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Abstract. A Banach space is said to have the diameter 2 property if the diameter of every nonempty relatively weakly open subset
of its unit ball equals 2. In a paper by Abrahamsen, Lima, and Nygaard (Remarks on diameter 2 properties. J. Conv. Anal., 2013,
20, 439–452), the strong diameter 2 property is introduced and studied. This is the property that the diameter of every convex
combination of slices of its unit ball equals 2. It is known that the diameter 2 property is stable by taking `p-sums for 1 ≤ p ≤ ∞.
We show the absence of the strong diameter 2 property on `p-sums of Banach spaces when 1 < p < ∞. This confirms the conjecture
of Abrahamsen, Lima, and Nygaard that the diameter 2 property and the strong diameter 2 property are different. We also show
that the strong diameter 2 property carries over to the whole space from a non-zero M-ideal.
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1. INTRODUCTION

All Banach spaces considered in this note are over the real field. For a Banach space X , its dual space is
denoted by X∗, BX is the closed unit ball of X , and SX stands for the unit sphere of X . By a slice of BX we
mean a set of the form

S(x∗,α) = {x ∈ BX : x∗(x) > 1−α},
where x∗ ∈ SX∗ and α > 0.

Nygaard and Werner [10] showed that in every infinite-dimensional uniform algebra, every nonempty
relatively weakly open subset of its closed unit ball has diameter 2. If a Banach space satisfies this condition,
then it is said to have the diameter 2 property (see, e.g., [1,3,5]).

In addition to the diameter 2 property, Abrahamsen, Lima, and Nygaard [1] consider two other formally
different diameter 2 properties – the local diameter 2 property and the strong diameter 2 property.

According to the terminology in [1], a Banach space X has the local diameter 2 property if every slice
of BX has diameter 2; and X has the strong diameter 2 property if every convex combination of slices of BX
has diameter 2, i.e., the diameter of ∑n

i=1 λiSi is 2, whenever n ∈ N, λ1, . . . ,λn ≥ 0, with ∑n
i=1 λi = 1, and

S1, . . . ,Sn are slices of BX .
The diameter 2 property clearly implies the local diameter 2 property. The strong diameter 2 property

implies the diameter 2 property. This follows directly from Bourgain’s lemma ([6, Lemma II.1 p. 26]),
which asserts that every nonempty relatively weakly open subset of BX contains some convex combination
of slices.
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It is conjectured in [1] that these three diameter 2 properties are different. In Section 2, we will show
that there exist Banach spaces with the diameter 2 property but without the strong diameter 2 property. In
fact, we prove that the strong diameter 2 property is never stable by taking the `p-sum for 1 < p < ∞ (cf.
Theorem 1). On the other hand, the diameter 2 property is stable under `p-sums (see [1, Theorem 3.2]).

The papers [1] and [9] inspired us to consider diameter 2 properties in the context of M-ideals. Section 3
is the result of that study. We show that all three diameter 2 properties carry over to the whole space from a
non-zero M-ideal. This generalizes Theorem 3.2 (the case of p = ∞) and Proposition 4.6 from [1].

2. STRONG DIAMETER 2 PROPERTY IS NEVER STABLE UNDER `p-SUMS

Perhaps the most surprising result in [1] is that the local diameter 2 property and the diameter 2 property
are stable by taking `p-sums for 1 < p < ∞ (see [1, Theorem 3.2]). The same result is true, and even easier
also, for p = 1 and p = ∞. For p = ∞, the diameter 2 case was obtained by López Pérez ([9, Lemma 2.1],
see also [4, Lemma 2.2]).

One of the questions asked in [1] was whether the strong diameter 2 property is also stable under `p-sums
(see ([1, Question (c)]). The answer was known for p = 1 and for p = ∞:
• If the Banach spaces X and Y have the strong diameter 2 property, then X⊕1 Y has the strong diameter 2

property (see [1, Theorem 2.7 (iii)]). This result is essentially due to Becerra Guerrero and López Pérez
in [4, proof of Lemma 2.1 (ii)].

