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Abstract. The convergence in variation and the rate of approximation of the Meyer-Konig and Zeller operators are discussed. It is
proved that for absolutely continuous functions the rate of approximation can be estimated via the total variation.
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1. INTRODUCTION

In this paper the convergence in variation of the Meyer-Konig and Zeller operators is discussed. These
operators have been investigated in many papers (see, for example, [1] and literature cited there). The
operators of Meyer-Konig and Zeller [6] in the modification of Cheney and Sharma [5], defined by

nil v [(k+n k
) == 3 ()20 () el
(,)(1) = 1(1),

are also called Bernstein power series.

Let TV|0,1] denote the class of all functions of bounded variation on [0,1], i.e. the total variation
Vio,1) [f] of these functions is finite. We are interested in the convergence in variation of M,, i.e. we study for
f €TVI[0,1] the quantity Vjo j;[M, f — f]. Since M, f € ACI0, 1], for every f € TV|0, 1], as shown in [4], the
convergence Vjo 1) [M, f — f] — 0 implies that f has to be absolutely continuous; write f € ACI0, 1].

Let @ be the set of all real-valued strictly increasing convex functions ¢ defined on [0, 1] such that
¢©(0) = 0. For ¢ € ® and any complex-valued function f defined on [0, 1], the ¢@-variation of f on [0, 1] is
defined by

(1.1)

V(£:10,1]) = sup Y @ (1 (x0) — F (1)),

i=1

where the supremum is taken over all sequences xp < x; < ... < x, with xp,x, € [0,1]. In the particular
case @(x) =x”, p > 1, the ¢-variation is called p-variation and we write V), instead of V,,. The notion of
@-variation, for any convex function @, was introduced by Young [10] and extensively studied by Musielak
and Orlicz in [7]. The general probabilistic approach to the convergence in ¢-variation for linear positive
operators can be found in [2], where conditions for the convergence in ¢-variation via the usual modulus
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of continuity are given. However, it seems that this general approach does not apply to the convergence in
ordinary variation. At least for the Bernstein operator it follows (see [2], Theorem 4 and Remark 4) that

Vy(Buf — £:10.1]) < 227 Wio y [flo" ! ( - (r>1)

1
"2¢/n
for f € Cio,)jNTVjp,1]» and here the case p = 1 is meaningless.

We intend to find conditions for the convergence in ordinary variation via the variation of the function
and the variation of the central differences of the function. For the convergence in variation it is important

to state the variation detracting property. Let L, be linear positive operators acting on functions on [0, 1]. If
forall f € TV[0,1] we have L, f € TV[0,1] and

Vioy[Lnf] < Vio, 1y [f], (1.2)

then it is said that the operator L, has the variation detracting property.

The variation detracting property of linear positive operators was investigated in [2-4,8]. Adell and
de la Cal (see [2], Theorem 1) gave the proof of the variation detracting property for some families of
Bernstein-type operators based on the probabilistic approach. Here we present the direct proof of the same
result in the case of the Meyer-Konig and Zeller operators. First we give a technical result.

Lemma. Let f € TV|0,1]. Then for x € [0,1)

@ =oena-0 Y (N () ()] e

k=0

The next result is not new (cf. [2], Theorem 1 and Example K), however, for the completeness of the
presentation we will give an elementary proof.

Theorem A. If f € TV[0,1], then M,.f € AC[0,1] and

Vo IMuf] < Vio1f]-

Proof. Since f € TV|[0,1], (M,f)" is bounded by Lemma. Consequently, M, f € AC[0,1] and its total
variation is

1
Vio,yMuf] = /0 |(M,.f) (x)|dx.

So, using (1.3) and interchanging the order of summation and integration, we obtain

E (k+n+1 k+1 k 1,
< — ) - —x)"dx.
vt < o0 T () () o () | ) 0 e
By definition of the beta-function we get
1
(n+1)<k+n+l>/ K1 —x)"dx =1,
k 0
hence
- k+1 k
Vio,y[Mnf] < Z, <k+n—|—1) f(k+n> <Vjo,yylf]- u
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In Section 2 we derive the rate of approximation of M, f for f*) € AC[0, 1], k = 0,1,2. For this purpose
let us note another form of the derivative as

