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Abstract. A three-dimensional (3D) Reynolds stress turbulence model based on 3D Reynolds-averaged Navier–Stokes equations 
has been elaborated for grid-generated turbulence in particulate downward flow arranged in the channel domain of the square 
cross section. The model presented considers both the enhancement and attenuation of turbulence by means of the additional 
terms of the transport equations of the normal Reynolds stress components. It allows us to carry out calculations covering the long 
distance of the channel length without using algebraic assumptions for various components of the Reynolds stress. The results 
obtained show the effects of particles and mesh size of the turbulence generating grids on turbulence modification. In particular, 
the presence of solid particles at the initial period of turbulence decay results in the pronounced enhancement of turbulence that 
diminishes appreciably downwards in the area of typical channel turbulent flow. As the results show, the character of modification 
of all three normal components of the Reynolds stress taking place at the initial period of turbulence decay are uniform almost all 
over the channel cross sections. The increase in the grid mesh size slows down the rate of the turbulence enhancement which is 
caused by particles. 
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INTRODUCTION 
 
Turbulent gas-solid particle flows in channels have numerous engineering applications ranging from 
pneumatic conveying systems to coal gasifiers, chemical reactor design, and are one of the most 
thoroughly investigated subjects in the area of particulate flows. These flows are very complex and 
influenced by various physical phenomena, such as particle–turbulence and particle–particle interactions, 
deposition, gravitational and viscous drag forces, particle rotation and lift forces, etc. 

The mutual effect of particles and a flow turbulence has been the subject of numerous theoretical 
studies during several decades. These studies have reported about the influence of gas turbulence on 
particles (one-way coupling) and/or particles on the turbulence of a carrier gas flow (two-way coupling) in 
case of high flow mass loading (four-way coupling). The influence of particles on gas turbulence consists 
in turbulence attenuation or augmentation depending on the relation between the parameters of gas and 
particles. 

                                                                 
*  Corresponding author, aleksander.kartusinski@ttu.ee 



Proceedings of the Estonian Academy of Sciences, 2013, 62, 3, 161–174  
 

162 

There are different approaches and numerical models that describe the mutual effect of gas turbulence 
and particles. The k ε−  models, earlier elaborated for turbulent particulate flows, e.g., Elghobashi and 
Abou-Arab (1983), Pourahmadi and Humphrey (1983), Rizk and Elghobashi (1989), Simonin (1990), 
Deutsch and Simonin (1991), considered turbulence attenuation only by the additional terms of the 
equations of the turbulence kinetic energy and its dissipation rate. The results obtained by these models 
were validated by the experimental data on turbulent particulate free-surface flows (Shraiber et al., 1990).  

The models by Crowe and Gillandt (1998) and Crowe (2000) considered both the turbulence aug-
mentation and attenuation in pipe particulate flows depending on the flow mass loading and the Stokes 
number. Later on these models have been expanded for free-surface flows. As opposed to the k ε−  
models, Crowe and Gillandt (1998) and Crowe (2000) considered both the turbulence augmentation 
caused by the velocity slip between gas and particles and the turbulence attenuation due to the change of 
the turbulence macroscale which occurred in the particulate flow as compared to the unladen flow. The 
given approach has been successfully tested for various pipe and channel particulate flows. 

Currently, the probability dense function (PDF) approach is widely applied to the numerical modelling 
of particulate flows. The PDF models, for example, by Reeks (1991, 1992), Zaichik and Vinberg (1991), 
Zaichik et al. (2007), Kartushinsky et al. (2009a), contain more complete differential transport equations, 
which are written for various velocity correlations and consider both the turbulence augmentation and 
attenuation due to particles. 

