2) whenever infk,i pki > 0. But this is not true in general. Indeed, if φ is a
bounded modulus, pki = 1, and the solid sequence space ˜̀2

∞ is topologized by the absolutely monotone
norm g(u2) = supk,i |uki|, then the set

˜̀2
∞(φ ,X2) =

{
x2 ∈ s2(X2) : sup

k,i
φ

(
|̇xki |̇

)
< ∞

}

coincides with s2(X2). Consequently, ˜̀2
∞(φ ,X2) contains an unbounded sequence z2 = (zki) with zki 6= 0

such that for a subsequence of indices (k j) the equality lim j |̇zk j,k j |̇= ∞ holds. Then, defining

αn =





(
|̇zk j,k j |̇

)−1
, if n = k j ( j ∈ N)

0 otherwise,

we get the sequence (αn) with limn αn = 0. Since

φ
(
|̇αk j zk j,k j |̇

)
= φ(1) > 0 ( j ∈ N),

we have that
lim

n
gΦΦ(αnz2) = lim

n
sup
k,i

φ
(
|̇αnzk,i |̇

)
6= 0.

Thus gΦΦ does not satisfy the axiom (N4) and, consequently, it is not a paranorm on the GDS space ˜̀2
∞(φ ,X2)

if the modulus φ is bounded. Theorem 1 (for T = ι) shows that if the solid double sequence space Λ is
topologized by an absolutely monotone F-seminorm (or a paranorm with (N3)) g, then

gφ

(
x2) = g

((
φ

(
|̇xki |̇ki

))
k,i∈N

)

is an absolutely monotone F-seminorm (paranorm) on the GDS space

Λ(φ ,X2) =
{

x2 ∈ s2(X2) :
(

φ
(
|̇xki |̇ki

))
k,i∈N

∈ Λ
}

whenever the modulus φ satisfies the condition
(M5◦) there exist a function ν and a number δ > 0 such that limu→0+ ν(u) = 0 and φ(ut) ≤ ν(u)φ(t)

(0≤ u < δ , t ≥ 0),
or the condition (see Remark 1)

(M6◦) lim
u→0+

sup
t>0

φ(ut)
φ(t)

= 0.

These conditions clearly fail if φ is bounded, since by supt>0 φ(t) = M < ∞ we have

sup
t>0

φ(ut)
φ(t)

≥M−1 sup
t>0

φ(ut) = 1

for any fixed u > 0.
It should be noted that the same remark is true concerning [2, Theorem 3.1].
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3. SOME APPLICATIONS

Let A = (amnki) be a non-negative 4-dimensional matrix, i.e., amnki ≥ 0 (m,n,k, i ∈ N). By I we
denote the 4-dimensional unit matrix. We say that A is essentially positive if for any k, i ∈ N there exist
indices mk and ni such that amk,ni,k,i > 0. A sequence u2 = (uki) ∈ s2 is called strongly A -summable with
index p ≥ 1 to a number L if P-limm,n ∑k,i amnki|uki − L|p = 0, and strongly A -bounded with index p if
supm,n ∑k,i amnki|uki|p < ∞. It is clear that the set c 2

0 [A ]p of all strongly A -summable with index p to zero
sequences and the set ˜̀2

∞[A ]p of all strongly A -bounded with index p sequences are solid linear spaces.
Since the Pringsheim convergent double sequences are not necessarily bounded, c 2

0 [A ]p is not a subset of
˜̀2
∞[A ]p in general. A subset of ˜̀2

∞[A ]p represents the DS space

c̃ 2
0 [A ]p =

{
u2 ∈ s2 : lim

m
sup

n
∑
k,i

amnki|uki|p = 0

}
.

Denoting bc 2
0 [A ]p = c 2

0 [A ]p∩ ˜̀2
∞[A ]p, we also have c̃ 2

0 [A ]p ⊂ bc 2
0 [A ]p.

It is not difficult to see that the functional

gp
A
(u2) = sup

m,n

(
∑
k,i

amnki|uki|p
)1/p

is a seminorm on ˜̀2
∞[A ]p, it is a norm if A is essentially positive.

