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Abstract. The convergence in variation and the rate of approximation of the Meyer-König and Zeller operators are discussed. It is
proved that for absolutely continuous functions the rate of approximation can be estimated via the total variation.
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1. INTRODUCTION

In this paper the convergence in variation of the Meyer-König and Zeller operators is discussed. These
operators have been investigated in many papers (see, for example, [1] and literature cited there). The
operators of Meyer-König and Zeller [6] in the modification of Cheney and Sharma [5], defined by

(Mn f )(x) = (1− x)n+1
∞

∑
k=0

(
k +n

k

)
xk f

(
k

k +n

)
(x ∈ [0,1)),

(Mn f )(1) = f (1),
(1.1)

are also called Bernstein power series.
Let TV [0,1] denote the class of all functions of bounded variation on [0,1], i.e. the total variation

V[0,1][ f ] of these functions is finite. We are interested in the convergence in variation of Mn, i.e. we study for
f ∈ TV [0,1] the quantity V[0,1][Mn f − f ]. Since Mn f ∈ AC[0,1], for every f ∈ TV [0,1], as shown in [4], the
convergence V[0,1][Mn f − f ]→ 0 implies that f has to be absolutely continuous; write f ∈ AC[0,1].

Let Φ be the set of all real-valued strictly increasing convex functions ϕ defined on [0,1] such that
ϕ(0) = 0. For ϕ ∈ Φ and any complex-valued function f defined on [0,1], the ϕ-variation of f on [0,1] is
defined by

Vϕ( f ; [0,1]) := sup
n

∑
i=1

ϕ(| f (xi)− f (xi−1)|),

where the supremum is taken over all sequences x0 ≤ x1 ≤ ... ≤ xn with x0,xn ∈ [0,1]. In the particular
case ϕ(x) = xp, p ≥ 1, the ϕ-variation is called p-variation and we write Vp instead of Vϕ . The notion of
ϕ-variation, for any convex function ϕ , was introduced by Young [10] and extensively studied by Musielak
and Orlicz in [7]. The general probabilistic approach to the convergence in ϕ-variation for linear positive
operators can be found in [2], where conditions for the convergence in ϕ-variation via the usual modulus
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of continuity are given. However, it seems that this general approach does not apply to the convergence in
ordinary variation. At least for the Bernstein operator it follows (see [2], Theorem 4 and Remark 4) that

Vp(Bn f − f ; [0,1])≤ 22p−1V[0,1][ f ]ω p−1
(

f ;
1

2
√

n

)
(p > 1)

for f ∈C[0,1]
⋂

TV[0,1], and here the case p = 1 is meaningless.
We intend to find conditions for the convergence in ordinary variation via the variation of the function

and the variation of the central differences of the function. For the convergence in variation it is important
to state the variation detracting property. Let Ln be linear positive operators acting on functions on [0,1]. If
for all f ∈ TV [0,1] we have Ln f ∈ TV [0,1] and

V[0,1][Ln f ]≤V[0,1][ f ], (1.2)

then it is said that the operator Ln has the variation detracting property.
The variation detracting property of linear positive operators was investigated in [2–4,8]. Adell and

de la Cal (see [2], Theorem 1) gave the proof of the variation detracting property for some families of
Bernstein-type operators based on the probabilistic approach. Here we present the direct proof of the same
result in the case of the Meyer-König and Zeller operators. First we give a technical result.

Lemma. Let f ∈ TV [0,1]. Then for x ∈ [0,1)

(Mn f )′(x) = (n+1)(1− x)n
∞

∑
k=0

xk
(

k +n+1
k

)[
f
(

k +1
k +n+1

)
− f

(
k

k +n

)]
. (1.3)

The next result is not new (cf. [2], Theorem 1 and Example K), however, for the completeness of the
presentation we will give an elementary proof.

Theorem A. If f ∈ TV [0,1], then Mn f ∈ AC[0,1] and

V[0,1][Mn f ]≤V[0,1][ f ].

Proof. Since f ∈ TV [0,1], (Mn f )′ is bounded by Lemma. Consequently, Mn f ∈ AC[0,1] and its total
variation is

V[0,1][Mn f ] =
∫ 1

0
|(Mn f )′(x)|dx.

