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Abstract. We establish a link between the sector-forms of White and the exterior forms of Cartan. We show that the Hamiltonian
system on T 2M reduces to Lagrange’s equations on the osculating bundle OscM. The structures T kM and Osck−1M are presented
explicitly.
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1. INTRODUCTION

Tangent and osculating bundles of smooth manifolds are of fundamental significance. While the osculating
bundles correspond to the usual differential calculus (local analysis), the tangent bundles form a basis for the
description of higher order motion. This is not a repetition of a differential operator (vector field) X ,X2, . . . ,
but an iterative process in which the flow of a vector field is exposed to transformation by the flow of another
vector field which is influenced by the flow of a third vector field, etc. It is shown that classical Lagrangian
mechanics is constructed completely on osculating bundles while the levels (higher order tangent bundles)
provide a setting for Hamiltonian mechanics.

2. TANGENT BUNDLES AND OSCULATORS

The tangent functor T iterated k times associates to a smooth manifold M its k-fold tangent bundle T kM (the
kth level of M) and associates to a smooth map ϕ : M1 → M2 the graded morphism T kϕ : T kM1 → T kM2,
the kth derivative of ϕ . The level T kM has a multiple vector bundle structure with k projections onto T k−1M

ρs
.= T k−sπs : T kM → T k−1M, s = 1,2, . . . ,k,

where πs is the natural projection T sM → T s−1M.
Local coordinates in neighbourhoods

T sU ⊂ T sM, s = 1,2, . . . ,k, where T s−1U = πs(T sU),

are determined automatically by those in the neighbourhood U ⊂M, the quantities (ui) being regarded either
as coordinate functions on U or as the coordinate components of the point u ∈U :
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U : (ui), i = 1,2, . . . , n = dimM,

TU : (ui,ui
1), with ui .= ui ◦π1, ui

1
.= dui,

T 2U : (ui,ui
1,u

i
2,u

i
12),

with ui .= ui ◦π1π2, ui
1

.= dui ◦π2, ui
2

.= d(ui ◦π1), ui
12

.= d(dui), etc.
We set up the following convention: to introduce coordinates on T kU we take the coordinates on T k−1U

and repeat them with an additional index k – so that a tangent vector is preceded by its point of origin.
This indexing is convenient since the symbols with index s thereby become coordinates in the fibre of the
projection ρs, s = 1,2, . . . ,k.

Thus, for example, under the projections ρs : T 3U → T 2U, s = 1,2,3, the coordinates with indices 1, 2,
and 3 are each suppressed in turn:

(ui ui
1 ui

2 ui
12 ui

3 ui
13 ui

23 ui
123)

ρ1 ↙ ρ2 ↓ ↘ ρ3

(ui ui
2 ui

3 ui
23) (ui ui

1 ui
3 ui

13) (ui ui
1 ui

2 ui
12).

The level T kM is a smooth manifold of dimension 2kn and admits an important subspace of dimension
(k + 1)n, called the osculating bundle of M of order k− 1 and denoted Osck−1M. The bundle Osck−1M is
determined by the equality of the projections

ρ1 = ρ2 = . . . = ρk ,

meaning that an element of T kM belongs to the bundle Osck−1M precisely when all its k projections into
T k−1M coincide. In this case all coordinates with the same number of lower indices coincide. For example,
the first bundle OscM is determined in T 2U ⊂ T 2M by the equations ui

1 = ui
2, the second bundle Osc2M in

T 3U ⊂ T 3M by ui
1 = ui

2 = ui
3, ui

12 = ui
13 = ui

23, etc. The coordinates in Osck−1M will be denoted by the
derivatives of the coordinate functions on U , that is to say (ui,dui,d2ui, . . . ,dkui).

The immersion ζ : OscM ↪→ T 2M and its derivative T ζ are determined in coordinates by matrix
formulae: 



ui

ui
1

ui
2

ui
12


◦ζ =




ui

dui

dui

d2ui


 ,




ui
3

ui
13

ui
23

ui
123


◦T ζ =




dui

d2ui

d2ui

d3ui


 ,

T ζ
( ∂

∂ui ,
∂

∂ (dui)
,

∂
∂ (d2ui)

)
=

( ∂
∂ui ,

∂
∂ui

1
+

∂
∂ui

2
,

∂
∂ui

12

)
.

The fibres of the bundle OscM are the integral manifolds of the distribution

〈∂ 1
i +∂ 2

i ,∂ 12
i 〉, with ∂ 1

i +∂ 2
i

.=
∂

∂ui
1
+

∂
∂ui

2
, ∂ 12

i
.=

∂
∂ui

12
.

The functions (ui
1−ui

2) vanish on OscM.
Historically, osculating bundles were introduced under various names long before the bundles T kM. The

systematic study was begun 60 years ago by Vagner [10] and culminated in recent times with the Miron–
Atanasiu theory [2]. Meanwhile the theme of levels T kM remained unjustly neglected for the obvious reason
that the multiple fibre bundle structure demands a whole new understanding and new approach: see [5,8].
Attempts such as [11] and the so-called synthetic formulation of T kM [3] made progress in that direction.