A natural generalization of DS spaces ˜̀2
∞[A ]p, c̃ 2

0 [A ]p, and bc 2
0 [A ]p is related to an arbitrary solid

F-seminormed (or seminormed) sequence space (Λ,gΛ). It is easy to see that the set

Λ[A ]p =



u2 ∈ s2 : A 1/p (|u2|p) =




(
∑
k,i

amnki|uki|p
)1/p




m,n∈N

∈ Λ





is a solid linear subspace of s2. In addition, if the F-seminorm (seminorm) gΛ is absolutely monotone, then
the functional

gp
Λ,A

(u2) = gΛ

(
A 1/p (|u2|p)

)

defines an F-seminorm (seminorm) on Λ[A ]p. At that, if A is essentially positive, then gp
Λ,A

is an F-norm
(a norm) whenever the space Λ is F-normed (normed).

Let φ be a modulus function and let p2 = (pki)∈ ˜̀2
∞ with r = max{1,supk,i pki}. Some sets of sequences

x2 = (xki) ∈ s2(X2), such that the sequence
((

φ
(
|̇xki |̇

))pki
)

belongs to ˜̀2
∞[A ]1, c̃ 2

0 [A ]1, or bc 2
0 [A ]1, are

studied in [1,3,4,15]. These investigations lead us to the following, more general, notion of GDS spaces. For
an arbitrary 4-dimensional matrix B = (bkilj) let s2

B(X2) be the set of all sequences x2 = (xki)∈ s2(X2) such
that the series Bkix2 = ∑l j bkiljxlj converge. Let Bx2 = (Bkix2). Using also a double sequence of moduli
ΦΦ = (φki) and a solid DS space Λ, we consider the sets

Λ[A 1/r,ΦΦ,p2,B,X2] =
{

x2 ∈ s2
B(X2) : A 1/r

(
ΦΦp2 (

Bx2)) ∈ Λ
}

,

Λ[A 1/r,ΦΦ,p2,B̃,X2] =
{

x2 ∈ s2
B(X2) : Bx2 ∈ s̃2(X2) and A 1/r

(
ΦΦp2 (

Bx2)) ∈ Λ
}

,

where

A 1/r
(

ΦΦp2 (
Bx2)) =




(
∑
k,i

amnki

(
φki

(
|̇∑

l, j
bkiljxlj |̇

))pki
)1/r




m,n∈N

.
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The following representations of these sets are useful. Using the equality pki = (pki/r)r and denoting by
ΦΦp2/r the sequence of moduli φ p2/r

ki (t) = (φki (t))
pki/r, we may write

Λ[A 1/r,ΦΦ,p2,B,X2] =
{

x2 ∈ s2
B(X2) : ΦΦp2/r (Bx2) ∈ Λ[A ]r

}
, (7)

Λ[A 1/r,ΦΦ,p2,B̃,X2] =
{

x2 ∈ s2
B(X2) : Bx2 ∈ s̃2(X2) and ΦΦp2/r (Bx2) ∈ Λ[A ]r

}
. (8)

Since the DS space Λ[A ]r is solid and the summability operator B is linear, on the ground of
(7) and (8) it is not difficult to verify the linearity of Λ[A 1/r,ΦΦ,p2,B,X2] and Λ[A 1/r,ΦΦ,p2,B̃,X2].
Equalities (7) and (8) are applicable also to the topologization of the GDS spaces Λ[A 1/r,ΦΦ,p2,B,X2]
and Λ[A 1/r,ΦΦ,p2,B̃,X2].