So, using (1.3) and interchanging the order of summation and integration, we obtain

V[0,1][Mn f ] ≤ (n+1)
∞

∑
k=0

(
k +n+1

k

)∣∣∣∣∣ f
(

k +1
k +n+1

)
− f

(
k

k +n

)∣∣∣∣∣
∫ 1

0
xk(1− x)ndx.

By definition of the beta-function we get

(n+1)
(

k +n+1
k

)∫ 1

0
xk(1− x)ndx = 1,

hence

V[0,1][Mn f ]≤
∞

∑
k=0

∣∣∣∣∣ f
(

k +1
k +n+1

)
− f

(
k

k +n

)∣∣∣∣∣≤V[0,1][ f ]. ¤
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In Section 2 we derive the rate of approximation of Mn f for f (k) ∈ AC[0,1], k = 0,1,2. For this purpose
let us note another form of the derivative as

(Mn f )′(x) =
(1− x)n

x

∞

∑
k=0

(
k +n

k

)
f
(

k
k +n

)
[k− (n+ k +1)x]xk (x ∈ (0,1)). (1.4)

In the proof of Theorem 1 we need the sum moments for the operators (1.1). Let us define for r = 0,1,2, ...
(cf. (1.4)):

Tr,n(x) := (1− x)n+1
∞

∑
k=0

[k− (n+ k +1)x]r
(

k +n
k

)
xk. (1.5)

Then by computations we have

Tr+1,n(x) = (n+1)x
( r

∑
l=0

(
r
l

)
Tl,n+1(x)−Tr,n(x)

)
. (1.6)

Since T0,n(x)≡ 1, by (1.6) we have (see (1.5))

Tr,n(x) =





0, r = 1,

(n+1)x, r = 2,

(n+1)X , r = 3,

(n+1)x [1+3(n+2)x+X ] , r = 4,

(n+1)X [(1+10(n+2)x+ x2], r = 5,

(n+1)x [1+15(n+2)X +15(n+2)2x2

+10(n+2)X +25(n+2)xX +(1+ x2)X ], r = 6,

(1.7)

where X := x(1+ x).

2. CONVERGENCE IN VARIATION

In the following we study the rate of approximation of smooth functions with respect to the variation
seminorm.

Theorem 1. If g′′ ∈ AC[0,1], then

V[0,1][Mng−g]≤ 5π3

16n
(V[0,1][g]+V[0,1][g

′′]) (n≥ 3). (2.1)

Proof. We use for (1.4) Taylor’s formula with the integral remainder term

g(t) = g(x)+(t− x)g′(x)+(t− x)2 g′′(x)
2

+
1
2

∫ t−x

0
(t− x−u)2g′′′(x+u)du.

Taking t = k
k+n , we have

(Mng)′(x) = A0(x)g(x)+A1(x)g′(x)+A2(x)(x)g′′(x)+(Rng)(x), (2.2)

where

A j(x) :=
(1− x)n

x

∞

∑
k=0

[k− (n+ k +1)x]
(

k
k +n

− x
) j (k +n

k

)
xk ( j = 0,1,2). (2.3)
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Calculating by (1.5) and (1.7), we get

A0(x) =
T1,n(x)

x(1− x)
= 0.

Analogously, using the property of the binomial coefficients, and moments T2,n−1(x) and T1,n−1(x), we
obtain

A1(x) =
(1− x)n

x

∞

∑
k=0

([k− (n+ k)x]− x)[k− (n+ k)x]
1

k +n

(
k +n

k

)
xk

=
(1− x)n

nx

∞

∑
k=0

[k− (n+ k)x]2
(

k +n−1
k

)
xk− (1− x)n

n

∞

∑
k=0

[k− (n+ k)x]
(

k +n−1
k

)
xk

=
1
nx

T2,n−1(x)− 1
n

T1,n−1(x) = 1.