(M f) (x) = (1= i <k—;{_n>f <k> k—(n+k+1Dx]x*  (xe(0,1)). (1.4)

x = k+n

In the proof of Theorem 1 we need the sum moments for the operators (1.1). Let us define for r =0,1,2, ...
(cf. (1.4)):

k
Trn(x) == "“Z (n+k+1)x]" ( Z”)ﬁ. (1.5)
Then by computations we have
Z(r
Tri10(x) = (n+ l)x(z (l> T p1(x) — Tm(x)). (1.6)
1=0
Since Tp ,(x) = 1, by (1.6) we have (see (1.5))
(0, r=1,
(n+1)x7 1”22,
(l’l—|- 1)X7 r—= 3,
Trn(x) =q (n+Dx[1+3(n+2)x+X], r=4, (1.7)
(n+ )X [(1+10(n+2)x+x], r=35,
(n+ Dx[1+15(n+2)X + 15(n+2)%x?
+10(n+2)X +25(n+2)xX + (1 +x*)X], r=6,

where X :=x(1+x).

2. CONVERGENCE IN VARIATION

In the following we study the rate of approximation of smooth functions with respect to the variation
seminorm.

Theorem 1. If g’ € AC|0, 1], then

3

<22 (Voulgl+Vonle)  (n23). @.1)

Proof. We use for (1.4) Taylor’s formula with the integral remainder term

80 =00+ (=g () + (1~ 4 [ xg x wh
Taking = £, we have
(Myg)' (x) = Ao (x)g(x) +A1(x)g' (x) +A2(x) (x)g" (x) + (Rug) (), (2.2)
where .
Ajlx) = (l;x)nki‘a[k—(wkﬂ) ](kfn—x)]<k;;”>xk (j=0,1,2). (2.3)
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Calculating by (1.5) and (1.7), we get

Analogously, using the property of the binomial coefficients, and moments 75, (x) and 7j,—;(x), we
obtain

k+n

_ =y (n—l—k)x]2<k+z_ 1>xk—(1_")" Y lk— (n+K) (HZ_ 1>xk

n =0

e = Y (e i~ el (1)

1 1
= nixTZ,nfl(x) — ZTl,nfl(x) =1

We decompose the term A (x) into two parts by summands of 1 — —— +n, hence

Ar(x) = l_xx"; — (-t k— D] = 2x)([k— (n+k— 1)x] —x)2
1 k+n—2 1
xxkn(n—n( K ><1‘k+n>
= Bl—Bz. (24)

Here, first removing the parentheses in the infinite sum and reordering by powers of k — (n+k — 1), and
then using (1.5) and (1.7), we may write

B — 2,1(’11_1) B2 (0) — AT 2(3) 4 5T 2 (0) — 26T (0]
= 2n(l— )(1—3x)—n(nl_1)x2(1—x). (2.5)
For B; we have
By = Bz(n,x):zzn(nl_l - ki ( (n+k—1)x] — 2x>
x([k (n+k—1)x] — )xk<k ’Z ) (2.6)

and after using Cauchy’s inequality, the estimate W <1 -» and the definition of the moments in (1.5),
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we obtain
By < 1 1—x
2= min—1) «x
v k+n—2 3
-1 . - _ 2 k
><{(1 %) kgo([k (n+k—1)] 2x)( . >x}

1

o k+n—2\ 1}
><[(1_x) Ik;)([k—(n+k—l)x]—x)4< ) )/ﬂ

_ 2’12(;_1)1;)‘ [T 2(0) 4T3 1 2(0) + 42T () :
X [n,,,,z(x) — AxT3 2 (%) + 652 Ty 2 () — 45T ya (x) + 54T s () : 2.7)
Now, by (2.4) and (2.5), we have
Az(x)_zln(l—x)(l—3x)—n<nl_1)x2(1—x)—32(n,x). 2.8)
From (2.7), using (1.7), we get
|Ba(n,x)| < H\Z/ﬁ, n>3.

By (2.2) and (2.8) we may estimate

[ gy —gofas < 2 [0l e

1 1 » 2 1

- 1_ " d 7/ " d R

ey POl @l = [l @l R
1 4 2 "
— R 2.9

<2n+27n(n—1)+n\/ﬁ>”g 1+ 1Rngll (2:9)

where the norm is taken in L' (0, 1), i.e. [|f]| := || f]lz1(0.1)-
The integral remainder term in (2.2) has by (1.4) the form
(I—x)" & 1 k+n
R = k—(n+k+1 Xk

e —x
x /0 k= (e ) (k4 )28 (x4 w)d.
We denote R, g =: R,llg - R%g, where

k__

[T b e e

and

(R2g)(x) = (1 _ZX)n,i() (kin)z (k:n>xk/ok+n_x[k—(x+u)(k+n)]2g’”(x+u)du.
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In integrals of the previous quantities (Rlg),(R2g) we substitute x +u = v and note that | X i v? <