As opposed to pipe flows, rectangular and square channel flows, even in case of unladen flows, are 
considerably anisotropic with respect to the components of the turbulence energy, which is vividly 
expressed near the channel walls and corners being notable as for the secondary flows. In addition, the 
presence of particles aggravates such anisotropy. Such flows are studied by the Reynolds stress turbulence 
models (RSTM), which are based on the transport equations for all components of the Reynolds stress 
tensor and the turbulence dissipation rate. The RSTM approach allows us to completely analyse the 
influence of particles on longitudinal, radial, and azimuthal components of the turbulence kinetic energy, 
including also possible modifications of the cross-correlation velocity moments. A few studies based on 
the RSTM approach have shown its good performance and capability for simulation of complicated flows 
(Gerolymos and Vallet, 2003), as well for turbulent particulate flows (Taulbee et al., 1999). 

Recently Mukin and Zaichik (2012) have proposed a nonlinear algebraic Reynolds stress model for the 
gas flow laden with small heavy particles based on the PDF approach. The original equations written for 
each component of the Reynolds stress were reduced to their general form in terms of the turbulence 
energy and its dissipation rate with additional effect of the particulate phase. Eventually, the model by 
Mukin and Zaichik (2012) operated with the k ε−  solution and did not allow analysis of the effect of 
particles on each component of the Reynolds stress. 

The presented 3D RSTM model has been applied to the downward grid-generated turbulent particulate 
flow in the frame of the channel domain. The influence of solid particles on turbulence modification was 
under consideration for two different values of the length scale of the initial turbulence, which were set by 
the mesh size of the turbulence generating grid. Particularly, the modification of three normal components 
of the Reynolds stress which occurred in the axial direction and in the flow cross section was analysed. 
The advantage of the given model consists in that it considers the particulate phase, following Crowe 
(2000), taking into account both the enhancement and attenuation of turbulence. 

The model, discussed here, has been verified and validated by comparison of the numerical results with 
the experimental data by Hussainov et al. (2005) for the turbulent downward vertical channel flow grid-
generated by gas-solid particles. 

 
 

MATERIALS  AND  METHODS 

Model  description 
 
The sketch of the computational flow domain is shown in Fig. 1. Here u  and su  are the velocities of gas 
and particles, respectively. 
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Fig. 1. Downward grid-generated turbulent particulate flow in a pipe. 

 
Governing  equations  for  the  Reynolds  stress  turbulence  model 
The numerical simulation of the stationary incompressible 3D turbulent particulate flow in the square 
cross section channel was performed by the 3D RANS model with applying the 3D Reynolds stress 
turbulence model to the closure of the governing equations of gas. The particulate phase was modelled in 
the frame of the 3D Euler approach with the equations closed by the two-way coupling model by Crowe 
(2000) and the eddy-viscosity concept. 

The particles were brought into the developed isotropic turbulent flow set-up in the channel domain 
which had been preliminarily computed to obtain the flow velocity field. The system of the momentum 
and closure equations of the gas phase are identical for the unladen flows, while the particle-laden flows 
are under the impact of the viscous drag force. Therefore, here we present only the system of equations of 
the gas phase written for the case of the particle-laden flow in the Cartesian coordinates. 

The 3D governing equations for the stationary gas phase of the laden flow are written together with the 
closure equations as follows: 

 

1.  continuity equation 
 

0,u v w
x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

                                                                (1) 

 

where ,u  ,v  and w  are the axial, transverse, and spanwise time-averaged velocity components of the gas 
phase, respectively; 

 

2.  x-component of the momentum equation 
 

2
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x y z x x y y x
ν ν

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ′ ′ ′+ + = − + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
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3.  y-component of the momentum equation 
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4.  z-component of the momentum equation 
 

2uw vw w u w v wu w v w
x y z x z x y z y

ν ν
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  ′ ′ ′ ′+ + = + − + + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

2 ( )2 ;s
D

p

w ww pw C
z z z

ν α
ρ τ

−∂ ∂ ∂ ′ ′+ − − − ∂ ∂ ∂ 
                                  (4) 

 