We decompose the term A2(x) into two parts by summands of 1− 1
k+n , hence

A2(x) =
(1− x)n

2x

∞

∑
k=0

([k− (n+ k−1)x]−2x)([k− (n+ k−1)x]− x)2

× xk 1
n(n−1)

(
k +n−2

k

)(
1− 1

k +n

)

=: B1−B2. (2.4)

Here, first removing the parentheses in the infinite sum and reordering by powers of k− (n + k− 1), and
then using (1.5) and (1.7), we may write

B1 =
1

2n(n−1)
1− x

x
[T3,n−2(x)−4xT2,n−2(x)+5x2T1,n−2(x)−2x3T0,n−2(x)]

=
1
2n

(1− x)(1−3x)− 1
n(n−1)

x2(1− x). (2.5)

For B2 we have

B2 := B2(n,x) :=
1

2n(n−1)
(1− x)n

x

∞

∑
k=0

1
k +n

(
[k− (n+ k−1)x]−2x

)

×
(
[k− (n+ k−1)x]− x

)2
xk

(
k +n−2

k

)
, (2.6)

and after using Cauchy’s inequality, the estimate 1
k+n < 1

n , and the definition of the moments in (1.5),
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we obtain

|B2| ≤ 1
2n2(n−1)

1− x
x

×
[
(1− x)n−1

∞

∑
k=0

([k− (n+ k−1)x]−2x)2
(

k +n−2
k

)
xk

] 1
2

×
[
(1− x)n−1

∞

∑
k=0

([k− (n+ k−1)x]− x)4
(

k +n−2
k

)
xk

] 1
2

=
1

2n2(n−1)
1− x

x

[
T2,n−2(x)−4xT1,n−2(x)+4x2T0,n−2(x)

] 1
2

×
[
T4,n−2(x)−4xT3,n−2(x)+6x2T2,n−2(x)−4x3T1,n−2(x)+ x4T0,n−2(x)

] 1
2
. (2.7)

Now, by (2.4) and (2.5), we have

A2(x) =
1
2n

(1− x)(1−3x)− 1
n(n−1)

x2(1− x)−B2(n,x). (2.8)

From (2.7), using (1.7), we get

|B2(n,x)| ≤ 2
n
√

n
, n≥ 3.

By (2.2) and (2.8) we may estimate
∫ 1

0

∣∣∣(Mng)′(x)−g′(x)
∣∣∣dx ≤ 1

2n

∫ 1

0
(1− x)|1−3x||g′′(x)|dx

+
1

n(n−1)

∫ 1

0
x2(1− x)|g′′(x)|dx+

2
n
√

n

∫ 1

0
|g′′(x)|dx+‖Rng‖

≤
( 1

2n
+

4
27n(n−1)

+
2

n
√

n

)
‖g′′‖+‖Rng‖, (2.9)

where the norm is taken in L1(0,1), i.e. ‖ f‖ := ‖ f‖L1(0,1).
The integral remainder term in (2.2) has by (1.4) the form

(Rng)(x) :=
(1− x)n

2x

∞

∑
k=0

1
(k +n)2 [k− (n+ k +1)x]

(
k +n

k

)
xk

×
∫ k

k+n−x

0
[k− (x+u)(k +n)]2g′′′(x+u)du.

We denote Rng =: R1
ng−R2

ng, where

(R1
ng)(x) :=

(1− x)n

2x

∞

∑
k=0

1
(k +n)2 [k− (n+ k)x]

(
k +n

k

)
xk

×
∫ k

k+n−x

0
[k− (x+u)(k +n)]2g′′′(x+u)du

and

(R2
ng)(x) :=

(1− x)n

2

∞

∑
k=0

1
(k +n)2

(
k +n

k

)
xk

∫ k
k+n−x

0
[k− (x+u)(k +n)]2g′′′(x+u)du.
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In integrals of the previous quantities (R1
ng),(R2

ng) we substitute x + u = v and note that | k
k+n − v|2 ≤

| k
k+n − x|2 for k

k+n ≤ v≤ x or x≤ v≤ k
k+n . As k− (n+ k)x and the integral

∫ k
k+n

x |...|dv have the same sign,
we have that

||R1
ng|| ≤ 1

2

∫ 1

0

(1− x)n

x

∞

∑
k=0

1
(k +n)2 [k− (n+ k)x]

