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Abstract. The paper establishes the explicit relationship between two sets of necessary and sufficient conditions for static
state feedback linearizability of a discrete-time nonlinear control system. A detailed algorithm is presented for finding the state
coordinate transformation. Finally, the methods are compared from the point of view of computational complexity. Two examples
illustrate the theoretical results.
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1. INTRODUCTION

Feedback linearization has proved to be a tremendously useful tool in nonlinear control. We will restrict
ourselves to discrete-time nonlinear control systems described by state equations and to static state feedback
linearization. The number of publications on static state feedback linearization of continuous-time nonlinear
systems is huge, but the situation is different for the discrete-time case [1–6]. Most results, except [7], focus
on smooth feedback. However, note that it is not our purpose to address the approximate solutions of the
problem (see [8] and the references therein).

The main aim of the paper is to find explicit relationship between the two best-known sets of necessary
and sufficient linearizability conditions. The first and the earliest set of conditions is stated in terms of a
sequence of nested distributions of vector fields, associated with the control system [3]. The second set
of conditions is given via a decreasing sequence of codistributions of differential one-forms [5]. Detailed
algorithms are given for computation of the sequences of distributions. Moreover, the connection between
the two methods for finding the state coordinate transformation, corresponding to the above linearizability
conditions, is clarified. Finally, the alternative conditions and methods are compared from the point of
view of computational complexity, and experience from the respective implementations in the symbolic
computation system Mathematica is discussed. Two examples are given to illustrate the theoretical results.

The paper is organized as follows. Section 2 gives the statement of the static state feedback linearization
problem. Proposition 1, proved in Section 3, specifies the vector fields for which the backward shift is a
well-defined operator. A detailed algorithm for computation of the sequence of distributions (that relies
on the backward shift) is then given and finally the linearizability conditions in terms of vector fields are
recalled. Section 4 recalls the linearizability conditions formulated in terms of codistributions and Section 5
finds the explicit relationship between two sets of conditions. Section 6 relates the methods for finding the
new state coordinates, corresponding to two alternative linearizability conditions. Section 7 contains the
discussion and the examples, and Section 8 concludes the paper.
∗ Corresponding author, tanel@parsek.yf.ttu.ee
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2. STATIC STATE FEEDBACK LINEARIZABILITY

Consider a discrete-time nonlinear control system Σ of the form

x+ = f (x,u), (1)

where f : (M×U)→M+, and the variables x = (x1, . . . ,xn) and u = (u1, . . . ,um) are the local coordinates
of the state space M and the input space U , respectively; f is assumed to be an analytic function of its
arguments, and M+ is the forward shifted state space with the coordinates x+ = (x+

1 , . . . ,x+
n ).

In the discrete-time case the local study is useless around an arbitrary initial state, since even in one step
the state can move far away from the initial state, regardless of the small control. One possibility is to work
around an equilibrium point of the system. Another, more general possibility is to work around a reference
trajectory that satisfies the system of equations (1). In this paper we adopt the first option.

Definition 1. A point (x0,u0) ∈M×U is called an equilibrium point of system (1) if f (x0,u0) = x0.

In the study of discrete-time nonlinear control systems the following assumption is usually made. It
guarantees the forward shift operator, defined by equations (1), to be injective. Note that this assumption is
not restrictive as it is always satisfied for accessible systems [9].

Assumption 1. System (1) is, around the equilibrium point (x0,u0), submersive, i.e. around (x0,u0),
rank[∂ f (x,u)/∂ (x,u)] = n.

Definition 2. A regular static state feedback u = α(x,v) is a mapping α:M×V → U such that locally,
around the equilibrium point, rank [∂α(·)/∂v] = m.

Definition 3. [3,4] System (1) is said to be static state feedback linearizable around its equilibrium point
(x0,u0) if there exist
1. a state coordinate transformation S : M →M defined on a neighbourhood X of x0 with S(x0) = 0,
2. a regular static state feedback of the form u = α(x,v), satisfying the condition α(x0,0) = u0 and defined

on a neighbourhood X×O of (x0,0) such that, in the new coordinates z = S(x), the compensated system
reads z+ = Az+Bv, where the pair (A,B) is in Brunovsky canonical form.

3. LINEARIZABILITY CONDITIONS IN TERMS OF VECTOR FIELDS

In [3] the local linearizability conditions for system (1) around (x0,u0) are formulated in terms of a sequence
of distributions Dk ⊂ T (M×U), k = 0, . . . ,n, associated with system (1). Here T (M×U) is the tangent
fibre bundle of the space M ×U , where the fibres are the tangent vector spaces defined at each point
(x,u) ∈M×U .

Define the distribution K as the kernel of the tangent map T f of the state transition map f : T f (K) = 0.
Under Assumption 1, dimK = m. Moreover, the distribution K as a kernel of a tangent map is always
involutive. Therefore, one can define the commutable basis

K = span{Ki, i = 1, . . . ,m} (2)

such that
[Ki,K j]≡ 0, (3)

for i, j = 1, . . . ,m. In the neighbourhood of (x0,u0) the sequence of distributions Dk, k = 0, . . . ,n, is
introduced:

D0 = span
{

∂
∂u1

, . . . ,
∂

∂um

}
,

Dk+1 = ∆k+1 +Dk, k = 0, . . . ,n−1,

(4)
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where, provided the distribution Dk +K is involutive and Dk∩K is constant dimensional, ∆k+1 can be found
from

∆+
k+1 = T f (Dk) (5)

by applying the backward shift [3]1. Note that ∆k+1 is defined by (5) as the span of vector fields {T f (Dk)}−;
however, these vector fields do not necessarily exist, in general, since the backward shift operator is a well-
defined operation on T M+ iff the basis vectors of Dk respect the distribution K, i.e., if for every basis
element Ξ of Dk and for the vector field Ki ∈ K

[Ξ,Ki] ∈ K (6)

holds.
Consider an arbitrary vector field Ξ, defined on the manifold M×U :

Ξ =
n

∑
I=1

ξI(x,u)
∂

∂xI
+

m

∑
i=1

ξi(x,u)
∂

∂ui
. (7)