5.  the transport equation of the x-normal component of the Reynolds stress 
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6.  the transport equation of the y-normal component of the Reynolds stress 
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7.  the transport equation of the z-normal component of the Reynolds stress 
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8.  the transport equation of the xy shear stress component of the Reynolds stress 
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9.  the transport equation of the xz shear stress component of the Reynolds stress 
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10.  the transport equation of the yz shear stress component of the Reynolds stress 
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11.  the transport equation of the dissipation rate of the turbulence kinetic energy 
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The given system of transport equations Eqs (1)–(11) is based on the model by Launder et al. (1975) 
with using the numerical constants taken from Pope (2008): 1.8,RC =  2 0.6,C =  0.22,sC =  0.18,Cε =  

1 1.44,Cε =  2 1.92,Cε =  Here 0 0 0T k ε=  and T k ε=  are the turbulence integral time scales for unladen 
and particle-laden flows, respectively; 2 2 20.5( )k u v w′ ′ ′= + +  and 2 2 2

0 0 0 00.5( )k u v w′ ′ ′= + +  are the 
turbulence kinetic energy of gas in particle-laden and unladen flows, respectively; ε  and 0ε  are the 
dissipation rates of the turbulence kinetic energy in particle-laden and unladen flows, respectively; pτ  is 
the Stokesian particle response time, 2 18 ;p pτ ρ δ ρν=  ν  is gas viscosity; ( ),su u−  ( ),sv v−  and 
( )sw w−  are the components of slip velocity. 

The additional terms of Eqs (2)–(7) pertain to the presence of particles in the flow and contain the 
particle mass concentration .α  The influence of particles on gas is considered by the aerodynamic drag 
force in the momentum equations (the last term of the right-hand sides of Eqs (2)–(4), and by the 
turbulence generation and attenuation effects contained in the transport equations of components of the 
Reynolds stress (the penultimate and last terms of the right-hand sides of Eqs (5)–(7), respectively). The 
given model employs the two-way coupling approach by Crowe (2000), where the turbulence generation 
terms are proportional to the squared slip velocity, and the turbulence attenuation terms are expressed via 
the hybrid length scale hL  and the hybrid dissipation rate hε  of the particle-laden flow, where hL  is 
calculated as the harmonic average of the integral length scale of the unladen flow 0L  and the interparticle 
distance .λ  Here 3( 6 1),pλ δ πρ ρα= −  3 2

0 0 0 ,L k ε=  0 02 ,hL L Lλ λ= +  3 2 .h hk Lε =  The influence of 
particles on the shear Reynolds stress components is considered in Eqs (8)–(10) indirectly via the 
averaged velocity flow field ( , , ).u v w  

The production terms P  are determined according to Pope (2008) as follows: 
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The diffusive or second-order partial differentiation over Cartesian coordinates, i.e. the first three terms 
in Eqs (5)–(11) are given, e.g., by (Pope, 2008). The anisotropy terms R  of the normal and shear 
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components of the Reynolds stress 2 ,u′  2 ,v′  2 ,w′  ,u v′ ′  ,u w′ ′  v w′ ′  are defined by various pressure-rate-
of-strain models of the isotropic turbulence written in terms of variation of constants RC  and 2C  (Pope, 
2008) as follows: 
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3 3
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2
( 1) ,R
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T
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2
( 1) .R

vw vw
C v wR C P

T
′ ′−= − −                                                                        (24) 

 

The relative friction coefficient DC′  is expressed as 0.6871 0.15 ReD sC′ = +  for the non-Stokesian 
streamlining of the particle. The particle Reynolds number Res  is calculated according to Schiller and 
Naumann (1933) as 2 2 2Re ( ) ( ) ( ) .s s s su u v v w wδ ν= − + − + −  

The 3D governing equations for the particulate phase are written as follows: 
 
1.  the particle mass conservation equation 

 

( ) ( ) ( ) ;s s s
s s s

u v w D D D
x y z x x y y z z

α α α α α α∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

                           (25) 

 

2.  x-component of the momentum equation 
 

2( ) ( ) ( ) 22
3

s s s s s s s s
s s s

u u v u w u u vk
x y z x x y y x

α α α α ν αν
  ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ + + = − + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

                 

( ) 1 ;s s s
s D

p p

u w u uC g
z z x

ραν α α
τ ρ

  ∂ ∂ −∂   ′+ + + − −     ∂ ∂ ∂    
        (26) 

