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Abstract. Random wave transformation in the basin of decreasing depth is studied for the case of a quartic bottom profile. The 
advantage of this bottom profile is that waves can propagate along it without inner reflection even if the bottom slope is not small. 
Wave transformation is studied analytically in the framework of shallow-water theory. Its rigorous solution is obtained in the class 
of random functions. The correlation function and its spectrum (energetic wave spectrum) are calculated. The behaviour of wave 
spectrum transformation in a basin of decreasing depth is studied in detail. It is demonstrated that the spectrum becomes upshifted 
while approaching the coast, with its high-frequency asymptotic ω 

–3. 
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1. INTRODUCTION 
* 
It is known that a decrease in water depth leads to wave 
amplification and increase in wave amplitude. Usually, 
these processes are studied numerically taking into 
account a real bathymetry of the basin, wave refraction, 
wave diffraction, nonlinearity, and breaking processes. 
The possibility of using the analytical approach is very 
limited. However, even very specific analytical solu-
tions are profitable, since they can be used as bench-
marks for tests of numerical codes. Analytical methods 
and some solutions can be found in many works 
(LeBlond and Mysak, 1978; Mei, 1983; Massel, 1989; 
Dingemans, 1996; Pelinovsky, 1996; Mei et al., 2005). 
These methods have been used for benchmarks of long 
wave runup on a beach with an application to tsunami 
                                                                 
*  Corresponding author, ira@cs.ioc.ee 

(Liu et al., 2008). A special class of analytical solutions 
concerns so-called “nonreflecting” bottom configura-
tions, when the wave propagates over large distances 
without inner reflection from the bottom slope 
(Clements and Rogers, 1975; Bluman and Kumei, 1987; 
Tinti et al., 2001; Choi et al., 2008; Didenkulova et al., 
2008; Didenkulova and Pelinovsky, 2009, 2011; 
Grimshaw et al., 2010). Similar effects have also been 
recorded in acoustics (Ibragimov and Rudenko, 2004) 
and in atmosphere and solar physics (Petrukhin et al., 
2011, 2012; Cally, 2012). The main advantage of these 
bottom configurations is that the solution of the Cauchy 
problem is significantly simplified and can be found 
explicitly without using any integral transformations 
like Fourier transformation. Such solutions can be very 
convenient for analytical analysis of wave propagation 
in the coastal zone. 
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In this paper we study wave transformation along 
one of these nonreflecting configurations, a quartic 
bottom profile 4( ~ )h x  (Didenkulova and Pelinovsky, 
2010). 

 
 

2. TRAVELLING  WAVE  SOLUTION 
 

The basic equations for long water waves of small 
amplitude in a basin of variable depth are 

 

[ ( ) ] 0,h x u
t x
η∂ ∂+ =

∂ ∂
     0,u g

t x
η∂ ∂+ =

∂ ∂
          (1) 

 

where η  is the water displacement, u  is the depth-
averaged water flow velocity, ( )h x  is an unperturbed 
water depth, g  is gravity acceleration, t  is time, and x  
is the coordinate, which is directed offshore in the 
problem considered. Formally, shallow-water equations 
are derived from the Euler equation with the use of 
small parameter depth/wavelength, which lead to hydro-
static approximation, and should not be applied to steep 
bottom profiles. However, it was shown by Dingemans 
(1996), Massel (1996), and Mei et al. (2005) that 
shallow-water equations work well for the description 
of the wave field even in these cases. 

It is convenient to reduce this system to two 
variable-coefficient wave equations for the water 
displacement η  and flow velocity u  

 
2
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Equations (2) and (3) are equivalent, but not inter-
changeable. In fact, the substitution w xη= ∂ ∂  allows 
transformation of Eq. (2) into Eq. (3), but the function 

( , )w x t  describes wave steepness and not water flow, 
which indeed can be determined by integration of 

( , )w x t  over time; see the second equation in Eqs (1). 
This is why both Eqs (2) and (3) can be used inde-
pendently for finding rigorous solutions of Eqs (1). For 
instance, it has been shown that Eq. (2) has a travelling 
wave solution along the following bottom profile 
(Clements and Rogers, 1975; Didenkulova et al., 2009): 
 

4 3

0( ) ,xh x h
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                       (4) 
 

while Eq. (3) also has a travelling wave solution, but 
along another bottom profile (Didenkulova and Peli-
novsky, 2010): 
 

4

0( ) .xh x h
L
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                          (5) 

Here 0h L  characterizes the bottom slope which does 
not need to be small. 