—x|? for k+ <v<xorx<v< k+ . As k— (n+ k)x and the integral f“" |...|dv have the same sign,

| k+n n’

we have that

(1-x 1 k+n\ 4
IRLg|| < 2/ . [k_(,Hk)x]( ‘ )x
x / m[k—v( ) Plg" ()| dvdx
1_ 1 3 k—l—n k
: 2/ o (k+n)? [k_(n+k)x] < k >x
HL”_ N .2l
x(/o /O)|g (v)|dvdx =: $2g — Slg, (2.10)
where
(1—x 1 k+n ,,,
S8 2/ Ok+n) V‘—(er)}( > /!g )|dvdx (2.11)
and

) (I—x)" 1 k+n &
= 2/ 0 EWE [k—(n—l—k)] ( )xk/ v)|dvdx. (2.12)

To estimate S} g in (2.11), let

(I—x)" & 1 k+n
lg(k+n)2[k—(n+k)x]3( . )xk (2.13)

U,} =

Then, after decomposing the previous sum, we obtain

o 10-%" ¢ o 1 a3 (=1
Un = nox ,;z)(k—i-n—l (k—i—n)(k—l—n—l))[k (+k)]< k >Xk

Using (1.5) and (1.7), we have

L (=X & ik Dol ) k+n—2 gy
U, = n(n_])xkgo([k (n+k—1)] )< L ) U
- n(nl— 1) d ;X) [T3,0—2(x) = 3xT2 2 () —|—3x2Tl7n_2(x) — X —-uM!
I (1)

= [(n—1)x(1 —2x) —x’] UM, (2.14)

where
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To estimate U,"', we use Cauchy’s inequality

1 1- k4+n—2\ ;13
Ul < [1_ n—1 k— 1l — x)4 k]

[l—x" 12 — (k- 1)x] —x)? (kJ“Z_z)xkr,

and using (1.5), we have

1

1 1—x 2
[(TLL,,,2 (%) — 4xT3 2 (x) + 632 Doy (x) — 45T}y () +24) |

| <« 4 17X
Unl = n*(n—1) x

1

X [(szn,z(x) — 23Ty (%) +x2)} ’

Application of (1.7) gives (n > 3)

Ut < nz(nl_l)(l—x)[3(n—1)2x+(n—1)(1—|—3x2)+x3}é[n—l—i—x]é
1 14 3x2 ¥’ 3 X 712
_ E(l—x)[3x+ n+_1 +(n_1)2} \/ﬁ[wn_l}

<

14332 X373 X131 3
} [1+

(1—x)[3x+ 3

1
ny/n
Therefore, using (2.14), we have
1 4 3

27n( —1) + nyn

Taking into account the connection between S,llg in (2.11) and Un1 in (2.13), we have

Unl <

1 2 3 1 "
9181 < (3+ 01 * 30m) | 18" wia. (2.15)

Applying Fubini’s theorem to S2g in (2.12), we have

¢l (“ ") [ 0]

The inner integral can be evaluated by using the beta-function and then estimated by

k+n\ [! 5 _ 5k’n + 3kn? — 2n® + 6k*
k— (n+k)x]* (1 —x)"x*ldx| = <2
‘( k )/0[ (n k) (1 =) x’ ‘(n+k+1)(n+k+2)(n+k+3)‘_

Shel < 5

Now

o 1 k+n oo H—ln 1
Sl < X g ) Ol <lg"IY y
k=0

i=0 k=in

II/H o 1

I8 _llg”l =2
n & (i+1)? n 6’

IN

(2.16)
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Returning back to ||R)g|| (cf. (2.10)), we have, using (2.16) and (2.15),

NIH

" 2 " 3 n
Ll 2l 3l 2.17)

oll < 2Hg
- 2n 27n(n—1) 2ny/n

IR,

Analogously to R!g in (2.10), we have

1 /! S| k+n
Il < 5 [ 0=0 § sl e (] 7)

x/“"\ ¢" (v)|dvdx =: S*g — S3g, (2.18)
where - . . .
3. A\ o 2 +n k x n
Sigi=5 [ (1- ]go(k+n)2[k (n+k)x] < . )x /0 1g" (v)|dvdx (2.19)
and
1 d 1 k+n
4, . — )\ _ ///
Si8:=75 [, (1-x) ];)(Hn)z[k (n+k)x)? ( >;/</ v)|dvdx. (2.20)
To estimate S,31g, let (cf. (2.19))
2. _n > 1 _ 2 k-i-n
U?:=(1—-x) ,;)(Hn)?[k (n+k)x] ( N );d‘ (2.21)

Then, decomposing the sum, using (1.5) and (1.7), we have

S PR 1 1 (=1
Ur = n(l )kzb<k+n—l (k+n)(k+n—l)>[k (+k)]< k >

- n(n1 i —(n+k—1)x] - )(k+z 2) g2
= n(nl_ 1) (1 —X) [Tz,n—z(x) — 2xT17n_2(x) +X2] . U,%’l
1
- ”(n—1)(1_x)[(”_1)x+x2]—U3’1, (2.22)
where
U= n(l (1—x i — (n+k—1)x]— )(Hz_z)x".