Multiplying (7) with the Jacobi matrix of submersion f gives the vector field

T f (Ξ) =
n

∑
I=1

(
n

∑
J=1

∂ fI

∂xJ
ξJ +

m

∑
j=1

∂ fI

∂u j
ξJ

)
∂

∂x+
I

=
n

∑
I=1
{T f (Ξ)}I

∂
∂x+

I
. (8)

Although this vector field belongs to T M+, its components {T f (Ξ)}I are still expressed as the functions
of the coordinates (x,u). The vector field T f (Ξ) ∈ T M+ is defined on the manifold M+ iff one can,
using equations (1), write its components {T f (Ξ)}I in terms of the coordinates x+ exclusively. The
latter is possible if the components of the vector field (8) can be expressed as the composite functions
{T f (Ξ)}I (x,u) = ΨI ◦ f (x,u) for some functions ΨI , yielding

T f (Ξ) =
n

∑
I=1

ΨI
(
x+) ∂

∂x+
I

. (9)

Proposition 1. The vector field (8) can be expressed in the form (9) iff (6) holds.

Proof. The submersion f defines the fibre bundle on the manifold M×U . The base manifold of this fibre
bundle is M+ with coordinates x+. The fibres are the integral surfaces of the distribution K. By (3) one can
choose the fibre coordinates to be the canonical parameters χi = gi(x,u) of the vector fields K j:〈

dgi,K j
〉≡ 0, i, j = 1, . . . ,m. (10)

Therefore, the base coordinates x+ and the fibre coordinates χ+ are defined by the following coordinate
transformation, denoted by F :

x+ = f (x,u),
χ+ = g(x,u).

The corresponding Jacobi matrix reads

T F =




∂ fI

∂xJ

∂ fI

∂u j

∂gi

∂xJ

∂ gi

∂u j


 .

Multiplying the vector field Ξ (see (7)) by T F yields

T F(Ξ) = T f (Ξ)+
m

∑
i=1

(
n

∑
J=1

∂gi

∂xJ
ξJ +

m

∑
j=1

∂gi

∂u j
ξ j

)
∂

∂ χ+
i

(11)

1 Note that in [3] and [4] the notation ∆k+1 = T f (Dk) is used, which may cause confusion as the distribution T f (Dk) belongs
to the tangent bundle T M+, and must be shifted backward to T M to obtain the distribution ∆k+1.
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with the second term belonging to the distribution K. Its components can be expressed in terms of the base
coordinates x+ exclusively iff they do not depend on the fibre coordinates χ+

i . According to (10), this is
equivalent to the property that the Lie derivatives

LKi {T f (Ξ)}I ≡ 0 (12)

for i = 1, . . . ,m, I = 1, . . . ,n. Due to (8), the components of T f (Ξ) are actually the scalar products

{T f (Ξ)}I =
〈
dx+

I ◦T f ,Ξ
〉
. (13)

Replacing {T f (Ξ)}I in (12) by the right-hand side of (13), we obtain, using the differentiation rule of the
scalar product,

LKi

〈
dx+

I ◦T f ,Ξ
〉

=
〈
d
〈
dx+

I ◦T f ,Ki
〉
,Ξ

〉
+

〈
dx+

I ◦T f , [Ki,Ξ]
〉≡ 0. (14)

Note that
〈
dx+

I ◦T f ,Ki
〉

=
〈
dx+

I ,T f (Ki)
〉 ≡ 0 since Ki ∈ K and therefore, T f (Ki) ≡ 0 for all i = 1, . . . ,m.

Consequently,
〈
dx+

I ◦T f , [Ki,Ξ]
〉 ≡ 0 for all i = 1, . . . ,m whenever the Lie brackets [Ki,Ξ] ∈ K for i =

1, . . . ,m. ¤
Example 1 in Section 7 illustrates the both situations, i.e. when T f (Ξ) cannot be shifted back and when

it can be shifted back; see formulas (37) and (38), respectively.
Below, detailed algorithms are given for computation of the sequences Dk and ∆k, respectively. Both

algorithms require the state equations of the control system to be given. Algorithm 1 gives the sequence
Dk, or informs that the computation of the sequence cannot be completed, because either Dk−1 + K is not
involutive or Dk−1∩K is not constant dimensional around the equilibrium point. In the latter case the control
system is not static state feedback linearizable. Algorithm 2 computes the sequence ∆k.

Algorithm 1: Computation of the sequence Dk

Initialization. Define the distribution K as the kernel of the tangent map T f of the state transition map
f in (1), T f (K) = 0, and D0 as in (4). Set D0 := span{Ξ0}, such that the vector fields Ξ0 respect K, k := 1
and go to step k.

Step k. Check whether Dk−1 + K is involutive and Dk−1 ∩K constant dimensional around (x0,u0). If
not, then stop (the system is not static state feedback linearizable), otherwise continue.

Note that some vector fields, added at the previous step (or for step 1 at initialization) into Dk−1 may
not respect the distribution K. If this is so, find the same number of independent linear combinations
of Ξ0, . . . ,Ξk−2 and [T f (Ξk−2)]−, denoted by Ξk−1 that respect the distribution K, and be such that
Dk−1 = span{Ξ0,Ξ1, . . . ,Ξk−1}, Ξk−1 6∈ Dk−2. Finally, define2

Dk = span
{

Ξ0, . . . ,Ξk−1, [T f (Ξk−1)]−
}

and check whether dimDk = n + m. If yes, then set N := k and stop (the sequence Dk has been found),
otherwise check whether dimDk > dimDk−1. If yes, then set Ξk := [T f (Ξk−1)]−, k := k + 1 and go to the
next step. Otherwise, the system is not static state feedback linearizable.

Note that N is the minimal integer such that dimDN = dimDN+1 = . . . = n+m.

Algorithm 2: Computation of the sequence ∆k

Algorithm 1 can be modified accordingly to compute the sequence ∆k. In that case one starts with
∆1 = span{Ξ1} instead of D0, and at the kth (k = 2, . . . ,N) step defines ∆k = span{Ξ1, . . . ,Ξk}.