 

3.  y-component of the momentum equation 
 

2( ) ( ) ( ) 22
3

s s s s s s s s
s s s

u v v v w u v v k
x y z x y x y y

α α α αν ε ν
    ∂ ∂ ∂ ∂ ∂ ∂∂ ∂+ + = + + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 

( ) ;s s s
s D

p

v w v vC
z z y

αν α
τ

  ∂ ∂ −∂ ′+ + +  ∂ ∂ ∂  
                       (27) 
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4.  z-component of the momentum equation 
 

2( ) ( ) ( )s s s s s s s s s
s s

u w v w w u w v w
x y z x z x y z y

α α α αν αν
   ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ + + = + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 

( )22 .
3

s s
s s D

p

w w wk C
z z

α ν α
τ

∂ −∂   ′+ − + ∂ ∂ 
                      (28) 

 

The closure model for the transport equations of the particulate phase was applied to the PDF model by 
Zaichik and Alipchenkov (2005). There the turbulent kinetic energy of the dispersed phase, the 
coefficients of turbulent viscosity, and turbulent diffusion of the particulate phase are respectively 
determined as follows: 

 

01 exp ,s
p

Tk k
τ

  
= − −   ′   

    01 exp ,
3
p

s t
p

k Tτ
ν ν

τ
 ′   

= + − −     ′     
    0 02 1 1 exp ,

3s
T TkD
τ τ

    = + − −    
    

      (29) 

 

where tν  is turbulent viscosity, 2
0 00.09 ,t kν ε=  and p p DCτ τ′ ′=  is the particle response time with 

respect to correction of the particle motion to the non-Stokesian regime. 
 
Boundary  conditions  for  the  Reynolds  stress  turbulence  model 
The flow discussed here is vertical, and symmetrical with respect to the vertical axis. Therefore, the 
symmetry conditions are set at the flow axis, and the wall conditions are set at the wall. 

The axisymmetric conditions are written as follows: 
 

for 0:y =     
2 2 2

0s
s s

uu u v w v w u v u w v w v w
y y y y y y y

ε α′ ′ ′ ∂∂ ∂ ∂ ∂ ∂ ∂ ′ ′ ′ ′ ′ ′= = = = = = = = = = = = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂

,          (30) 

 

for 0:z =     
2 2 2

0s
s s

uu u v w v w u v u w v w v w
z z z z z z z

ε α′ ′ ′ ∂∂ ∂ ∂ ∂ ∂ ∂ ′ ′ ′ ′ ′ ′= = = = = = = = = = = = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂

.           (31) 
 

The wall conditions are written as follows: 
 

for 0.5 :y h=  
*

,1 ln

yuu
v y B

æ

+

+
+


= = 

+

                                                                                                   (32) 

 

for 0.5 :z h=  
*

,1 ln

zuu
v z B

æ

+

+
+


= = 

+

                                                                                                   (33) 

 

0,v w= =                    (34) 
 

where h  is the channel width; *v  is the friction velocity of gas; the empirical constant 0.41;æ =  the wall 
coordinates y+  and z+  correspond to the transverse and spanwise directions, respectively: 

 

* ,
2

v yy ∆
ν

+ =      * .
2

v zz ∆
ν

+ =  
 

Here ,y∆  z∆  are the width and height of the control volume; the numerical constant B  equals 5.2 for the 
smooth wall of the channel. 
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The friction velocity of gas *v  can be determined according to Perić and Scheuerer (1989) as follows: 
 

0.25
* ( 2) ,v c kµ=  

 

where cµ  is the numerical constant of the k ε−  model, 0.09.cµ =  
For the normal and shear stresses and dissipation rate of the unladen flow calculated at the wall, the 

boundary conditions are set based on the “wall-function” according to Pope (2008) with the following 
relationships for the production and dissipation terms: 
for 0.5 :y h=  
 

,uu
uP u v
y

∂′ ′= −
∂

     0,vv ww uv uw vwP P P P P= = = = =                                                                       (35) 