• If a Banach space X has the strong diameter 2 property, then X⊕∞ Y has the strong diameter 2 property
for any Banach space Y ([1, Proposition 4.6]). We will generalize the last result in Proposition 3.
The following is our main result. It provides an answer, in the negative, to Question (c) in [1]. Moreover,

it confirms the conjecture in [1] that the diameter 2 property and the strong diameter 2 property are different.

Theorem 1. Let X and Y be nontrivial Banach spaces and let 1 < p < ∞. The Banach space Z = X ⊕p Y
fails the strong diameter 2 property.

Remark.
(1) Theorem 1 is a joint result with Märt Põldvere.
(2) Theorem 1 was obtained independently by Marı́a Acosta, Julio Becerra Guerrero, and Ginés López

Pérez; it is included in [2, Theorem 3.2].
(3) Eve Oja has presented another proof of Theorem 1 ([8]).

To prove Theorem 1, we will need the following elementary lemma.

Lemma 2. Let 1 < p < ∞ and let q be such that 1/p+1/q = 1. If z∗ = (x∗,y∗) is an element in SZ∗ = SX∗⊕qY ∗ ,
then for every ε > 0 there exists α > 0 such that

‖(‖x‖ ,‖y‖)− (‖x∗‖q−1 ,‖y∗‖q−1)‖p < ε,

whenever z = (x,y) is an element in S(z∗,α).

Proof. Note that if z = (x,y) is an element in S(z∗,α), then (‖x‖ ,‖y‖) and (‖x∗‖q−1 ,‖y∗‖q−1) are both
elements of the slice S((‖x∗‖ ,‖y∗‖),α) of B`2

p
. Obviously, when α tends to 0, then diam(S((‖x∗‖ ,‖y∗‖),α))

tends to 0 as well. This proves the result.

Proof of Theorem 1. In fact, we will show a stronger statement: For every λ ∈ (0,1), there exists α,β > 0
and z∗, z̃∗ ∈ SZ∗ such that

λS(z∗,α)+(1−λ )S(z̃∗,α)⊂ (1−β )BZ.

Let x∗ ∈ SX∗ and y∗ ∈ SY ∗ . We take z∗ = (x∗,0) and z̃∗ = (0,y∗). Then z∗ and z̃∗ are elements in SZ∗ . Fix
λ ∈ (0,1). Let

ε = 1−
(

λ p +(1−λ )p
)1/p

.
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Clearly, ε > 0. By Lemma 2, there exists α > 0 such that

((
λ ‖x‖+(1−λ )‖x̃‖

)p
+

(
λ ‖y‖+(1−λ )‖ỹ‖

)p
)1/p

≤
((

λ ·1+(1−λ ) ·0
)p

+
(

λ ·0+(1−λ ) ·1
)p

)1/p

+
ε
2

=
(

λ p +(1−λ )p
)1/p

+
ε
2

= 1− ε
2
,

whenever z = (x,y) ∈ S(z∗,α) and z̃ = (x̃, ỹ) ∈ S(z̃∗,α).
One may take β = ε/2. Indeed, for z = (x,y) ∈ S(z∗,α) and z̃ = (x̃, ỹ) ∈ S(z̃∗,α), we now have

‖λ z+(1−λ )z̃‖=
(
‖λx+(1−λ )x̃‖p +‖λy+(1−λ )ỹ‖p

)1/p

≤
((

λ ‖x‖+(1−λ )‖x̃‖
)p

+
(

λ ‖y‖+(1−λ )‖ỹ‖
)p

)1/p

≤ 1− ε
2
. ¤

3. DIAMETER 2 PROPERTIES CARRY OVER TO THE WHOLE SPACE FROM A NON-
ZERO M-IDEAL

We denote the annihilator of a subspace Y of a Banach space X by

Y⊥ = {x∗ ∈ X∗ : x∗(y) = 0 for all y ∈ Y}.