The linearizability conditions for system (1) are formulated in the following theorem.
2 Some of the vector fields T f (Ξk−1) may be zero since the corresponding vector fields Ξk−1 ∈ K.
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Theorem 1. [3] System (1) is static state feedback linearizable around the equilibrium point (x0,u0) iff
1. the distributions Dk +K are involutive and Dk∩K are constant dimensional for all k = 0, . . . ,N−1;
2. dimDN = n+m.

4. LINEARIZABILITY CONDITION IN TERMS OF DIFFERENTIAL ONE-FORMS

In [5] the linearizability conditions for system (1) are given in terms of the decreasing sequence of
codistributions Hk ⊂ T ∗M, defined locally around the equilibrium point by3

H1 = span{dx} , Hk+1 = span
{

ω ∈Hk |ω+ ◦T f ∈Hk
}

, k ≥ 1. (15)

There exists an integer N∗ ≤ n such that for 1 ≤ k ≤ N∗, Hk+1 ⊂ Hk but HN∗+1 6= HN∗ and HN∗+1 =
HN∗+2 := H∞. Obviously, N∗ is the minimal integer satisfying HN∗+1 = HN∗+2 and H∞ is the maximal
codistribution, invariant with respect to the forward shift. To compute the one-forms ω+ ◦ T f in (15),
consider first the forward shift of an arbitrary one-form

ω =
n

∑
I=1

ωI(x)dxI ∈ T M, (16)

obtained by replacing all the state coordinates xI in (16) by their forward shifts x+
I :

ω+ =
n

∑
I=1

ωI(x+)dx+
I ∈ T M+.

Then the one-form

ω+ ◦T f =
n

∑
J=1

ωJ(x+)

(
n

∑
I=1

∂ fJ

∂xI
dxI +

m

∑
i=1

∂ fJ

∂ui
dui

)
∈ T (M×U),

where, by replacing x+ in ωJ(x+) by f (x,u), one obtains

ω+ ◦T f =
n

∑
J=1

ωJ ◦ f (x,u)

(
n

∑
I=1

∂ fJ

∂xI
dxI +

m

∑
i=1

∂ fJ

∂ui
dui

)
∈ T (M×U).

The linearizability conditions for system (1) are formulated in the following theorem.

Theorem 2. [5] System (1) is static state feedback linearizable around the equilibrium point (x0,u0) iff
1. Hk is completely integrable for all k = 1, . . . ,N∗,
2. H∞ := HN∗+1 = {0}.

In [5] the complete integrability has been checked via the Frobenius Theorem.

Theorem 3 (Frobenius). Let W = span{ω1, . . . ,ωr} be a vector space of 1-forms. W is locally completely
integrable iff dωk∧ω1∧ . . .∧ωr = 0 for all k = 1, . . . ,r.

However, Theorem 4 below suggests an alternative rule which does not require the computation of
exterior derivatives of the basis vectors of Hk, as well as their wedge products with the basis vectors of Hk.
The proof of Theorem 4 is based on the following Lemma.

3 In [5] the condition is given as ω+ ∈Hk. However, this may yield confusion because the one-forms ω+ (as the forward shifts
of the one-forms ω ∈ T M) belong to T M+ and the elements of Hk belong to T M. Therefore, one has to “bring back” the one-
forms ω+ to T M with the help of the tangent map T f .
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Lemma 1. If the codistributions Hk,Hk+1, . . . ,H1 are integrable, or equivalently, one can define the state
coordinates X , adapted to Hk,Hk−1, . . . ,H1, such that

X̄k
rk

= σ̄ k
rk
(x), rk = 1, . . . ,dimHk,

Xλ
iλ = σλ

iλ (x), iλ = 1, . . . ,nλ ,

Hλ = span
{

dX̄k
rk
,dXk−1

ik−1
, . . . ,dXλ

iλ

}
,

∀λ = 1, . . . ,k−1,

(17)

if and only if the forward shift
(
ωk

µk

)+ ◦T f of an arbitrary 1-form ω ∈Hk can be expressed in terms of{
X̄k

rk
,Xk−1

ik−1

}
only.

Proof. Each codistribution Hλ for all λ = 1, . . . ,k defines a corresponding subspace Bλ ⊂M such that Hλ
is the cotangent bundle of Bλ and dimHλ = dimBλ if and only if all Hλ are integrable. Or, equivalently,
the integrals

{
X̄k

rk
,Xk−1

ik−1
, . . . ,Xλ

iλ

}
of Hλ can also be defined as the coordinates of the subspace Bλ . This

means that if an arbitrary 1-form ω ∈ Hλ is defined in the subspace Bλ , then its components can be
expressed only in terms of variables

{
X̄k

rk
,Xk−1

ik−1
, . . . ,Xλ

iλ

}
as the integrals of Hλ .

Finally, according to the definition of the codistributions Hk for an arbitrary 1-form ω ∈Hk its forward
shift ω+ ◦T f belongs to Hk−1, which is assumed to be integrable. That is, the components of ω+ ◦T f can
be expressed only in terms of the integrals

{
X̄k

rk
,Xk−1

ik−1

}
of Hk−1. ¤

Theorem 4. If the codistribution Hk is not integrable, then there does not exist the complete cobasis for
Hk, where the components of the basis 1-forms can be expressed without using the backward shifts of the
state coordinates.

Proof. Suppose Hk is not integrable, but Hk−1, . . . ,H1 are; then the number of the independent integrals X̄k
r̄k

of Hk equals dimH̄k, where H̄k ⊂Hk is the maximal integrable subspace of Hk. Then one can define at
least dimHk−dimH̄k independent 1-forms ωk

λk
, where dimH̄k +1≤ λk ≤ dimHk, and whose components

cannot be expressed in terms of integrals
{

X̄k
r̄k

}
. Consequently, we need some additional variables Ik

µk
to

express the components of ωk
λk

, since the other adapted coordinates
{

Xk−1
ik−1

, . . . ,X1
i1

}
cannot be used for this

purpose, as will be shown below.