 
0.75 1.52

,
c k
æ y
µε

∆
=                                                                                                                               (36) 

 

for 0.5 :z h=  
 

,uu
uP u w
z

∂′ ′= −
∂

     0,vv ww uv uw vwP P P P P= = = = =                                                                       (37) 
 

0.75 1.52
.

c k
æ z
µε

∆
=                                                                                                                                (38) 

 

The boundary conditions for the particulate phase are set at the wall as follows: 
 

for 0.5 :y h=  ,s
s

u u
y

λ∂
= −

∂
    ,s

s
w w
y

λ∂
= −

∂
    ,sD

y
α α∂ =

∂
    0,sv =                                                      (39) 

 

for 0.5 :z h=  ,s
s

u u
z

λ∂
= −

∂
    ,s

s
v v
z

λ∂
= −

∂
    ,sD

z
α α∂ =

∂
    0.sw =                                                       (40) 

 

At the exit of the channel the following boundary conditions are set: 
 

2 2 2

0.s s su v wu v w u v w u v u w v w
x x x x x x x x x x x x x x

ε α′ ′ ′ ′ ′ ′ ′ ′ ′ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = = = = = = = = = = = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

    (41) 
 

Additionally, the initial boundary conditions are set for three specific cases: 
1.  the low level of the initial intensity of turbulence that usually occurs at the axis of the channel turbulent 
     flow; 
2.  the high level of the initial turbulence generated by two different grids: 

a) small grid of the mesh size 4.8 mm;M =  
b) large grid with the mesh size of 10 mm.M =  

 
Numerical  method 
 
The control volume method was applied to solve the 3D partial differential equations written for the 
unladen flow (Eqs (1)–(11)) and the particulate phase (Eqs (26)–(29)), respectively, with taking the 
boundary conditions (Eqs (30)–(41)) into account. The governing equations were solved using the implicit 
lower and upper (ILU) matrix decomposition method with the flux-blending differed-correction and 
upwind-differencing schemes by Perić and Scheuerer (1989). This method is utilized for the calculation of 
particulate turbulent flows in channels of rectangular and square cross sections. The calculations were 
performed in the dimensional form for all the flow conditions. The number of the control volumes was 
1 120 000. 
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RESULTS  AND  DISCUSSION 
 
The presented RSTM model has been verified and validated by comparison of the numerical results with 
the experimental data obtained by Hussainov et al. (2005) for the grid-generated turbulent downward 
vertical channel flow of the 200-mm square cross section loaded with 700-µm glass beads of the physical 
density 32500 kg/m .pρ =  The mean flow velocity U  was 9.5 m/s, the flow mass loading *m  was 
0.14 kg dust/kg air. The grids of the square mesh size 4.8M =  and 10 mm were used for generating the 
initial turbulence length scale of the flow. 

The validity criterion is based on the satisfactory agreement of the axial turbulence decay curves 
occurring behind different grids in the unladen and particle-laden flows obtained by the given RSTM 
model and by the experiments of Hussainov et al. (2005). Figure 2 demonstrates such agreement for the 
grid 4.8M =  mm. 

Figure 3 shows the decay curves calculated by the presented RSTM model for the grids 4.8M =  and 
10 mm. As follows from Figs 2 and 3, the pronounced turbulence enhancement by particles is observed 
for both grids. The character of the turbulence attenuation occurring along the flow axis agrees with the 
behaviour of the decay curves in the grid-generated turbulent flows described by Hinze (1975). 

