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Mehmet Gürdal∗ and Filiz Şöhret
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Abstract. We investigate extended eigenvalues, extended eigenvectors, and cyclicity problems for some convolution operators. By
using the Duhamel product technique, we also estimate the norm of the inner derivation operator ∆A.
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1. INTRODUCTION AND BACKGROUND

Let B (E) be an algebra of all continuous linear operators acting on the topological vector space E. The
operator equation

AX = XB (1)

naturally arises in numerous issues of spectral theory of operators, representation theory, stability theory
(Lyapunov’s equation), etc. For example, if the set of solutions of Eq. (1) contains a boundedly invertible
operator X0, then A and B are similar, B = X−1

0 AX0, and hence have many common spectral properties. In
general case, it is of interest to describe the set of all solutions of Eq. (1).

If B = λA, λ ∈C, then following [1], one refers to λ as an extended eigenvalue of A, and each bounded
solution X of the equation

AX = λXA,

i.e., Eq. (1) with B = λA, is called an extended eigenvector of A.
In this paper we investigate the so-called extended eigenvalues and extended eigenvectors and cyclicity

problems for some convolution operators acting on the space of analytic functions defined on the starlike
domain D of the complex plane. Our investigation is motivated by the results of Nagnibida’s paper [11]. By
using the Duhamel product method (see [13]), we also give a lower estimate for the inner derivation operator
∆A defined in the Banach algebra B

(
C(n)

A (D)
)

by ∆A (X) := AX−XA.

The integration operator V on Lp [0,1] (1≤ p < ∞) is defined by V f (x) =
∫ x

0 f (t)dt. The set of
intertwining operators for the pair

{
V β ,λV β }

with β > 0 and λ ∈ C was studied by Malamud in [3,9,10].
Namely, he showed that there exists a nonzero intertwining operator for the pair

{
V β ,λV β }

only if λ > 0.

Furthermore, the paper [10] provides a description of the set
{

V β }′
λ of all intertwining operators for the pair
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{
V β ,λV β }

for λ > 0. For β = 1, the latter result was reproved by another method by Biswas, Lambert, and
Petrovic [1], and Karaev [6]. For more details, see [1,2,4,5,9,10].

Let α be a fixed complex number, let D be a simply connected region in the complex plane C that is
starlike with respect to the point z = α (i.e., λ z+(1−λ )α ∈D), and let A (D) be the space of all single-
valued and analytic functions in D that have a topology of uniform convergence on compact subsets. It is
well known that A (D) is a Frechet space. By Jα we shall denote the integration operator in the space
A(D) defined by the formula

(Jα f )(z) =
∫ z

α
f (t)dt (∀ f ∈A (D)) ,

where the integration is performed over straight-line segments connecting the points α and z (z ∈A (D)).
Recall that for f ,g ∈ A(D) their α-Duhamel product is defined by

(
f ~

α
g
)

(z) =
d
dz

z∫

α

f (z+α− t)g(t)dt

=
z∫

α

f ′ (z+α− t)g(t)dt + f (α)g(z) , (2)

where the integrals are taken over the segment joining the points α and z (z ∈ A(D)) . It is easy to see that the
α-Duhamel product satisfies all the axioms of multiplication, A(D) is an algebra with respect to ~

α
as well,

and the function f (z)≡ 1 is the unit element of the algebra
(

A(D) ,~
α

)
. The operator D f , Dα

f g := f ~
α

g,

is called the α-Duhamel operator on A(D) .

2. EXTENDED EIGENVALUES AND EXTENDED EIGENVECTORS FOR SOME
CONVOLUTION OPERATORS

Let D ⊂ C be a starlike region with respect to the origin. For any fixed nonzero function f ∈ A (D) , let
K f be the usual convolution operator acting on the space A (D) by the formula

(K f g)(z) = ( f ∗g)(z) :=
∫ z

0
f (z− t)g(t)dt.

It follows from the classical Titchmarsh convolution theorem and uniqueness theorem for analytic functions
that ker(K f ) = {0} . This means that 0 is not an extended eigenvalue of the operator K f , and therefore
ext(K f )⊂ C\{0} (here ext(K f ) denotes the set of all extended eigenvalues of the operator K f ).

The integration operator J on A (D) is defined by J f (z) =
∫ z

0 f (t)dt. Let f ~k denote the ~-product
(which is clearly ~

0
, that is the usual Duhamel product) of f with itself k times for k ≥ 0, i.e., f ~k :=

f~...~︸ ︷︷ ︸
k

f , where f ~0 (z) ≡ 1. If f is a function in A (D) such that
{
(J f )~n}

n≥0 is a complete system in

A (D) , we will denote by Λ f the set of all λ ∈ C\{0} for which the diagonal operator

D{λ} (J f )~n = λ n (J f )~n , n≥ 0,

is continuous in A (D) .
The following theorem gives necessary and sufficient conditions under which the set Λ f lies in the

set ext(K f ) . Our result is apparently the first result in the “extended theory” for more general convolution
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operators, which is an extension of Karaev’s result [7, Theorem 2, (ii)]. The related results for the integration
operator are considered in [4,7].