Proposition 1. Let ΦΦ = (φki) be a double sequence of moduli and p2 = (pki) be a bounded sequence of
positive numbers with r = max{1 , supk,i pki}. Let A = (amnki) be a non-negative infinite matrix and let
B = (bkilj) be an infinite matrix of scalars. Suppose that (X , |̇ · |̇) is a seminormed space and Λ ⊂ s2 is a
solid DS space which is topologized by an absolutely monotone F-seminorm gΛ .
a) If the sequence of moduli ΦΦp2/r satisfies the condition (M5’), then the GDS space Λ[A 1/r,ΦΦ,p2,B,X2]

may be topologized by the F-seminorm

hΦΦ,p2

Λ,A ,B
(x2) = gΛ

(
A 1/r

(
ΦΦp2 (

Bx2)))
.

b) If (Λ[A ]r,gr
Λ,A

) is an AK-space and the sequence of moduli ΦΦp2/r satisfies the conditions (M7) and (M8),

then hΦΦ,p2

Λ,A ,B
is an F-seminorm on Λ[A 1/r,ΦΦ,p2,B̃,X2].

If, in a) and b), gΛ is an F-norm, X is normed, A is essentially positive, and

Bx2 = 0 =⇒ x2 = 0, (9)

then hΦΦ,p2

Λ,A ,B
is an F-norm on Λ[A 1/r,ΦΦ,p2,B,X2] and Λ[A 1/r,ΦΦ,p2,B̃,X2].

Proof. Since by (7) we have

Λ[A 1/r,ΦΦ,p2,B,X2] = Λ[A]r(ΦΦp2/r,T,X2,Y 2),

with T = B and Y = X , statement a) follows from Theorem 1 because of

hΦΦ,p2

Λ,A ,B
(x2) = gΛ

(
A 1/r

(
ΦΦp2/r (Bx2))r)

= gr
Λ,A

(
ΦΦp2/r(Bx2)

)
.

Analogously, we deduce statement b) from Theorem 2 in view of (8).

Now, if Λ is one of the spaces ˜̀2
∞, c̃2

0 , c2
0 and bc2

0 = c2
0∩ ˜̀2

∞, then clearly

(
u2)1/r ∈ Λ ⇐⇒ u2 ∈ Λ.

Thus Λ[A 1/r,ΦΦ,p2,B,X2] coincides with the set

Λ[A ,ΦΦ,p2,B,X2] =
{

x2 ∈ s2
B(X2) : A

(
ΦΦp2 (

Bx2)) ∈ Λ
}

,

where

A
(

ΦΦp2 (
Bx2)) =

(
∑
k,i

amnki

(
φki

(
|̇∑

l, j
bkiljxlj |̇

))pki
)

m,n∈N

and Λ ∈ { ˜̀2
∞, c̃2

0 , bc2
0}. Hence Proposition 1 gives the following corollary.



E. Kolk and A. Raidjõe: F-seminorms on double sequence spaces 129

Corollary 1. Let ΦΦ, p2, A , B, and X be the same as in Proposition 1. If Λ∈ { ˜̀2
∞, c̃2

0 , bc2
0
}

with gΛ = ‖·‖∞,

then the GDS space Λ[A ,ΦΦ,p2,B,X2] may be topologized by the F-seminorm

hΦΦ,p2

∞,A ,B
(x2) = sup

m,n

(
∑
k,i

amnki

(
φki

(
|̇∑

l, j
bkiljxlj |̇

))pki
)1/r

whenever the sequence of moduli ΦΦp2/r satisfies the condition (M5’). Thereby, if X is normed, A is
essentially positive, and condition (9) holds, then hΦΦ,p2

∞,A ,B
is an F-norm on Λ[A ,ΦΦ,p2,B,X2].

The proof of Proposition 1 shows that in the case B = I statements of Proposition 1 and Corollary 1
remain true if X2 is replaced by X2. Moreover, condition (9) is automatically satisfied for B = I . Thus the
following is true.