Figures 4–9 show the cross section modifications of three components of the Reynolds stress, ,u∆  ,v∆  
and ,w∆  caused by 700-µm glass beads, calculated by the presented RSTM model at two locations of the 
initial period of the grid-generated turbulence decay 46x M =  and 93 as well as beyond it for 

200.x M ≈  Here 
 

2 2
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2
0

%,u
u u

u
∆

′ ′−
=

′
 

2 2
0

2
0

%,v
v v

v
∆

′ ′−
=

′
 

2 2
0

2
0

%.w
w w

w
∆

′ ′−
=

′
                                     (42) 

 

One can see that the turbulence enhancement occupies over 75% of the half-width of the channel, and it 
takes place at the initial period of the turbulence decay of the particle-laden flow as compared to the 
unladen flow. The distributions of ,u∆  ,v∆  and w∆  are uniform, which corresponds to the initial grid-
generated homogeneous isotropic turbulence that decays downstream (see Figs 2 and 3). The distributions 
of modification of ,u∆  ,v∆  and w∆  remain uniform downstream. At the same time, the cross section 
extent of the uniformity of distributions of components of the Reynolds stress and the effect of particles on 
turbulence decrease, since the turbulence level decreases downstream (cf. data presented for 46x M =  
and 93 in Figs 4–9). 

The distributions of modification of ,u∆  ,v∆  and w∆  that have taken place beyond the initial period of 
turbulence decay (location 200x M ≈  in Figs 4–9) are typical of the channel turbulent particulate flow. 
One can see that in this case turbulence enhancement becomes slower, since here the turbulence level is  
 

 

                 
 

Fig. 2. Axial turbulence decay behind the grid 
4.8M =  mm: 1 and 3 are the data by Hussainov et al. 

(2005) got for the unladen and particle-laden flows, 
respectively; 2 and 4 are the numerical data obtained for 
the same conditions. 

Fig. 3. The calculated axial turbulence decay behind the 
grids: 1 and 2 are the data got for the unladen and particle-
laden flows, respectively, at 4.8M =  mm; 3 and 4 are the 
data obtained for the same conditions at 10M =  mm. 
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Fig. 4. Effect of particles on the modification of the  
x-normal component of the Reynolds stress: 

4.8M =  mm, 0.z =  

 

Fig. 5. Effect of particles on the modification of the  
y-normal component of the Reynolds stress: 

4.8M =  mm, 0.z =  
 

 

 
 

Fig. 6. Effect of particles on the modification of the  
z-normal component of the Reynolds stress: 

4.8M =  mm, 0.z =  

Fig. 7. Effect of particles on the modification of the  
x-normal component of the Reynolds stress: 

10M =  mm, 0.z =  
 

 

 
 

Fig. 8. Effect of particles on the modification of the y-
normal component of the Reynolds stress: 10M =  mm, 

0.z =  

Fig. 9. Effect of particles on the modification of the z-
normal component of the Reynolds stress: 10M =  mm, 

0.z =  
 

 

substantially smaller than at the initial period of decay, i.e. for 100x M <  (see Figs 2 and 3). This means 
that the grid-generated turbulence of the particulate flow decays downstream, causing a decrease in the 
rate of turbulence enhancement due to the particles occurring beyond the initial period of turbulence 
decay. As a result, the turbulence is attenuated, which is expressed in terms of decrease in u∆  towards the 
pipe wall (see Fig. 7). Such a tendency has been shown qualitatively by Kartushinsky et al. (2009b). 

The defined increase in ,u∆  ,v∆  and w∆  that is observed towards the wall (Figs 4–9) arises from the 
growth of the slip velocity (see curves 1, 2, and 3 in Fig. 10). The decrease in ,u∆  ,v∆  and w∆  in the 
immediate vicinity of the wall is caused by the decrease in the length scale of the energy-containing 
vortices and thus by the increase in the dissipation of the turbulence kinetic energy. 
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Fig. 10. The cross section distributions of the axial gas 
and particles velocities and particles mass concentration 
for the grid 4.8M =  mm: 1, u U  for 46;x M =  
2, ,u U  3, ,su U  and 4, mα α  for 200.x M ≈  Here 

mα  is the value of the mass concentration occurring at 
the flow axis. 