First we will prove that the components of ωk
λk
6∈ H̄k, but ωk

λk
∈ Hk, can be expressed in terms of{(

X̄k
rk

)+
,
(
Ik
µk

)+
}

, and alternatively also in terms of
{

X̄k
rk
,Xk−1

ik−1

}
. The latter yields that the forward shifts

(
Ik
µk

)+ must also be the integrals of Hk−1 and the variables Ik
µk

are the backward shifts of some integrals
Xk−1

ik−1
of Hk−1.

Really, for ωk
λk
6∈ H̄k, but ωk

λk
∈ Hk, its components can be expressed in terms of

{
X̄k

rk
, Ik

µk

}
, where

1 ≤ rk ≤ dimH̄k and dimH̄k + 1 ≤ µk ≤ dimHk. Consequently, the components of the forward shifts(
ωk

λk

)+
◦T f of the 1-forms ωk

λk
can be expressed in terms of

{(
X̄k

rk

)+
,
(
Ik
µk

)+
}

. At the same time, according

to the definitions of the sequence of codistributions Hk, the 1-forms
(

ωk
λk

)+
◦T f belong to Hk−1. Due to

the integrability of Hk−1, the components of
(

ωk
λk

)+
◦T f ∈Hk−1 can, according to Lemma 1, be expressed

in terms of the integrals
{

X̄k
rk
,Xk−1

ik−1

}
of Hk−1.
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Let us prove now that the variables Ik
µk

cannot be the functions of other variables
{

Xk−1
ik−1

, . . . ,X1
i1

}
. The

proof is by contradiction. Suppose that one can express Ik
µk

in terms of
{

Xk−1
ik−1

, . . . ,X1
i1

}
. That is, one

can alternatively express the components of ωk
λk
∈ Hk as the functions of variables

{
X̄k

rk
, Ik

µk

}
in terms of{

X̄k
rk
,Xk−1

ik−1
, . . . ,X1

i1

}
. Consequently, the components of

(
ωk

λk

)+
◦T f ∈Hk−1 can be expressed in terms of

the forward shifts
{(

X̄k
rk

)+
,
(

Xk−1
ik−1

)+
, . . . ,

(
X1

i1

)+
}

. However, according to the definition of codistributions

Hk, the forward shifts
{(

Xk−1
ik−1

)+
, . . . ,

(
X1

i1

)+
}

are not the integrals of Hk−1, which leads to contradiction.

To conclude, if Hk is not integrable, then the variables Ik
µk

are the backward shifts of the coordinates
Xk−1

ik−1
, but one cannot express them in terms of coordinates X . Therefore, one cannot express the components

of all its basis 1-forms in terms of the adapted coordinates X as in (17); one needs to use additionally the
backward shifts of the state coordinates. ¤

The converse statement of Theorem 5 also holds. The proof is based on the application of the Frobenius
Theorem and is trivial.

5. RELATIONSHIP BETWEEN THE LINEARIZABILITY CONDITIONS

In order to find the explicit relationship between the two sets of linearizability conditions, formulated by
Theorems 1 and 2, respectively, we first reformulate Theorem 1 in terms of the distributions ∆k. In order to
do so, we need the following lemma.

Lemma 2. The distribution Dk +K is involutive and Dk∩K is constant dimensional iff the distribution ∆k+1
is involutive and constant dimensional for k = 0, . . . ,N−2.

Proof. We prove first that dim∆k+1 = dim(Dk)− dim(DK ∩K). Due to (2), DK + K = span{Ξα , α =
1, . . . ,ρk, Ki, i = 1, . . . ,m}; there Ξα ∈ DK , α = 1, . . . ,ρk are linearly independent vector fields such that
T f (Ξα) 6≡ 0. Since ρk = dim(DK +K)−dimK = dimDK +dimK−dim(DK ∩K)−dimK,

ρk = dimDk−dim(Dk∩K). (18)

As K = kerT f , one can rewrite (5) as

∆+
k+1 = T f (Dk +K), (19)

yielding

∆+
k+1 = span{T f (Ξα)} . (20)

Because the number of vector fields Ξα (and so also T f (Ξα)) is ρk, dim∆+
k+1 = dimDk−dim(Dk∩K).

Next we prove that ∆k+1 is involutive iff Dk + K is involutive. Assume first that Dk + K is involutive,
then all the possible Lie brackets of the vector fields Ξα and Ki must also belong to Dk +K. By (3),

[Ki,K j] ∈ DK +K. (21)

According to Proposition 1, the vector fields T f (Ξα) exist iff Ξα respect the distribution K, meaning

[Ξα ,Ki] ∈ K, α = 1, . . . ,ρk, i = 1, . . . ,m. (22)

Finally, the third involutivity condition for Dk +K reads

[
Ξα , Ξβ

]
=

ρk

∑
γ=1

cαβγΞγ +
m

∑
j=1

cαβ jK j. (23)
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We have to prove next that all the possible Lie brackets of the vector fields T f (Ξα) belong to the distribution
∆+

k+1, defined by (20), since then and only then the distribution ∆+
k+1 (and also ∆k+1) is involutive. Applying

the tangent map T f to (23) and taking into account T f (K)≡ 0 yields for all α and β

T f
([

Ξα , Ξβ
])

=
ρk

∑
γ=1

cαβγT f (Ξγ). (24)

According to the property of the Lie brackets (see, e.g., [4], p. 50),

T f
([

Ξα , Ξβ
])

=
[
T f (Ξα), T f (Ξβ )

]
(25)

holds and, consequently, because of (24),

[
T f (Ξα), T f (Ξβ )

]
=

ρk

∑
γ=1

cαβγ T f (Ξγ), (26)

proving the involutivity of ∆k+1.
Conversely, assume that ∆k+1 as the backward shift of ∆+

k+1, defined by (20), is involutive. Then (26)
holds and due to (25), also (23) must hold. Since the conditions (21) and (22) are also satisfied, the
involutivity of Dk +K follows. ¤

We are now ready to reformulate Theorem 1.