Proposition 2. Let ΦΦ, p2, A , and (Λ,gΛ) be the same as in Proposition 1. Then the following statements
hold.
a) The GDS space

Λ[A 1/r,ΦΦ,p2,X2] =
{

x2 ∈ s2(X2) : A 1/r
(

ΦΦp2 (
x2)) ∈ Λ

}

may be topologized by the F-seminorm

hΦΦ,p2

Λ,A
(x2) = gΛ

(
A 1/r

(
ΦΦp2 (

x2)))

whenever the sequence of moduli ΦΦp2/r satisfies the condition (M5’).
b) If (Λ[A ]r,gr

Λ,A
) is an AK-space and the sequence of moduli ΦΦp2/r satisfies the conditions (M7) and (M8),

then hΦΦ,p2

Λ,A
is an F-seminorm on

Λ[A 1/r,ΦΦ,p2,Ĩ ,X2] =
{

x2 ∈ s̃2(X2) : A 1/rΦΦp2
(x2) ∈ Λ

}
.

If, in a) and b), gΛ is an F-norm, the spaces Xki are normed and A is essentially positive, then hΦΦ,p2

∞,A
is

an F-norm on Λ[A 1/r,ΦΦ,p2,X2] and Λ[A 1/r,ΦΦ,p2,Ĩ ,X2].

Corollary 2. Let ΦΦ, p2, and A be the same as in Proposition 1. If Λ ∈ { ˜̀2
∞, c̃2

0 , bc2
0
}

with gΛ = ‖ · ‖∞, then
the GDS space Λ[A ,ΦΦ,p2,X2] may be topologized by the F-seminorm

hΦΦ,p2

∞,A
(x2) = sup

m,n

(
∑
k,i

amnki

(
φki

(
|̇xki |̇ki

))pki

)1/r

whenever the sequence of moduli ΦΦp2/r satisfies the condition (M5’). Thereby, if gΛ is an F-norm in Λ, the
spaces Xki are normed and A is essentially positive, then hΦΦ,p2

∞,A
is an F-norm on Λ[A ,ΦΦ,p2,X2].

Proposition 2 (see also Remark 2) generalizes and corrects a theorem of Basu and Srivastava (see [1,
Theorem 3.2]). Savas and Patterson [15] consider the space

Λ[A ,φ ] =

{
u2 ∈ s2 :

(
∑
k,i

amnkiφ (|uki|)
)
∈ Λ

}
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in the case if φ is a modulus and Λ ∈ { ˜̀2
∞, c2

0
}

. Because c2 and c2
o are not contained in ˜̀2

∞, Theorems 3.3
and 3.6 of [15] may not be true in general. Corollary 2 allows us to say that the spaces Λ[A ,φ ] with
Λ ∈ { ˜̀2

∞, c̃2
0 , bc2

0
}

may be topologized by the F-seminorm

hφ
∞,A

(u2) = sup
m,n

∑
k,i

amnkiφ (|uki|)

whenever φ satisfies the condition (M5◦) (or the condition (M6◦)).
Another special form of Proposition 1 is related to the modulus functions φki(t) = t (k, i ∈ N, t ∈ R+).

In such case
φ p2/r

ki (ut)

φ p2/r
ki (t)

=
(ut)pki/r

t pki/r = upki/r

and thus, by Remark 1, (M5’) holds if and only if infk,i pki > 0. The condition infk,i pki > 0 also guarantees
that the sequence of moduli Φp2/r satisfies the conditions (M7) and (M8) if φki(t) = t. These facts permit us
to formulate the following proposition and its corollary.

Proposition 3. Let p2, A , B, and (Λ,gΛ) be the same as in Proposition 1. If infk,i pki > 0, then the following
is true.
a) The GDS space

Λ[A 1/r,p2,B,X2] =
{

x2 ∈ s2
B(X2) : A 1/r (Bx2)p2

∈ Λ
}

,

where

A 1/r (Bx2)p2

=




(
∑
k,i

amnki

(
|̇∑

l, j
bkiljxlj |̇

)pki
)1/r




m,n∈N

,

may be topologized by the F-seminorm

hp2

Λ,A ,B
(x2) = gΛ

(
A 1/r (Bx2)p2

)
.

b) If (Λ[A ]r,gr
Λ,A

) is an AK-space, then hp2

Λ,A ,B is an F-seminorm on

Λ[A 1/r,p2,B̃,X2] =
{

x2 ∈ s2
B(X2) : Bx2 ∈ s̃2(X2) and A 1/r (Bx2)p2

∈ Λ
}

.