Fig. 11. Effect of particles on the modification of the 
turbulence kinetic energy: 1, 4.8M =  mm, 46;x M =  
2, 4.8M =  mm, 93;x M =  3, M =  10 mm, 

46;x M =  4, 10M =  mm, 93.x M =  

 
 

The analysis of Fig. 11 shows that the increase in the grid mesh size results in a weaker contribution of 
particles to turbulence enhancement and dissipation of the kinetic energy taking place over the cross 
section for the initial period of turbulence decay. This can be explained by a higher rate of particle 
involvement into the turbulent motion due to the longer residence time that comes from the larger size of 
the eddies. 
 
 
CONCLUSIONS 
 
The 3D Reynolds stress turbulence model (RSTM) based on the 3D RANS numerical approach has been 
elaborated for the grid-generated turbulence in the particulate downward channel flow domain. 

The influence of the particulate phase on turbulence modification, namely the modification of three 
normal components of the Reynolds stress that occurred in the axial direction and in the flow cross 
section, was examined for two different values of the length scale of the initial turbulence, which was set 
by the mesh size of the turbulence generating grid. 

The obtained numerical results allow us to draw the following conclusions: 
1. The presence of the considered solid particles at the initial period of turbulence decay results in a 

pronounced turbulence enhancement for both turbulence generating grids. 
2. The character of modification of the normal components of the Reynolds stress which has taken place 

at the initial period of turbulence decay is uniform almost all over the channel cross section. As the 
turbulence level diminishes downstream, the extent of this uniformity (plateau width) and the effect of 
particles on turbulence decrease. 

3. The rate of turbulence enhancement beyond the initial period of turbulence decay reduces. The 
character of turbulence modification changes from initially uniform distributions of the normal 
components of the Reynolds stress to those inherent in the turbulent channel flow. 

4. The increase in the grid mesh size slows down the rate of turbulence enhancement caused by particles. 
The model presented considers both the enhancement and attenuation of turbulence by means of the 

additional terms of the transport equations of the normal Reynolds stress components. It allows us to make 
calculations covering the long distance of the channel length without using algebraic assumptions for 
various components of the Reynolds stress. 

With applying a minimum number of assumptions and empiricism, the model represents a more 
contemporary computational approach in a turbulent particulate flow. It is also simpler and uses the state-
of-the-art modelling and computational techniques and is more accurate because no approximations are 
employed. 
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Dispersse  (õhktahked  osakesed)  vooluse  võreturbulentsi  arvmodelleerimine  
kolmemõõtmelise  Reynoldsi  pingete  mudeliga 

 
Alexander Kartushinsky, Ylo Rudi, David Stock, Medhat Hussainov, Igor Shcheglov,  

Sergei Tisler ja Alexander Shablinsky 
 

Kasutatud kolmemõõtmeline Reynoldsi pingete mudel baseerub keskmistatud kolmemõõtmelistel Navieri-
Stokesi võrranditel ja seda rakendatakse õhktahkete osakeste ülalt alla suunatud vooluse võreturbulentsi 
analüüsil ristkülikukujulises kanalis. Mudel võimaldab kirjeldada nii turbulentsi intensiivistumist kui ka 
sumbumist, kasutades täiendavaid liikmeid Reynoldsi pingete normaalkomponentide ülekandevõrrandites. 
Mudel on kasutatav kanali pikal osal, ilma et oleks vaja rakendada algebralisi mööndusi erinevatele 
Reynoldsi pingete komponentidele. Saadud tulemused kinnitavad tahkete osakeste ja turbuleeriva võre 
mõõtmete mõju turbulentsi muutumise iseloomule. Seejuures kutsub tahkete osakeste olemasolu vooluses 
esile selgesti väljendunud turbulentsi intensiivistumise võreturbulentsi hääbumise algstaadiumis ja turbu-
lentsi olulise nõrgenemise allavoolu iseloomulikus turbulentse kanalvooluse tsoonis. Nagu tulemustest 
nähtub, on kõigi kolme Reynoldsi pinge normaalkomponendi muutumise iseloom võreturbulentsi hääbu-
mise algosas samalaadne peaaegu kogu kanali ristlõikel. Turbuleeriva võre silma suurendamine vähendab 
osakeste poolt turbulentsi intensiivistumise tempot. 
 
 
 
 