Theorem 1. Let f ∈A (D) be a nonzero function. Suppose that the system
{
(J f )~n}

n≥0 is complete in
A (D) . Let A ∈B (A (D)) be a nonzero operator and λ ∈ Λ f be any number. Then

AK f = λK f A

if and only if there exists ϕ ∈A (D) such that A = DϕD{λ}.

Proof. By using the usual Duhamel product ~, which is defined by

( f1 ~ f2)(z) :=
d
dz

∫ z

0
f1 (z− t) f2 (t)dt,

we have that any function f1 ∈A (D) defines the continuous operator (Duhamel operator) D f1 f2 := f1~ f2,
f2 ∈A (D) . Then we have

K f g = J D f g = z~ ( f ~g)

= (z~ f )~g = Dz~ f g = DJ f g

for all g ∈A (D) . Thus K f = A (D)J f .

Now, let λ ∈ Λ f be any number, and suppose that

λK f A = AK f .

Then, obviously
λ nK n

f Ag = AK n
f g

for all g ∈A (D) and n≥ 0. In particular, putting g = 1 in the last equality, we have

AK n
f 1 = λ nK n

f A1

for all n≥ 0. Since K f = DJ f , clearly we have

K n
f 1 = Dn

J f 1 = (J f )~n ~1 = (J f )~n

for all n≥ 0. This shows that

A(J f )~n = λ n (
(J f )~n ~A1

)

= λ n (J f )~n ~A1 = DA1
(
λ n (J f )~n)

= DA1D{λ} (J f )~n

for all n ≥ 0. Since
{
(J f )~n}

n≥0 is a complete system of the space A (D) and D{λ} is a continuous
operator on A (D) , it follows from the last equalities that

Ag = DA1D{λ}g

for all g ∈A (D) , which means that A = DϕD{λ}, where ϕ = A1 ∈A (D) , as desired.
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Conversely, let us show that if A has the form A = DϕD{λ}, where ϕ ∈A (D) , it satisfies the equation
AK f = λK f A. In fact, by considering the formula AK f = DJ f , and commutativity of the product ~, we
obtain

λK f A(J f )~n = λK f DϕD{λ} (J f )~n

= λDJ f Dϕ
(
λ n (J f )~n) = λDϕDJ f

(
λ n (J f )~n)

= λDϕ
(
J f ~λ n (J f )~n) = Dϕλ n+1 (

J f ~ (J f )~n)

= Dϕλ n+1 (J f )~n+1 = DϕD{λ} (J f )~n+1

= A
(
J f ~ (J f )~n) = ADJ f (J f )~n

= AK f (J f )~n

for all n ≥ 0. By considering completeness of the system
{
(J f )~n}

n≥0 in A (D) , from the last
equalities we deduce that AK f = λK f A. The theorem is proved. ¤

3. CYCLIC VECTORS OF CONVOLUTION OPERATOR K f ,α

Let D be a starlike region in the complex plane C with respect to z = α. Our next result describes all cyclic
vectors of some convolution operators of the form

(K f ,αg)(z) :=
∫ z

α
f (z+α− t)g(t)dt.

Theorem 2. Let f ∈ A (D) , and assume that
{

(Jα f )
~
α

n}
n≥0

is a complete system in A (D) . If

g ∈A (D) , then g is a cyclic vector for the convolution operator K f ,α if and only if g(α) 6= 0.

Proof. It follows from the definition of α-Duhamel product ~
α

that

K f ,αh = JαD f ,αh = (z−α)~
α

(
f ~

α
h
)

=
(

(z−α)~
α

f
)

~
α

h = D(z−α)~
α

f h = DJα f h

for all h ∈ A (D) , which means that K f ,α = DJα f . Then according to the condition of the theorem, we
obtain that

Eg = span
{
K n

f ,αg : n≥ 0
}

= span
{(

DJα f
)n g : n≥ 0

}

= span
{

(Jα f )
~
α

n ~
α

g : n≥ 0
}

= span
{
Dg,α (Jα f )

~
α

n
: n≥ 0

}

= closDg,αspan
{
(Jα f )

~
α

k
: k ≥ 0

}
= closDg,αA (D) ,

so
Eg = closDg,αA (D) .