Below we study wave transformation above a 
quartic bottom profile (5). The solution describing the 
travelling wave propagating onshore has the following 
form: 
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where 0 0 ,T L gh=  0h  is the water depth at some 
reference point, L  is the distance from this point to the 
shore. The function ( )F t  has an evident physical 
meaning; it describes the water displacement far 
offshore, for example, measurements by buoy in the 
open sea. We point out that the arbitrary function ( )F t  
is differentiated in order to have the water flow 
bounded, otherwise the wave breaks on. Some examples 
of regular wave transformation above a quartic bottom 
profile are given in Didenkulova and Pelinovsky (2010). 
Here we consider a random wave field, which usually 
reflects wind wave properties. 

 
 

3. SPECTRUM  OF  RANDOM  WAVES  IN  THE  
    COASTAL  ZONE 

 
In strict sense, in the framework of the mathematical 
theory of random processes, Eqs (6), (7) cannot be used 
for the description of a random wave field since random 
functions are not differentiated or integrated explicitly. 
That is why below we use another standard physical 
approach, where the random wave field is represented 
by a superposition of spectral components with 
deterministic amplitudes iA  and random phases iϕ  
(Massel, 1996) 
 

1
( ) cos( ).

N

i i i
i

t A tη ω ϕ
=

= +∑                   (8) 
 

Then all statistical characteristics can be found as 
ensemble average. Usually, phases iϕ  are assumed to be 
uniformly distributed in the interval [0, 2 ].π  Spectral 
amplitudes are determined by the energetic frequency 
spectrum of wind waves ( )S ω  

 

( ) ,i i iA S ω ω= ∆                            (9) 
 

where iω∆  are intervals of spectrum discretization, 
which do not need to be equidistant. The number of 
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harmonics in Eq. (8) should be large enough in order to 
“cover” the energetic spectrum in a wide range. 

It is known that the rigorous definition of an 
energetic spectrum is a Fourier spectrum of an auto-
correlation function (Rytov et al., 1989; Gurbatov et al., 
1991). Using Eq. (6), the autocorrelation function can 
be calculated as follows: 
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where <> is the ensemble averaging. We assume that 
the random wave process in the open sea is stationary, 
whose autocorrelation function is a function of time 
difference ξ  only: 

 

1 1( ) ( ) ( ) .K F t F tξ τ ζ τ=< + + + >            (11) 
 

It can be shown (see, for example, Rytov et al., 1989; 
Gurbatov et al., 1991) that for a stationary process 
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Hence, Eq. (10) is simplified to 
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It follows from Eq. (13) that the random process is 
stationary at any point in space, but the magnitude of 
the autocorrelation function depends on coordinate 
through the local depth ( ).h x  The autocorrelation func-
tion is a deterministic function of a single parameter. 
Therefore, using a Fourier transformation, which is well 
determined, the required formula for the energetic 
spectrum in the coastal zone can be derived: 
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Equation (14) is valid for any approximation of a wave 
spectrum in the open sea ( ).S ω  In the next section we 
apply it to the case of the Pierson–Moskowitz spectrum 
(Massel, 1996). 
 
 

4. SPECTRUM  EVOLUTION  ABOVE  A  
    QUARTIC  BOTTOM  PROFILE 

 
Several approximations of the wind wave spectrum can 
be found, for instance, in Massel (1996). Here we use 
the Pierson–Moskowitz spectrum 

 
42
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where W  is the wind speed that is assumed constant. 
This approximation is used for a fully developed wind 
wave field in open sea. 

For a detailed description of the wind wave 
spectrum in the coastal zone it is convenient to 
introduce dimensionless variables 
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1 4
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Hence, we can find a dimensionless wave spectrum 
from Eq. (15) 

 
2 2

5 4

1 0.74( , ) exp .TE h + Ω  Ω = − Ω Ω 
          (17) 

 

As the dimensionless spectrum is determined by a single 
parameter T  only, its asymptotics are easy to analyse. 
In the low-frequency range, the spectrum does not 
depend on the water depth and coincides with the 
Pierson–Moskowitz spectrum 

 

5 4

1 0.74( 0, ) exp ,E h  Ω → = − Ω Ω 
            (18) 

 

and for high frequencies its asymptotic follows: 
 

2
3

1( , ) ( ) .E h T hΩ → ∞ =
Ω

                 (19) 

 

So, spectral amplitudes of short waves in the coastal 
zone increase proportionally to 1 2h−  with their high-
frequency asymptotic 3 ,ω −  which coincides with the 
saturated tail of frequency spectra in shallow water 
proposed by Thornton (1977). 

This difference between spectrum transformation in 
low and high frequencies can be explained by the 
characteristic distance in terms of wavelengths, which 
waves require in order to change their properties. This 
implies that long waves almost do not change and short 
waves are amplified significantly at the same absolute 
distance.  
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The shape of the spectrum (17) is plotted in Fig. 1 
for different values of ,T  which depend on the water 
depth. 