(
k +n

k

)
xk

×
∫ k

k+n

x
[k− v(k +n)]2|g′′′(v)|dvdx

≤ 1
2

∫ 1

0

(1− x)n

x

∞

∑
k=0

1
(k +n)2 [k− (n+ k)x]3

(
k +n

k

)
xk

×
(∫ k

k+n

0
−

∫ x

0

)
|g′′′(v)|dvdx =: S2

ng−S1
ng, (2.10)

where

S1
ng :=

1
2

∫ 1

0

(1− x)n

x

∞

∑
k=0

1
(k +n)2 [k− (n+ k)x]3

(
k +n

k

)
xk

∫ x

0
|g′′′(v)|dvdx (2.11)

and

S2
ng :=

1
2

∫ 1

0

(1− x)n

x

∞

∑
k=0

1
(k +n)2 [k− (n+ k)x]3

(
k +n

k

)
xk

∫ k
k+n

0
|g′′′(v)|dvdx. (2.12)

To estimate S1
ng in (2.11), let

U1
n :=

(1− x)n

x

∞

∑
k=0

1
(k +n)2 [k− (n+ k)x]3

(
k +n

k

)
xk. (2.13)

Then, after decomposing the previous sum, we obtain

U1
n =

1
n

(1− x)n

x

∞

∑
k=0

(
1

k +n−1
− 1

(k +n)(k +n−1)

)
[k− (n+ k)x]3

(
k +n−1

k

)
xk.

Using (1.5) and (1.7), we have

U1
n =

(1− x)n

n(n−1)x

∞

∑
k=0

([k− (n+ k−1)x]− x)3
(

k +n−2
k

)
xk−U1,1

n

=
1

n(n−1)
(1− x)

x
[T3,n−2(x)−3xT2,n−2(x)+3x2T1,n−2(x)− x3]−U1,1

n

=
1

n(n−1)
(1− x)

x
[(n−1)x(1−2x)− x3]−U1,1

n , (2.14)

where

U1,1
n :=

1
n(n−1)

(1− x)n

x

∞

∑
k=0

1
k +n

([k− (n+ k−1)x]− x)3
(

k +n−2
k

)
xk.
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To estimate U1,1
n , we use Cauchy’s inequality

|U1,1
n | ≤ 1

n2(n−1)
1− x

x

[
(1− x)n−1

∞

∑
k=0

([k− (n+ k−1)x]− x)4
(

k +n−2
k

)
xk

] 1
2

×
[
(1− x)n−1

∞

∑
k=0

([k− (n+ k−1)x]− x)2
(

k +n−2
k

)
xk

] 1
2
,

and using (1.5), we have

|U1,1
n | ≤ 1

n2(n−1)
1− x

x

[
(T4,n−2(x)−4xT3,n−2(x)+6x2T2,n−2(x)−4x3T1,n−2(x)+ x4)

] 1
2

×
[
(T2,n−2(x)−2xT1,n−2(x)+ x2)

] 1
2
.

Application of (1.7) gives (n≥ 3)

|U1,1
n | ≤ 1

n2(n−1)
(1− x)

[
3(n−1)2x+(n−1)(1+3x2)+ x3

] 1
2
[n−1+ x]

1
2

=
1
n2 (1− x)

[
3x+

1+3x2

n−1
+

x3

(n−1)2

] 1
2√

n−1
[
1+

x
n−1

] 1
2

≤ 1
n
√

n
(1− x)

[
3x+

1+3x2

2
+

x3

4

] 1
2
[
1+

x
2

] 1
2 ≤ 3

n
√

n
.

Therefore, using (2.14), we have

|U1
n | ≤

1
n

+
4

27n(n−1)
+

3
n
√

n
.

Taking into account the connection between S1
ng in (2.11) and U1

n in (2.13), we have

|S1
ng| ≤

( 1
2n

+
2

27n(n−1)
+

3
2n
√

n

)∫ 1

0
|g′′′(v)|dv. (2.15)

Applying Fubini’s theorem to S2
ng in (2.12), we have

|S2
ng| ≤ 1

2

∞

∑
k=0

1
(k +n)2

∣∣∣
∫ k

k+n

0
|g′′′(v)|dv

(
k +n

k

)∫ 1

0
[k− (n+ k)x]3(1− x)nxk−1dx

∣∣∣.