According to the terminology in [7], a closed subspace Y of a Banach space X is called an M-ideal if
there exists a norm-1 projection P on X∗ with kerP = Y⊥ and

‖x∗‖= ‖Px∗‖+‖x∗−Px∗‖ for all x∗ ∈ X∗.

Relations between M-ideal structure and the diameter 2 property were first considered in [9]. There it is
proved that if a proper subspace Y of X is an M-ideal in X and the range of the corresponding projection is
1-norming, then both Y and X have the diameter 2 property (see [9, Theorem 2.4]). In [1, Theorem 4.10]
it is shown that, under the same assumptions, one can conclude that both Y and X have even the strong
diameter 2 property. An immediate corollary of this is that if a nonreflexive Banach space X is an M-ideal
in its bidual, then both X and X∗∗ have the strong diameter 2 property.

One cannot omit the assumption that the range of the corresponding projection is 1-norming. To see
an example of this, let Y be any Banach space and let X = Y ⊕∞ c0. Then, by [1, Proposition 4.6] (or
Proposition 3 below), X has the strong diameter 2 property and Y is an M-ideal in X .

In the following we will show that if a non-zero M-ideal Y has some diameter 2 property, then X has the
same diameter 2 property without the assumption that the range of the projection is 1-norming. This, at the
same time, generalizes Theorem 3.2 (the case of p = ∞) and the above-mentioned Proposition 4.6 of [1].

Proposition 3. Let X be a Banach space and let Y be a proper closed subspace of X. Assume that Y is an
M-ideal in X. If Y has the strong diameter 2 property, then X has the strong diameter 2 property.
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Proof. Let ∑n
i=1 λiS(x∗i ,αi) be a convex combination of slices of BX , where n ∈ N, and λ1, . . . ,λn ≥ 0 such

that ∑n
i=1 λi = 1. Let ε > 0 be such that ε < min{α1, . . . ,αn}/3.

We will show the existence of x1
1, . . . ,x

1
n,x

2
1, . . . ,x

2
n ∈ BX such that xk

i ∈ S(x∗i ,αi) for every i = 1, . . . ,n,
k = 1,2, and ∥∥∥∥∥

n

∑
i=1

λi(x1
i − x2

i )

∥∥∥∥∥ >
2− ε
1+ ε

.

Denote by P the M-ideal projection on X∗ with kerP = Y⊥. For every i = 1, . . . ,n, we take

y∗i =
Px∗i
‖Px∗i ‖

and βi =
ε− ε ‖Px∗i ‖+ ε2

‖Px∗i ‖
.

Note that, if Px∗i 6= 0, then βi > 0. If Px∗i = 0, we can take y∗i ∈ SY ∗ and βi > 0 to be arbitrary. Observe that
∑n

i=1 λiS(y∗i ,βi) is a convex combination of slices of BY . Since Y has the strong diameter 2 property, we can
find y1

1, . . . ,y
1
n and y2

1, . . . ,y
2
n in BY such that

Px∗i (y
k
i ) > (‖Px∗i ‖− ε)(1+ ε), k = 1,2, i = 1, . . . ,n,

and ∥∥∥∥∥
n

∑
i=1

λi(y1
i − y2

i )

∥∥∥∥∥ > 2− ε.

There are x1, . . . ,xn ∈ BX such that

(x∗i −Px∗i )(xi) > (‖x∗i −Px∗i ‖− ε)(1+ ε)

for every i = 1, . . . ,n.
Since Y is an M-ideal in X , then by [11, Proposition 2.3], we can, for every i = 1, . . . ,n, choose zi ∈ BY

such that ∥∥yk
i + xi− zi

∥∥ < 1+ ε , k = 1,2,

and
|Px∗i (xi− zi)|< ε.

We take

xk
i =

yk
i + xi− zi

1+ ε
, k = 1,2, i = 1, . . . ,n.