If, in a) and b), gΛ is an F-norm, the space X is normed, A is essentially positive and condition (9)
holds, then hp2

∞,A ,B
is an F-norm on Λ[A 1/r,p2,B,X2] and Λ[A 1/r,p2,B̃,X2].

Moreover, for B = I all previous statements remain true with X2 instead of X2.

Corollary 3. Let p2, A , B, and X be the same as in Proposition 1. Suppose that infk,i pki > 0 and
Λ ∈ { ˜̀2

∞, c̃2
0, bc2

o
}

with gΛ = ‖ · ‖∞. Then the GDS space Λ[A ,p2,B,X2] may be topologized by the
F-seminorm

hp2

∞,A ,B
(x2) = sup

m,n

(
∑
k,i

amnki |̇∑
l, j

bkiljxlj |̇pki

)1/r

.

Thereby, if X is normed, A is essentially positive and condition (9) holds, then hp2

∞,A ,B
is an F-norm on

Λ[A ,p2,B,X2].
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Corollary 3 generalizes some results from [3,4,17].
Finally, let A = I . Then (Λ[A ]r,gr

Λ,A
) = (Λ,gΛ) and Propositions 1 b) and 3 b) yield the following

statements.

Corollary 4. Let ΦΦ, p2, B, and (Λ,gΛ) be the same as in Proposition 1.

a) If (Λ,gΛ) is an AK-space and ΦΦp2/r satisfies (M7) and (M8), then the GDS space Λ[I 1/r,ΦΦ,p2,B̃,X2]
may be topologized by the F-seminorm hΦ,p2

Λ,B
(x2) = gΛ

(
ΦΦp2/r (Bx2

))
.

b) If (Λ,gΛ) is an AK-space, φki(t) = t, (k, i ∈N), and infk,i pki > 0, then hp2

Λ,B
(x2) = gΛ

(
I 1/r

(
Bx2

)p2)
is

an F-seminorm on the GDS space Λ[I 1/r,p2,B̃,X2].

Since (c̃2
0,‖ · ‖∞) is an AK-space, Corollary 4 is applicable to Λ = c̃2

0 with I instead of I 1/r.

4. CONCLUSION

The topologization is an essential problem in the theory of various vector spaces, including theory of
sequence spaces. It should be noted that the determination of F-seminorm or paranorm topologies for
the double sequence spaces has not been studied as intensively as for the spaces of single sequences. We
consider the topologization of a wide class of spaces of vector-valued double sequences which are defined
by means of a solid F-seminormed space Λ of a double number sequences, a double sequence Φ of modulus
functions, and a linear operator T . Our main theorems are applied in the case, where Λ is the strong
summability domain of a non-negative 4-dimensional matrix A and the operator T is determined by an
arbitrary 4-dimensional matrix B. We also correct some inaccuracies of two previous papers.
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F-poolnormid moodulfunktsioonide abil defineeritud üldistatud topeltjadade ruumides

Enno Kolk ja Annemai Raidjõe

On leitud F-poolnormid ja F-normid selliste topeltjadade ruumides, mille elementideks on etteantud
poolnormeeritud ruumide punktid ning mille teisendid kuuluvad reaalarvuliste elementidega topeltjadade
ruumi Λ. Seejuures saadakse teisendatud jada lineaarse operaatori ja moodulfunktsioonide topeltjada raken-
damise teel. Ruumi Λ kohta eeldatakse, et see on soliidne ja topologiseeritud absoluutselt monotoonse
F-poolnormi või F-normi abil. Üldised tulemused leiavad rakendamist erijuhul, kui lineaarseks operaatoriks
on 4-mõõtmelise maatriksiga määratud summeerimisoperaator ja ruum Λ on seotud 4-mõõtmelise mitte-
negatiivse maatriksmenetluse tugeva summeeruvuse välja ning tugeva tõkestatuse väljaga.