Again, by k%ﬂ < % using (1.5) and (1.7), we obtain

1

21 &
Un “n?:(n—1)

(1—x)[(n—1)x+x%. (2.23)

Using (2.22) and (2.23), we have

1 2 | "
. )ldv. 2.24
Sasl < (8n 2nn—1) 82 " 27n2 / g7 (v)ldv (@24
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Applying Fubini’s theorem to Sttg in (2.20), we have

B o) [ no-real

The inner integral can be evaluated by using the beta-function which gives the estimate

‘(k—]lc—n> /Ol[k— (n+k)x]*(1 _x)nxkdx‘ _

Thus, for Stg we get by (2.16)

IN

kK2n+ kn® + 2k* — 2kn+2n? ’

1
(n+k+1)(n+k+2)(n+k+3)1 =3

l// n
<& L wranle” <),

By (2.18), collecting the estimates of sS4 ngand S g in (2.24), we have

1 2 1 2 "
8 Y nn—1) 82 2 n—1) : 22
+(8n+27n(n—1)+8n2+27n2(n_1))||g | (2.25)

I//H

2Hg

R2

Finally, since R, g = ng Rng, we obtain by (2.9) the estimate (see (2.2), (2.17), and (2.25))

Z 4 7 2 " 7.[2 "
g™l gl 2lls7l , #lg™]]
2n 2In(n—1) nyn 6n

g™l 2llg"ll 3llg"ll | #*lg"]l
2n 27n(n—1) 2ny/n 36n

[(Mag)' =gl <

_l’_

+<1+ S )H "
8n  27n(n—1) 8n* 27n*(n—1) &1
Now we use Stein’s inequality with the exact constant (see, e.g., [9], Theorem A10.1)

3

T
1" < T V111l Iz

and the inequality for the geometric and arithmetic means. We have

1Meg) =11 < 2 g1+ "), (1> 3)

which finishes our proof. (I

Below (/\,g)(x) denotes the central difference of g of order r,
—r 4 [T r
@) ) = Y (~14( )e (v (5 =) ).
k=0
The proof of the next theorem is essentially presented in [4], Theorem 3.7.

Theorem B. Let the linear positive operator L, satisfy the variation detracting property (1.2) and let it
satisfy for any g" € AC|0,1] the condition

C

Vio[Lng —g] < ;(V[O,l] &)+ Vio.iy[g"])- (2.26)
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If f € AC[0, 1], then there exist constants cy,c > 0 such that

e
Vioyllaf = f1 <er sup Vi _pylOpf]+ ZZV[O,I]U]'

1
0<h<n 2

In particular, if f' € AC|0, 1], then

C C
VoylLnf — f] < 71’1 sup Vin - [Ahf]+;2‘/[0,1][ﬂ-

O<h<n 2

Since by Theorem A the operator M, has the variation detracting property (1.2) and by Theorem 1 it
satisfies the condition (2.26), we finally have for the Meyer-Konig and Zeller operators

Theorem 2. If f € AC|0, 1], then there exist constants cy,c, > 0 such that

Vo [Muf — f] <c1 sup V[hlh][Ahf]"‘ Vou[f]

0<h<n72

In particular, if f' € AC|0, 1], then

Vio[Muf — ] < 71 sup. Viny o ’l][ ;zf/]+%zv[o,1}[f]-

0<h<n72
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Rl

® =W

Meyer-Konigi ja Zelleri operaatoritega lihendamine variatsiooni mottes
Andi Kivinukk ja Tarmo Metsmégi

On uuritud Meyer-Konigi ja Zelleri operaatoritega ldhendamise kiirust, mida moddetakse funktsiooni (voi
selle tuletiste) tdisvariatsiooniga. On tdestatud, et kui ldhendatav funktsioon on absoluutselt pidev (voi
vastavalt esimene ehk teine tuletis on absoluutselt pidevad), siis 1ihendamise kiirus on hinnatav funktsiooni
(vastavalt selle tuletiste) tdisvariatsiooni kaudu.