While an infinitesimal displacement of the point u ∈ M is determined by a tangent vector u1 to M, an
infinitesimal displacement of the element (u,u1)∈ T M is determined by the quantities (u2,u12), representing
a tangent vector to T M, etc. This interpretation of the elements of T kM allows us to develop the theory of
higher order motion. Clearly the future belongs to these bundles.
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White considers on the level T kM or on a k-multiple vector bundle certain sector-forms which are
functions simultaneously linear in all the fibres of k projections; see [11]. In particular, the sector-forms
on T 2U and T 3U can be written as

Φ = ϕi jui
1u j

2 +ϕiui
12 ,

Ψ = ψi jkui
1u j

2uk
3 +ψ1

i ju
i
1u j

23 +ψ2
i ju

i
2u j

13 +ψ3
i ju

i
3u j

12 +ψiui
123 ,

with coefficients in U . For example, in each term of Ψ we see the index 1 (or 2 or 3) appear exactly once.
This means that the function Ψ is linear on the fibres of ρ1 (and ρ2 and ρ3).

Any scalar function can be lifted from the level T k−1M to the level T kM by k different projections
ρs : T kM→ T k−1M. For example, for the sector-form Φ above there are three possibilities of lifting to T 3M:

Φ◦ρ1 = ϕi jui
2u j

3 +ϕiui
23 , Φ◦ρ2 = ϕi jui

1u j
3 +ϕiui

13 , Φ◦ρ3 = ϕi jui
1u j

2 +ϕiui
12 .

Proposition. Every exterior k-form can be regarded as a sector-form in the sense of White, a scalar function
on T kM that is constant on the fibres of Osck−1M.

Proof. The sector-form Φ is constant on OscM if and only if its derivatives vanish on OscM. Thus

Φ = ϕi jui
1u j

2 +ϕiui
12 ⇒ (∂ 1

i +∂ 2
i )Φ = ϕi ju

j
2 +ϕ jiu

j
1 = (ϕi j +ϕ ji)u

j
1−ϕi j(u

j
1−u j

2),

∂ 12
i Φ = ϕi ⇒ ϕ(i j) = 0, ϕi = 0 .

By definition Φ is an antisymmetric bilinear form and can therefore be expressed in the coordinates (ui,dui)
as a 2-form Φ = ϕ[i j ]dui ∧ du j. Thus the sector-form Φ is constant on OscM if and only if it is a Cartan
2-form.

In the case k = 3 the fibres Osc2M of dimension 3n are the integral manifolds of the distribution

〈∂ 1
i +∂ 2

i +∂ 3
i , ∂ 23

i +∂ 13
i +∂ 12

i , ∂ 123
i 〉.

For the sector-form Ψ (see above) we have

Ψ = ψi jkui
1u j

2uk
3 +ψ1

i ju
i
1u j

23 +ψ2
i ju

i
2u j

13 +ψ3
i ju

i
3u j

12 +ψiui
123 ⇒

(∂ 1
i +∂ 2

i +∂ 3
i )Ψ = ψi jku j

2uk
3 + ψ jiku j

1uk
3 +ψ jkiu

j
1uk

2 +ψ1
i ju

j
23 +ψ2

i ju
j
13 +ψ3

i ju
j
12 ,

(∂ 23
i +∂ 13

i +∂ 12
i )Ψ = ψ1

jiu
j
1 + ψ2

jiu
j
2 +ψ3

jiu
j
3 ,

∂ 123
i Ψ = ψi .

The derivatives vanish on the fibres Osc2M when the following conditions hold:

ϕ(i jk) = 0, ψ1
i j +ψ2

i j +ψ3
i j = 0, ψi = 0.

These conditions are necessary and sufficient for the sector-form Ψ to be constant on Osc2M, but not for Ψ
to be a Cartan 3-form. However, every 3-form Ψ̃ = ϕi jkdui∧du j ∧duk can be regarded as a homogeneous
sector-form that is constant on Osc2M.

The argument extends likewise to the cases k > 3. ¤

White’s theory of sector-forms is much more extensive than that of Cartan exterior forms. In particular,
exterior differentiation is an operation on the set of sector-forms that are constant on the osculating bundles.

There is, however, one inconvenience: sector-forms are represented in natural coordinates in terms
which are not invariant. To get rid of this one can use affine connexions and adapted coordinates. In T 2U ,
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for example, the ‘bad’ coordinates ui
12 can be replaced by adapted coordinates U i

12 = Γi
jku j

1uk
2 + ui

12 using
the coefficients Γi

jk of the affine connexion. The sector-form Φ is represented by two invariant terms:

Φ = (ϕi j−ϕkΓk
i j)u

i
1u j

2 +ϕiU i
12 .