Theorem 5. System (1) is static state feedback linearizable around the equilibrium point (x0,u0), iff
1. the distributions ∆k+1 are involutive and constant dimensional for all k = 0, . . . ,N−1;
2. dim∆N = n.

We will prove that all distributions ∆k, k = 1, . . . ,N− 1 are involutive and constant dimensional iff all
codistributions Hk, k = 1, . . . ,N are integrable and constant dimensional. For that it is enough to show that
∆k is the maximal annihilator of Hk+1 for k = 1, . . . ,N−1.

Theorem 6. The codistribution Hk+1 is the maximal annihilator of the distribution ∆k, for k = 1, . . . ,N−1.
That is, on the manifold M, 〈Hk+1,∆k〉 ≡ 0, and codimHk+1 = dim∆k.

Proof. The proof is by induction. First we prove that the codistribution H2 is the maximal annihilator of the
distribution ∆1. Due to definitions (4) and (15), obviously 〈H1, D0〉 ≡ 0. Due to H +

2 ◦T f ∈H1 also
〈
H +

2 ◦T f , D0
〉 ≡ 0. (27)

The left-hand side of (27) may be interpreted as the multiplication of three matrices. Matrix H +
2 is

a dimH2× n-matrix, whose rows are the basis elements of H +
2 . The second one, T f , is the n× (n + m)

Jacobi matrix of the state transition map f . The third matrix D0 is the (n +m)×m-matrix, whose columns
are the basis vectors of D0. Due to the associativity property of matrix multiplication, one can rewrite (27)
as 〈

H +
2 , T f (D0)

〉 ≡ 〈
H +

2 , ∆+
1

〉 ≡ 0,

and as the value of a constant does not change by the backward shift, the latter yields 〈H2, ∆1〉 ≡ 0.
Therefore, H2 annihilates ∆1 on the manifold M.

To show that H2 is also the maximal annihilator of ∆1, suppose conversely that there exists a 1-form
ω ∈ T M not belonging to H2 but still annihilating ∆1: 〈ω, ∆1〉= 0 and ω 6∈H2. The relationship 〈ω,∆1〉= 0
must be valid also after applying to it the forward shift and the associativity property of matrix multiplication

〈
ω+, ∆+

1

〉
=

〈
ω+, T f (D0)

〉
=

〈
ω+ ◦T f , D0

〉
= 0. (28)



T. Mullari et al.: Feedback linearization 129

According to (28), ω+ ◦T f must belong to H1 as the maximal annihilator of D0. From above, we have
ω+ ◦T f ∈H1 and ω 6∈H2, which leads to a contradiction. Therefore, H2 is the maximal annihilator of ∆1
on the manifold M, or, equivalently, due to (4), the maximal annihilator of D1 on the manifold M×U .

Next suppose that Hk is the maximal annihilator of Dk−1 on the manifold M×U . Then 〈Hk, Dk−1〉= 0.
According to definition (15), H +

k+1 ◦T f ∈Hk, yielding
〈
H +

k+1 ◦T f , Dk−1
〉

= 0.
Again, due to the associativity property of a matrix multiplication, definition (15), and the invariance of

a scalar product with respect to the (backward) shift, we may write
〈
H +

k+1, T f (Dk−1)
〉

=
〈
H +

k+1, ∆+
k

〉
= 0 ⇒ 〈Hk+1, ∆k〉 = 0.

So, Hk+1 annihilates ∆k. In order to show that Hk+1 is also the maximal annihilator of ∆k on M, suppose
contrarily the existence of a one-form θ ∈ T M such that θ 6∈Hk+1 and 〈θ , ∆k〉= 0. As before, one can show
that this leads to a contradiction. Consequently, Hk+1 is the maximal annihilator of ∆k on M. Moreover,
because dim∆N = n ja HN∗+1 is the first zero codistribution in the sequence, also N∗ = N. ¤
Corollary 1.
1. From involutivity and constant dimensionality of distribution ∆k integrability and constant dimensionality

of codistribution Hk+1 follows for all k = 1, . . . ,N−1 and vice versa.
2. H∞ = {0} iff dim∆N = n, or, equivalently, dimDN +K = m+n.

Proof. Follows directly from Theorem 6. ¤
The result of Corollary 1 enables combination of both methods. This will be done in Section 6, where the

state coordinate transformation is completed by using the Hk subspaces even if one checks the linearizability
condition via the sequence of distributions ∆k.

6. METHOD FOR FINDING THE NEW STATE COORDINATES

The new state coordinates zI , necessary for the static state feedback linearization of system (1), can be found
via integration of the basis vectors of the codistributions Hk, k = 1, . . . ,N∗, constructed in a specific way
by using the detailed algorithm below; see also [5]. Note that the basis vectors of the codistributions Hk+1,
found either by (15) or by the method in [5], are not necessarily exact and the state coordinates cannot be
found from arbitrary exact basis vectors. When linearizability conditions are satisfied, Hk+1 is integrable,
and one can always find the exact basis for Hk+1, which can be used for finding the new coordinates.

Algorithm 3: Computation of the state transformation z = S(x)

Initialization. Given the sequence Hk, k = 1, . . . ,N, start with the last nonzero codistribution HN =
span

{
dzN

iN , iN = 1, . . . , nN}. Integrate its basis one-forms to get the first nN(= dimHN) state coordinates{
zN

1 , . . . ,zN
nN

}
. Set k := 1.

Step k. Start with the codistribution HN−k+1 = span
{

dzN
iN , . . . , dzN−k+1

iN−k+1

}
, iN−k+1 = 1, . . . ,nN−k+1,

nN−k+1 = dimHN−k+1 − dimHN−k+2. The shifts of zN−k+1
iN−k+1

will be defined as the next subset of the

new state coordinates zN−k
iN−k+1

:=
(

zN−k+1
iN−k+1

)+
, satisfying for all iN−k+1 the conditions dzN−k

iN−k+1
∈ HN−k,

dzN−k
iN−k+1

6∈HN−k+1.