Now, for every i = 1, . . . ,n, for every k = 1,2, xk
i is an element in S(x∗i ,αi), because

x∗i (x
k
i ) =

x∗i (y
k
i + xi− zi)
1+ ε

=
Px∗i (y

k
i )+(x∗i −Px∗i )(xi)+Px∗i (xi− zi)

1+ ε
> ‖Px∗i ‖− ε +‖x∗i −Px∗i ‖− ε− ε
= ‖x∗i ‖−3ε > 1−αi.

Finally, observe that
∥∥∥∥∥

n

∑
i=1

λi(x1
i − x2

i )

∥∥∥∥∥ =
1

1+ ε

∥∥∥∥∥
n

∑
i=1

λi(y1
i − y2

i )

∥∥∥∥∥ >
2− ε
1+ ε

. ¤

We conclude our study with the local diameter 2 and the diameter 2 versions of Proposition 3.
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Proposition 4. Let X be a Banach space and let Y be a proper closed subspace of X. Assume that Y is an
M-ideal in X. If Y has the local diameter 2 property, then X has the local diameter 2 property.

Proof. Take n = 1 in the proof of Proposition 3.

The next result is obtained in the proof of [9, Theorem 2.4], but not stated explicitly. We will give a
direct proof of this result.

Proposition 5. Let X be a Banach space and let Y be a proper closed subspace of X. Assume that Y is an
M-ideal in X. If Y has the diameter 2 property, then X has the diameter 2 property.

Proof. The proof is similar to the proof of Proposition 3.
Let U be a nonempty relatively weakly open subset of BX containing an element x0. We may assume

that
{x ∈ BX : |x∗i (x− x0)|< γ, i = 1, . . . ,n} ⊂U,

for some n ∈ N, x∗1, . . . ,x
∗
n ∈ SX∗ , and γ > 0.

Denote by P the M-ideal projection on X∗ with kerP = Y⊥, and let δ = max{‖Px∗i ‖ : i = 1, . . . ,n}. Let
ε > 0 be such that ε(4+δ ) < γ . We will show the existence of elements x and x̃ in U such that

‖x− x̃‖>
2− ε
1+ ε

.

Since BY is dense in BX in the weak topology σ(X , ran P), we can find an element y0 ∈ BY such that

|Px∗i (x0− y0)|< ε

for every i = 1, . . . ,n. Consider the set

V = {y ∈ BY : |Px∗i (y− y0)|< ε(δ +1), i = 1, . . . ,n}.
Clearly V is a nonempty relatively weakly open subset of BY . By the assumption, there are y1,y2 ∈ V with
‖y1− y2‖> 2− ε .

Since Y is an M-ideal in X , by [11, Proposition 2.3], there is an element z0 ∈ BY such that

‖yk + x0− z0‖< 1+ ε, k = 1,2,

and
|Px∗i (x0− z0)|< ε

for every i = 1, . . . ,n.
We take

x1 =
y1 + x0− z0

1+ ε
and x2 =

y2 + x0− z0

1+ ε
.

Now, for every i = 1, . . . ,n, we have

|x∗i (x1− x0)|= 1
1+ ε

|x∗i (y1− εx0− z0)±Px∗i (x0)±Px∗i (y0)|

≤ 1
1+ ε

(
|Px∗i (y1− y0)|+ |Px∗i (x0− z0)|+ ε |x∗i (x0)|+ |Px∗i (y0− x0)|

)

<
1

1+ ε
(εδ +4ε) < γ.

Thus, x1 ∈U . Similarly one can show that x2 ∈U . Finally, observe that

‖x1− x2‖=
1

1+ ε
‖y1− y2‖>

2− ε
1+ ε

. ¤
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Kaks märkust diameeter-2 omaduste kohta
Rainis Haller ja Johann Langemets

On tõestatud, et artiklis [1] vaadeldud diameeter-2 omadus ja tugev diameeter-2 omadus on erinevad. On
näidatud, kuidas diameeter-2 omadused kanduvad M-ideaalilt kogu ruumile.