In the parentheses we recognize the prototype of the covariant derivative. In fact, for the 1-form Θ = θiui
1

the ordinary differential can be written

dΘ = θi, jui
1u j

2 +θiui
12, θi, j =

∂θi

∂u j ,

or dΘ = ∇ jθiui
1u j

2 +θiU i
12 with the covariant derivative ∇ jθi = θi, j−θkΓk

i j.
The connections play an important role here. The local forms appear in the unified and intrinsic

structures

∆h⊕∆v on T M, ∆⊕∆1⊕∆2⊕∆12 on T 2M, etc.

The theory extends by iteration to the levels T kM: see [1,9].

3. HAMILTON, LAGRANGE, AND LEGENDRE

The essential importance of the levels T M and T 2M for analytical mechanics was first emphasized by
Godbillon [4].

Specifically, Hamiltonian geometry is built on the levels T M and T 2M. Associated to a function
H = H(u,u1) (called the Hamiltonian) is the vector field X on T M where

X = Σ
i
Hui

1
∂i−Σ

i
Hui∂ 1

i , Hi
.=

∂H
∂ui , Hui

1

.=
∂H
∂ui

1
,

for which the flow at = exp tX is determined by the system of differential equations (Hamiltonian system)
{

u̇i = Hui
1

u̇i
1 =−Hui

, u̇i .=
dui

dt
, u̇i

1
.=

dui
1

dt
.

Under the correspondence
(ui,ui

1,u
i
2,u

i
12) Ã (ui,ui

1, u̇
i, u̇i

1)

we see this as a section of the bundle π2 : T 2M → T M, of dimension 2n. The function H and the symplectic
form Ω = dui∧dui

1 [6] are invariant with respect to the vector field X :

XH = 0, LX Ω = 0.

Theorem. The Hamiltonian system reduces to Lagrange’s equations on the osculating bundle OscM.

Proof. The passage from the Hamiltonian H = H(u,u1) to the Lagrangian L = L(u,u2) ought to be realized
through the equation (Legendre transformation)1

H(u,u1)−Σ
i

ui
1ui

2 +L(u,u2) = 0.

1 See also [7, p. 3].
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However, this equation, which should hold identically on T 2M, is contradictory:

d(H−Σ
i

ui
1ui

2 +L)≡ 0 ⇒ Hui +Lui = 0, Hui
1
= ui

2, Lui
2
= ui

1.

On the other hand, on OscM where ui
1 = ui

2 = u̇, the passage H Ã L is well determined. On OscM the
Hamiltonian system can be written in Lagrangian form:

d
dt

( ∂L
∂ u̇i

)
− ∂L

∂ui = 0.

The Lagrangian system determines a section of the bundle OscM → T M, of the same dimension 2n as the
Hamiltonian system on T 2M. ¤

The Hamiltonian geometry on the levels T kM and the Lagrangian geometry on the osculating bundles
Osck−1M for k > 2 are structured according to an iterative scheme.
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Puutujastruktuurid ja analüütiline mehaanika

Maido Rahula

Puutujafunktor T seab siledale muutkonnale M vastavusse puutujakihtkonna T M ja siledale kujutusele
ϕ selle diferentsiaali T ϕ . Itereerides (korrates) funktorit T k-kordselt, ehitame muutkonnale M tema
k-nda korruse T kM ja kujutusele ϕ k-nda diferentsiaali T kϕ . Tõustes korruselt korrusele, dimensioon
iga kord kahekordistub, st dimT kM = 2k dimM, kus k = 1,2, . . . . Laskudes aga korruselt T kM eelmisele
korrusele T k−1M, on selleks k erinevat võimalust (projektsiooni) ρs

.= T k−sπs,s = 1,2, . . . ,k (k.a loomulik
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projektsioon ρk = πk). Korruse T kM elemendid, mille kõik projektsioonid korrusel T k−1M langevad kokku,
moodustavad alamkihtkonna – muutkonna M nn kooldumiskihtkonna Osck−1M.

Muutkonna puutuja- ja kooldumiskihtkondadel on fundamentaalne tähendus. Kui kooldumiskihtkon-
dadele vastab klassikaline diferentsiaalarvutus (Analysis Situs), on korrused vajalikud kõrgemat järku lii-
kumiste kirjeldamisel. Sel juhul pole kõne all diferentsiaaloperaatori (vektorvälja) kordamine X ,X2, . . . ,
vaid iteratiivne protsess, kus ühe vektorvälja voog transformeerub teise vektorvälja voos, sellele omakorda
avaldab mõju kolmanda vektorvälja voog jne. Aparatuuriks on invariantne (koordinaatidevaba) Lie-Cartani
tehnika.

Ilmneb, et Lagrange’i mehaanika baseerub täielikult kooldumiskihtkondadel Osck−1M, samal ajal kui
Hamiltoni mehaanika taustaks on korrused T kM.