Add nN−k − nN−k+1 more independent integrals
{

zN−k
iN−k+1+1, . . . , zN−k

iN−k

}
so that their differentials

complete the basis of HN−k = span
{

dzN
iN , . . . ,dzN−k

iN−k

}
, iN−k = 1, . . . ,nN−k. Check whether k = N− 1. If

yes, then stop. Otherwise set k := k +1 and go to the next step.

Alternatively, one may compute, according to Algorithm 2, the sequence of distributions ∆k =
span{Ξ1, . . . ,Ξk}, k = 1, . . . ,N. Again, as all basis vectors of Hk+1 are not necessarily exact, the vector



130 Proceedings of the Estonian Academy of Sciences, 2011, 60, 2, 121–135

fields Ξ1, . . . ,Ξk do not necessarily commute. Therefore, one has to replace them by their commuting linear
combinations Ξ̂1, . . . , Ξ̂k such that ∆k = span{Ξ̂1, . . . , Ξ̂k}. Next, define the canonical parameters of the
vector fields Ξ̂l that satisfy the condition 〈dXk

ik , Ξ̂
l
il 〉 = δklδikil . By Theorem 6, the canonical parameters Xk

of the distribution ∆k provide an integrable basis for the codistribution Hk+1, k = 1, . . . ,N− 1. However,
this set of state coordinates Xk is in general not yet suitable for linearization. Therefore, one may continue
with Algorithm 3 to find the new state coordinates.

7. DISCUSSION AND EXAMPLES

We have implemented both methods for checking feedback linearizability and the method for finding the
new state coordinates in the package NLControl built within the computer algebra system Mathematica.
Since the functions from the package NLControl cannot be used outside the Mathematica environment, we
have developed a webMathematica-based application that allows the functions from NLControl to be used
on the world-wide web, in such a way that no other software except for an internet browser is necessary.
The developed webpage is available at http://webmathematica.cc.ioc.ee/webmathematica/NLControl/ .

As the first step of the computations, the backward shift operator, defined by the system equations, has
to be found, as described in [5]. For that one has to solve a system of n nonlinear equations with respect
to n variables. The solution of such a system may exhibit a much more complex expression than the state
transition map of the original control system and it may also happen that Mathematica is not able to find the
solution. In a few cases the solution cannot, in principle, be expressed in terms of the elementary functions.
Even in the latter case it is still possible, though extremely rare, that the system is feedback linearizable.

In principle, if the system is linearizable, then the linearization procedure can be carried out without
knowing the backward shift operator. However, in practice it may be complicated, because in order to
compute the backward shift of the one-form (or, alternatively, that of the vector field), the variables on
negative time-instances may occur, but can be eliminated by using certain replacement rules defined by
the control system. The backward shift operator gives explicit rules for replacing the mentioned variables;
otherwise one has to try to eliminate them just by using the relations imposed by the original control system
equations. The latter method is much less reliable and works successfully only with small systems. For
instance, to find the backward shift operator for the system

x+
1 = ux2 sinx2,

x+
2 = u,

(29)

one has to express x2 from x+
1 = ux2 sinx2, which is beyond the abilities of Mathematica 7.0. However, if

the method from [5] (see the proof of Lemma 4.3) is applied to find H2 = span{−dx1 +(x2 sinx2)−dx2} for
system (29), then we actually need only the backward shift of the product x2 sinx2, that is

(x2 sinx2)− = x1/x2.

The system is feedback linearizable by the state transformation z = (x1/x2, x2 sinx2). But it is not possible to
express the static state feedback in the form u = α(x,v), because v = usinu and thus u cannot be expressed
in terms of elementary functions. However, replacing sinx2 by ex2 , for example, in (29), yields a system, for
which the backward shift operator can be found easily, since Mathematica is able to find the solution of the
equation x+

1 = ux2 lnx2 as x2 = ProductLog[x+
1 /u]4.

To compute the sequence of codistributions of differential one-forms, three alternative methods are
available. The first of them uses the method from [5], the second is based on the formula Hk+1 =
(Hk

⋂
H +

k )−, for k ≥ 1, and the third method computes the sequence of distributions ∆k and then finds
Hk+1’s as their maximal annihilators.

4 ProductLog[z] represents the solution for w in z = wew.
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In the majority of cases the fastest method is the one based on the method from [5]. Even if our goal is
only to check the feedback linearizability property of the system, which means that using the third method,
we may only compute the distributions ∆k and check their involutivity, the first method in most cases still
works faster. Of course, there exist exceptions, often characterized by the occurrence of exponential and
logarithmic functions, for which the distributions ∆k give the result faster. Unfortunately, it is not possible
to predict the fastest linearization method only by visual inspection of the function f .

The only difficulty known to us, which may occur in using the first method (and occurs extremely
rarely), is that in case the expressions, found on the previous steps, have not been enough simplified, there
is a chance that Mathematica may be unable to solve the system of equations and the computation fails.

The second method turns out to be slower than the first method, but in most cases it is faster than
method 3. If the basis vectors of Hk are not simplified enough, some basis vectors can be lost from the
intersection Hk

⋂
H +

k . Addition of too many simplification commands into the program makes it work
slowly.

If we need only to check the feedback linearizability property, an additional method is possible: instead
of the subspaces Hk, one may use the subspaces Ik, introduced in [10] and defined by I1 = spanK {dx(0)},
Ik+1 = Ik

⋂
I +

k for k ≥ 1. Between the sequences Hk and Ik the relations I∞ = H∞ and Ik = δ k−1Hk
hold, where δ is the forward-shift operator. Moreover, the subspace Ik is completely integrable iff Hk is
completely integrable. This method is especially useful when it is complicated to find the backward shift
operator or it cannot be found at all. Then Ik provides us with the only practical way for checking feedback
linearizability. On the other hand, if the function f is complex and the backward shift operator is defined by a
simple expression, then the computation of Ik’s usually takes more time than that of Hk’s and ∆k’s. In case
the subspaces are not integrable, the expression of Ik is usually more complex than the corresponding Hk.