The inner integral can be evaluated by using the beta-function and then estimated by

∣∣∣
(

k +n
k

)∫ 1

0
[k− (n+ k)x]3(1− x)nxk−1dx

∣∣∣ =
∣∣∣ 5k2n+3kn2−2n3 +6k2

(n+ k +1)(n+ k +2)(n+ k +3)

∣∣∣≤ 2.

Now

|S2
ng| ≤

∞

∑
k=0

1
(k +n)2

∫ k
k+n

0
|g′′′(v)|dv≤ ‖g′′′‖

∞

∑
i=0

(i+1)n−1

∑
k=in

1
(k +n)2

≤ ‖g′′′‖
n

∞

∑
i=0

1
(i+1)2 =

‖g′′′‖
n

π2

6
. (2.16)
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Returning back to ||R1
ng|| (cf. (2.10)), we have, using (2.16) and (2.15),

||R1
ng|| ≤ π2||g′′′||

6n
+
||g′′′||

2n
+

2||g′′′||
27n(n−1)

+
3||g′′′||
2n
√

n
. (2.17)

Analogously to R1
ng in (2.10), we have

||R2
ng|| ≤ 1

2

∫ 1

0
(1− x)n

∞

∑
k=0

1
(k +n)2 [k− (n+ k)x]2

(
k +n

k

)
xk

×
∫ k

k+n

x
|g′′′(v)|dvdx =: S4

ng−S3
ng, (2.18)

where

S3
ng :=

1
2

∫ 1

0
(1− x)n

∞

∑
k=0

1
(k +n)2 [k− (n+ k)x]2

(
k +n

k

)
xk

∫ x

0
|g′′′(v)|dvdx (2.19)

and

S4
ng :=

1
2

∫ 1

0
(1− x)n

∞

∑
k=0

1
(k +n)2 [k− (n+ k)x]2

(
k +n

k

)
xk

∫ k
k+n

0
|g′′′(v)|dvdx. (2.20)

To estimate S3
ng, let (cf. (2.19))

U2
n := (1− x)n

∞

∑
k=0

1
(k +n)2 [k− (n+ k)x]2

(
k +n

k

)
xk. (2.21)

Then, decomposing the sum, using (1.5) and (1.7), we have

U2
n =

1
n
(1− x)n

∞

∑
k=0

(
1

k +n−1
− 1

(k +n)(k +n−1)

)
[k− (n+ k)x]2

(
k +n−1

k

)
xk

=
1

n(n−1)
(1− x)n

∞

∑
k=0

([k− (n+ k−1)x]− x)2
(

k +n−2
k

)
xk−U2,1

n

=
1

n(n−1)
(1− x)[T2,n−2(x)−2xT1,n−2(x)+ x2]−U2,1

n

=
1

n(n−1)
(1− x)[(n−1)x+ x2]−U2,1

n , (2.22)

where

U2,1
n :=

1
n(n−1)

(1− x)n
∞

∑
k=0

1
k +n

([k− (n+ k−1)x]− x)2
(

k +n−2
k

)
xk.

Again, by 1
k+n ≤ 1

n , using (1.5) and (1.7), we obtain

U2,1
n ≤ 1

n2(n−1)
(1− x)[(n−1)x+ x2]. (2.23)

Using (2.22) and (2.23), we have

|S3
ng| ≤

( 1
8n

+
2

27n(n−1)
+

1
8n2 +

2
27n2(n−1)

)∫ 1

0
|g′′′(v)|dv. (2.24)
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Applying Fubini’s theorem to S4
ng in (2.20), we have

|S4
ng| ≤ 1

2

∞

∑
k=0

1
(k +n)2

∣∣∣
∫ k

k+n

0
|g′′′(v)|dv

(
k +n

k

)∫ 1

0
[k− (n+ k)x]2(1− x)nxkdx

∣∣∣.