Now, if g(α) 6= 0, then by virtue of Nagnibida’s result operator Dg,α is invertible in A (D) , which
implies that

DgA (D) = A (D) .

Hence Eg = A (D) , which shows that g is a cyclic vector for the convolution operator K f ,α .
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Conversely, suppose that g ∈ A (D) is a cyclic vector for the operator K f ,α , that is Eg = A (D) . If
g(α) 6= 0, it is easy to see from the equality Eg = closDg,αA (D) that Eg ⊂{h ∈A (D) : h(α) = 0} , which
is impossible because Eg = A (D) . Consequently, g(α) 6= 0, which proves the theorem. ¤

Since {(z−α)n}n≥0 is a complete system in A (D) , the next corollary immediately follows from
Theorem 2.

Corollary 1. Let Jα be an integration operator defined on A (D) by (Jαg)(z) =
∫ z

α g(t)dt. Then

Cyc(Jα) = {g ∈A (D) : g(α) 6= 0} ,

where Cyc(Jα) denotes the set of all cyclic vectors of Jα .

For the related results see [6–8] and Tkachenko [12]; in [7] the analogous results are considered by
Karaev for the Banach space C(n)

A (D) .

4. ON THE NORM OF INNER DERIVATION OPERATOR

Let A be a fixed linear bounded operator acting on the Banach space C(n)
A (D) , which is the space of all

n-times continuously differentiable functions on D that are holomorphic on the unit disc D. In [7], Karaev
proved that C(n)

A (D) is an algebra with multiplication of the Duhamel product

( f ~g)(z) =
d
dz

z∫

0

f (z− t)g(t)dt. (3)

Thus, the Duhamel operator D f defined on C(n)
A (D) by D f g := f ~ g is bounded and

∥∥D f
∥∥ ≤ ‖ f‖ . On

the other hand, it is clear from (3) that f = f ~ 1, and therefore
∥∥D f

∥∥ = ‖ f‖ . In this section, by using
this formula we will estimate the norm of the inner derivation operator ∆A defined on the Banach algebra
B

(
C(n)

A (D)
)

by the formula
∆A (X) := AX−XA.

Obviously
‖∆A‖ ≤ 2‖A‖ . (4)

The following theorem gives some lower estimate for ‖∆A‖ in terms of A.

Theorem 3. Let A∈B
(

C(n)
A (D)

)
be a fixed operator. Suppose that for every X ∈B

(
C(n)

A (D)
)

there exists

a nonzero function f := fX ∈C(n)
A (D) such that

((AX−XA) f )(0) 6= 0.

Then there exists a constant CA > 0 such that

CA ≤ ‖∆A‖ ≤ 2‖A‖ .

Proof. According to (4), there remains only to prove the left inequality. Indeed, let us denote

(AX−XA) f (z) := g(z) . (5)

Clearly, g = gA,X . Since g(0) 6= 0, by the result of paper [8, Theorem 1], the Duhamel operator Dg is
invertible in C(n)

A (D) . Therefore, there exists a unique G ∈ C(n)
A (D) such that G ~ g = g ~ G = 1. Hence,

f ~G~g = f . Thus, it follows from (5) that
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DF (AX−XA) f = f , (6)

where F := f ~ G. Clearly, F = FA,X . The equality (6) shows that 1 ∈ σp (DF (AX−XA)) , that is, 1 is the
eigenvalue of the operator DF∆A (X) . Therefore,

1≤ r (DF (AX−XA))≤ ‖DF (AX−XA)‖
≤ ‖DF‖‖AX−XA‖= ‖F‖

C(n)
A (D)

‖∆A (X)‖
B

(
C(n)

A (D)
) ;

here r (.) denotes the spectral radius of the operator. Hence

1
‖F‖

C(n)
A (D)

≤ ‖∆A (X)‖ .

By taking supremum over the operators X with ‖X‖ ≤ 1, we have from this inequality that

sup
‖X‖≤1

1
‖FA,X‖C(n)

A (D)

≤ sup
‖X‖≤1

‖∆A (X)‖= ‖∆A‖ ,

that is
1

inf‖X‖≤1 ‖FA,X‖C(n)
A (D)

≤ ‖∆A‖ .

By denoting CA := 1
inf‖X‖≤1‖FA,X‖

C(n)
A (D)

> 0, we have the desired result. The theorem is proved. ¤
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Mõnedest operaatorvõrranditest analüütiliste funktsioonide ruumis

Mehmet Gürdal ja Filiz Şöhret

On uuritud teatavate konvolutsioonioperaatorite laiendatud omaväärtusi, laiendatud omavektoreid ja tsükli-
vektoreid ning nendega seonduvaid küsimusi.