Note that the algorithm for finding the state coordinates actually requires integration (solution) of
differential equations and is thus only constructive if the latter subproblem is solvable. Though over
the years the capabilities of Mathematica to integrate the one-forms for medium-size medium-complexity
problems have improved, it has still not good enough facilities for this task. To improve the capabilities
of Mathematica in this respect, we have implemented an additional function IntegrateOneForms. This
function replaces the integration of the set of one-forms by solution of the sequence of linear homogeneous
PDEs and is based on the algorithm described in [11]; see also [12]. Despite this extension, the solution
of the set of the partial differential equations is still often unsuccessful, especially for high-complexity
examples.

The final change of variables, which represents the system in the new state coordinates, requires again
the inverse state transformation to be found and thus is a potential point of failure. The latter transformation
is sometimes a quite time-demanding operation and may take more time than all the previous computations.

Note that none of the methods discussed in this paper is adapted for approximate calculations, therefore
all decimal fractions are transformed to rational numbers.

Finally, note that the results on state feedback linearization with Mathematica for continuous-time
nonlinear systems have been reported in [13] and with Maple in [14].

To illustrate the results of this paper, we provide two examples. One of them is an academic example,
the other is the model of a truck trailer.

Example 1. Consider the system

x+
1 = ln(ex1 + x3 +u1) ,

x+
2 = x2u2 (1+ e−x1 (u1 + x3)) ,

x+
3 = x2e−x1 + x3.

(30)

One may define the new state coordinates z from the sequence of codistributions H1 =
span{dx1,dx2,dx3}, H2 = span{dx3}, computed for equations (30). According to the results of Section 6,
H2 defines the first new state coordinate z2

1 = x3. The next new state coordinate is its forward shift
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z1
2 = z2+

1 = x+
3 = x2e−x1 + x3. Finally, to complete the span of the 1-forms dz2

1 and dz1
2 to the cobasis H1 of

the state space, we add the 1-form dz1
1 = dx1. Consequently, the last new state coordinate is z1

1 = x1. The
state equations in the new coordinates are

z1+
1 = ln

(
ez1

1 + z2
1 +u1

)
,

z1+
2 = z1

2 +u2
(
z1

2− z2
1
)
,

z2+
1 = z1

2,

(31)

yielding the linear equations
z1+

1 = v1, z1+
2 = z1

2 + v2, z2+
1 = z1

2 (32)

after applying the static state feedback, defined by v1 = ln
(

ez1
1 + z2

1 +u1

)
, v2 = u2

(
z1

2− z1
2
)
.

Alternatively, one may find the new state coordinates from the sequence of distributions ∆k. Compute
the tangent map of the state transition map as follows:

T f =




ex1
ex1 +u1+x3

0 1
ex1+u1+x3

1
ex1 +u1+x3

0

−e−x1 u2x2(u1+x3) u2(1+e−x1 (u1+x3)) e−x1 u2x2 e−x1 u2x2 x2(1+e−x1 (u1+x3))

−e−x1 x2 e−x1 1 0 0


 (33)

and its kernel K = KerT f = span{K1,K2}, where

K1 = e−2x1x2
∂

∂x1
+ e−2x1x2

(
e2x1 + x2

) ∂
∂x2
− e−x1x2

∂
∂x3
−u2

∂
∂u2

,

K2 = −e−x1 ∂
∂x1
− e−x1x2

∂
∂x2

+ ∂
∂u1

.

(34)

Next, compute, according to (5), the distribution

∆1 = {T f (D0)}− , (35)

where D0 = span{∂/∂u1,∂/∂u2}. The distribution D0 + K is involutive as both K and D0 are involutive.
Next, observe that the vector field ∂/∂u1 commutes with the vector fields K1 and K2 but the vector field
∂/∂u2 does not respect the distribution K since

[
∂

∂u2
,K1

]
=

∂
∂u2

6∈ K. (36)

According to Proposition 1, one cannot, due to (36), express the components of the vector field
T f (∂/∂u2) in terms of x+ exclusively. Really (see 30),

T f
(

∂
∂u2

)
= x2

(
1+ e−x1 (u1 + x3)

) ∂
∂x+

2
=

x+
2

u2

∂
∂x+

2
. (37)

Choose another basis for D0 that respects K, for example,

D0 = span{∂/∂u1,u2∂/∂u2} .

Then we have
T f

(
∂

∂ u1

)
= e−x+

1 ∂
∂x+

1
+ x+

2 e−x+
1 ∂

∂x+
2
,

T f
(

u2
∂

∂u2

)
= x+

2
∂

∂x+
2
,

(38)
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and

∆1 = span
{

e−x1
∂

∂x1
+ x2e−x1

∂
∂x2

,x2
∂

∂x2

}
. (39)

Since ∆2 = ∆N , its basis vector fields span the complete tangent bundle T (M×U), and we have to find
only one vector field Ξ2

1, which does not belong to ∆1 and commutes with Ξ1
1 = e−x1 ∂

∂x1
+ x2e−x1 ∂

∂x2
and

Ξ1
2 = x2

∂
∂x2

. We may take, for example, Ξ2
1 = ∂/∂x3. Consequently, we get the new commutative basis of

∆2 as Ξ1
1, Ξ1

2 and Ξ2
1; those canonical parameters are

X1
1 = ex1 , X1

2 =−x1 + lnx2, X2
1 = x3 (40)

yielding the new state equations:

X1+
1 = X1

1 +X2
1 +u1, X1+

2 = ln
(

u2eX1
2

)
, X2+

1 = eX1
2 +X1

1 . (41)

However, according to the results of Section 6, equations (41) are not yet linearizable via static state
feedback, and one needs an additional coordinate transformation.