The inner integral can be evaluated by using the beta-function which gives the estimate

∣∣∣
(

k +n
k

)∫ 1

0
[k− (n+ k)x]2(1− x)nxkdx

∣∣∣ =
∣∣∣ k2n+ kn2 +2k2−2kn+2n2

(n+ k +1)(n+ k +2)(n+ k +3)

∣∣∣≤ 1
3
.

Thus, for S4
ng we get by (2.16)

|S4
ng| ≤ 1

6

∞

∑
k=0

1
(k +n)2 ‖g′′′(v)‖ ≤ π2

36n
‖g′′′‖.

By (2.18), collecting the estimates of S4
ng and S3

ng in (2.24), we have

||R2
ng|| ≤ π2||g′′′||

36n
+

( 1
8n

+
2

27n(n−1)
+

1
8n2 +

2
27n2(n−1)

)
||g′′′||. (2.25)

Finally, since Rng = R1
ng−R2

ng, we obtain by (2.9) the estimate (see (2.2), (2.17), and (2.25))

||(Mng)′−g′|| ≤ ||g′′||
2n

+
4||g′′||

27n(n−1)
+

2||g′′||
n
√

n
+

π2||g′′′||
6n

+
||g′′′||

2n
+

2||g′′′||
27n(n−1)

+
3||g′′′||
2n
√

n
+

π2||g′′′||
36n

+
( 1

8n
+

2
27n(n−1)

+
1

8n2 +
2

27n2(n−1)

)
||g′′′||.

Now we use Stein’s inequality with the exact constant (see, e.g., [9], Theorem A10.1)

||g′′||L1 ≤ π3

16

√
||g′||L1 ||g′′′||L1

and the inequality for the geometric and arithmetic means. We have

||(Mng)′−g′|| ≤ 5π3

16n
(||g′||+ ||g′′′||), (n≥ 3),

which finishes our proof. ¤

Below (4r
hg)(x) denotes the central difference of g of order r,

(4r
hg)(x) :=

r

∑
k=0

(−1)k
(

r
k

)
g
(

x+
( r

2
− k

)
h
)

.

The proof of the next theorem is essentially presented in [4], Theorem 3.7.

Theorem B. Let the linear positive operator Ln satisfy the variation detracting property (1.2) and let it
satisfy for any g′′ ∈ AC[0,1] the condition

V[0,1][Lng−g]≤ C
n

(V[0,1][g]+V[0,1][g
′′]). (2.26)
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If f ∈ AC[0,1], then there exist constants c1,c2 > 0 such that

V[0,1][Ln f − f ]≤ c1 sup
0<h≤n−

1
2

V[h,1−h][42
h f ]+

c2

n
V[0,1][ f ].

In particular, if f ′ ∈ AC[0,1], then

V[0,1][Ln f − f ]≤ c1√
n

sup
0<h≤n−

1
2

V[ h
2 ,1− h

2 ][4
1
h f ′]+

c2

n
V[0,1][ f ].

Since by Theorem A the operator Mn has the variation detracting property (1.2) and by Theorem 1 it
satisfies the condition (2.26), we finally have for the Meyer-König and Zeller operators

Theorem 2. If f ∈ AC[0,1], then there exist constants c1,c2 > 0 such that

V[0,1][Mn f − f ]≤ c1 sup
0<h≤n−

1
2

V[h,1−h][42
h f ]+

c2

n
V[0,1][ f ].

In particular, if f ′ ∈ AC[0,1], then

V[0,1][Mn f − f ]≤ c1√
n

sup
0<h≤n−

1
2

V[ h
2 ,1− h

2 ][4
1
h f ′]+

c2

n
V[0,1][ f ].
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Meyer-Königi ja Zelleri operaatoritega lähendamine variatsiooni mõttes

Andi Kivinukk ja Tarmo Metsmägi

On uuritud Meyer-Königi ja Zelleri operaatoritega lähendamise kiirust, mida mõõdetakse funktsiooni (või
selle tuletiste) täisvariatsiooniga. On tõestatud, et kui lähendatav funktsioon on absoluutselt pidev (või
vastavalt esimene ehk teine tuletis on absoluutselt pidevad), siis lähendamise kiirus on hinnatav funktsiooni
(vastavalt selle tuletiste) täisvariatsiooni kaudu.