The spectrum becomes wider and slightly shifts to 
higher frequencies with an increase in ,T  which corres-
ponds to a decrease in water depth. The amplitude of the 
spectral peak also grows with an increase in .T  The 
frequency of the spectrum maximum, 0 ,Ω  changes 
from 0.877 to 0.997 depending on T  as shown in 
Fig. 2. 

The standard deviation of the spectrum (17) can be 
found from 

 
2 2

2
5 4

0

1 0.74( ) exp ,TT dσ
∞ + Ω  = Ω − Ω Ω ∫           (20) 

 

and demonstrated in Fig. 3. For small values of T  (deep 
water) σ  remains essentially constant while in more 
shallow regions (large values of T) 1 4~ ~ .T hσ −  

It is important that the value of 2σ  defines the 
significant wave height for wind waves in oceanography 
(average of 1/3 of the highest waves) and the value of 
4σ  determines the threshold for identification of rogue 
or freak waves. All waves, whose height is larger than 
4 ,σ  are rogue (Slunyaev et al., 2011). Such waves 
occasionally appear at the sea surface, leading to human 
losses, ship accidents, and damage to offshore and 
coastal structures (Nikolkina and Didenkulova, 2011, 
2012). It has recently been shown that rogue waves  
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Fig. 1. The spectrum of Eq. (17) for T = 0 (solid line), T = 1 
(dotted line), and T = 2 (dashed line). 
 
 

 
 

Fig. 2. Frequency of the spectrum maximum as a function of T. 

 
 

Fig. 3. Standard deviation as a function of T. 
 
 

appear more frequently in coastal areas (Nikolkina and 
Didenkulova, 2011; Slunyaev et al., 2011). The same 
rogue wave philosophy is also used in optics, acoustics, 
gas dynamics, solar physics, etc. (Akhmediev and 
Pelinovsky, 2010). 

It should be noted that, due to the shoaling effect, 
the wave amplitude increases significantly in the near-
shore zone and, therefore, the linear theory approxima-
tion no longer works. In shallow water, applicability of 
the linear theory is judged by the ratio of wave 
amplitude over depth, which should be small, while in 
deep water the role of such a small parameter is repre-
sented by wave steepness. Nonlinear effects at the non-
reflecting beach profile have been recently studied by 
Didenkulova and Pelinovsky (2012). 

 
 

5. CONCLUSION 
 

The transformation of irregular waves in the basin of 
decreasing depth is studied analytically in the frame-
work of shallow-water theory for the case of a quartic 
bottom profile. Such a profile allows wave propagation 
over large distances without inner reflection from the 
bottom even if the bottom slope is not small. 

The correlation function and its spectrum (energetic 
wave spectrum) are calculated. The transformation of 
the wave spectrum along a quartic bottom profile is 
studied by the example of the Pierson–Moskowitz 
spectrum. It is shown that at the low-frequency range, 
the spectrum does not depend on the water depth and 
coincides with the Pierson–Moskowitz spectrum, while 
at the high-frequency range, its spectral amplitudes 
increase proportionally to 1 2h−  and a spectrum 
asymptotic follows 3 ,ω −  which coincides with an 
asymptotic of the shallow-water frequency spectra 
proposed by Thornton (1977). So, the spectrum in the 
coastal zone transforms differently in low- and high-
frequency ranges. A simple explanation for this is that 
waves experience changes at the characteristic length 
depending on the wavelength. Therefore, long waves 
may almost not change and short waves may be 
amplified significantly at the same absolute distance.  

E
 

T 

σ 
 

T 
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The standard deviation of the spectrum, which is 
related to the value of the significant wave height in 
oceanography, is also calculated. It is shown that in 
deep water it is almost constant and changes in-
significantly, while in shallower regions it is propor-
tional to 1 4 .h−  
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Juhusliku  lainevälja  spektri  teisenemine  neljandat  järku  rannaprofiilil 
 

Ira Didenkulova ja Efim Pelinovsky 
 

Analüütiliste meetoditega ja madala vee teooria raames on analüüsitud ühemõõtmelises juhuslikus laineväljas 
toimuvaid protsesse olukorras, kus lained levivad otse ranna poole mööda rannaprofiili, kus vee sügavus 4~h x  
muutub võrdeliselt kaugusega rannast neljandas astmes. Sellistel profiilidel levivate lainete puhul ei toimu 
peegeldumist isegi suhteliselt suure põhjakalde puhul. On leitud ülesande täpne lahend juhuslike funktsioonide 
klassis algselt Piersoni-Moskowitzi spektriga lainesüsteemi jaoks. On näidatud, et lainete levimisel mööda sellist 
profiili energiaspekter teiseneb, lühemad lained võimenduvad ja spektri lühilaineline osa läheneb funktsioonile 3 ,ω−  
kus ω  on lainete ringsagedus. 
 

 