The additional coordinate transformation is defined below according to the method suggested in [3].
Starting with the coordinates

{
X1

1 ,X1
2 ,X2

1
}

, define the first set z̃2 of the new coordinates z̃ as z̃2
1 = X2

1 = x3.
The second set z̃1 of the new coordinates is defined in the following way. First we take z̃1

2 =
(
z̃1

2
)+, and

complete the set of new coordinates by z̃1
1 = X1

1 , leading to the transformation

z̃1
1 = X1

1 , z̃1
2 =

(
X1

1
)+

, z̃2
1 = X2

1 . (42)

The new state equations are
(
z̃1

1
)+ = (z̃1

1 + z̃2
1 +u1),(

z̃1
2
)+ = z̃1

2 +
(
z̃1

2− z̃2
1
)

u2,(
z̃2

1
)+ = z̃1

2.

(43)

Example 2. Consider the model of a truck trailer [15]:

x+
1 = x1 +

vt
l

u− vt
L

x1,

x+
2 = x2 +

vt
L

x1,

x+
3 = x3 + vt sin

(
x2 +

vt
2L

x1

)
,

x+
4 = x4 + vt cos

(
x2 +

vt
2L

x1

)
,

(44)

where x1 is the angle between the truck and the trailer, x2 is the angle between the trailer and the road, x3
and x4 are the vertical and horizontal positions of the rear end of the trailer, respectively, L is the length of
the trailer, l is the length of the truck, t is the sampling interval, and v is the velocity of the truck. The input
parameter u is the steering angle. We are going to check, using Theorems 5 and 2, respectively, whether
system (44) is static state feedback linearizable. Compute first, for (44),

T f =




1− tv
L 0 0 0 tv

l

tv
L 1 0 0 0

t2v2

2L cos
(
x2 + vtx1

2L

)
tvcos

(
x2 + vtx1

2L

)
1 0 0

− t2v2

2L sin
(
x2 + vtx1

2L

) −tvsin
(
x2 + vtx1

2L

)
0 1 0



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and find K = kerT f , spanned by the vector field

− Ltv
l(L− tv)

∂
∂x1

+
t2v2

l(L− tv)
∂

∂x2
− t3v3

2l(L− tv)
cos

(
x2 +

tvx1

2L

) ∂
∂x3

+
t3v3

2l(L− tv)
sin

(
x2 +

tvx1

2L

) ∂
∂x4

+
∂
∂u

.

Next compute the distribution ∆1, spanned by the vector field

T f
(

∂
∂u

)
=

tv
l

∂
∂x+

1
. (45)

In order to simplify the computations, we multiply the vector field (45) by the constant l/tv, obtaining
∆+

1 = span
{

Ξ+
1

}
, where Ξ1 = ∂/∂x1. Obviously, the distribution ∆1 is involutive. Applying the tangent

map T f to the distribution ∆1 = span{∂/∂x1}, we obtain

∆+
2 = span

{
∂

∂x+
1

, 2
∂

∂x+
2

+ tvcos
(

tv(tvu− lx+
1 )

2l(L−2tv)
+ x+

2

)
∂

∂x+
3

−tvsin
(

tv(tvu− lx+
1 )

2l(L−2tv)
+ x+

2

)
∂

∂x+
4

}
. (46)

The distribution ∆+
2 (and therefore, also ∆2) is not involutive and therefore, according to Theorem 5, system

(44) is not static state feedback linearizable.
Alternatively, one may compute the codistributions: H1 = span{dx1,dx2, dx3,dx4}, H2 = span{dx2,

dx3,dx4}, and

H3 = span
{

tvdx2 +2cosec
(

x2 +
tv(tvu−− lx1)

2l(L− tv)

)
dx4, dx3 + cot

(
x2 +

tv(tvu−− lx1)
2l(L− tv)

)
dx4

}
.

Again, it is easy to check, for example via the Frobenius Theorem, that the codistribution H3 is not
integrable, and therefore according to Theorem 2, system (44) is not static state feedback linearizable.

8. CONCLUSION

In this paper the problem of static state feedback linearizability of a discrete-time nonlinear control system
has been addressed. The paper focuses on establishing the explicit relationship between the two sets of
necessary and sufficient linearizability conditions. The first set of conditions is formulated in terms of
involutivity of an increasing sequence of certain distributions of vector fields. The second set of conditions
is formulated in terms of integrability of the decreasing sequence of the codistributions of differential one-
forms. We have demonstrated that the distributions used in the first set of conditions are the maximal
annihilators of the corresponding codistributions used in the second set of conditions. Moreover, two
methods have been compared from the point of view of computational complexity. Note that the new state
coordinates are the canonical parameters of the commutative basis vector fields (with specific properties) of
the distribution ∆N and also the integrals of the corresponding codistributions H1. The method based on one-
forms is easier than that based on vector fields, since in the latter case the new state coordinates are computed
in two steps. At the first step one has to find canonical parameters of an arbitrary commutative basis
vector field of the distribution ∆N , which actually corresponds to finding the integrals of the corresponding
codistribution H1. At the second step one modifies the integrals of H1 to get the integrals with specific
properties.
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Lineariseeritavus staatilise olekutagasisidega: kahe meetodi vahelised seosed

Tanel Mullari, Ülle Kotta ja Maris Tõnso

On käsitletud diskreetse ajaga mittelineaarsete juhtimissüsteemide lineariseerimise võimalikkust staatilise
olekutagasisidega. Põhitähelepanu on pööratud kahe tarvilike ja piisavate tingimuste kogumi omavaheliste
seoste uurimisele. Esimene neist on esitatud juhtimissüsteemi defineeritud vektorväljadega genereeritud
jaotuste jada involutiivsuse kaudu. Teine kogum esitub juhtimissüsteemi defineeritud diferentsiaalsete
1-vormidega genereeritud kaasjaotuste jada integreeruvuse kaudu. Artiklis on tõestatud, et esimese tingi-
muste kogumi puhul esinevad jaotused on teise tingimuste kogumi vastavate kaasjaotuste maksimaalsed
annihilaatorid. On võrreldud mõlemat liiki tingimuste kontrolli ja vaadeldud uute olekukoordinaatide leid-
mist nende rakendusliku lihtsuse seisukohast arvutialgebra süsteemis Mathematica. On esitatud algoritmid
lineariseerimiseks vajaliku koordinaatteisenduse leidmiseks. Teoreetilisi tulemusi illustreerivad kaks näidet.


