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Abstract. The paper derives a condition that allows construction of the o-differential fields for nonlinear control systems, described
by the set of input—output (i/0) higher-order delta-differential equations, defined on a homogeneous time scale. This condition is
related to the submersivity assumption of the extended system, associated with i/o equations, but is formulated directly in terms of
i/o equations.
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1. INTRODUCTION

The submersivity property plays a crucial role in the study of discrete-time nonlinear control systems.
The concept of submersivity was introduced into the nonlinear control theory by Grizzle [1] and since
then this assumption has been made in the majority of papers on discrete-time nonlinear control systems.
Especially, this assumption is vital in the algebraic approach based on differential forms as well as in the
differential geometric approach based on vector fields. Under the submersivity assumption the backward
shift, playing an important role in the above approaches, is a well-defined operator in the inversive closure
of the difference field, associated with the control system. The submersivity condition is also necessary for
system inversion [1] and in application of the Singh compensator to solve the dynamic input—output (i/0)
linearization problem in the discrete-time case; see Example 4 in [2]. In [3] it was proved that the discrete-
time nonlinear control system, described by the rational state transition function, is submersive if and only
if the ideal, defined by the control system, is prime, proper, and reflexive. Finally, note that the submersivity
assumption is not restrictive, since it is a necessary condition for the system to be accessible [1].

The submersivity condition also plays an important role in the study of nonlinear control systems on time
scales [4]. The time scale is a framework that allows unifying the study of continuous-time and discrete-
time systems into a single general formalism and also an extension to the cases when time may be partly
continuous and partly discrete. The main concept of the time scale calculus is the so-called delta-derivative
that is a generalization of both the time-derivative (in the continuous-time case) and the difference operator
(in the discrete-time case) [5]. In a similar manner a related definition of a delta-differential equation
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describes both the differential and difference equations. Therefore, note that since the shift operator is
not a delta-derivative, the time scale formalism accommodates the discrete-time system description in terms
of the difference operator, in opposition to more conventional models based on the shift operator [1,6].

The submersivity assumption is given, in general, for systems described via state equations. If the
system description is given in terms of i/o equations, then the condition may be formulated with the help of
the so-called extended state equations, associated with i/o equations, as it has been done, for example, in [4]
for a single-input single-output (SISO) system, defined on the time scale. As a result, every time one studies
a system defined by i/o equations, one needs to introduce an additional description of the system. The
only purpose of this description, called the extended system, is verifying the submersivity assumption. This
approach, though possible in principle, would also complicate the proofs, because one has to go from one
system description to the other every time the submersivity assumption shows up. It would be much more
desirable to present the submersivity condition directly in terms of i/o equations under study. Finally, note
that this task becomes especially urgent in addressing the multi-input multi-output (MIMO) systems defined
on the time scale, since in such a case the relationship between two equivalent submersivity conditions is far
from immediate unlike in the SISO case, or even in the MIMO case when the system is described in terms
of the shift operator. The goal of this paper is to derive the submersivity condition that is presented directly
in terms of the set of i/o delta-differential equations. We examine the structure of the extended system,
associated with the set of i/0 equations and its submersivity conditions.

2. TIME SCALES AND THE DELTA-DERIVATIVE

In this section the necessary facts are defined. For a more detailed presentation of this topic, see the
references, e.g. [4,5,7]. Let us remark that the central problem is to define a generalization of the derivative
operator (known from the real analysis) for functions defined on time scales.

A time scale T is defined as a nonempty closed subset of the set R. We assume that T is a topological
space with the topology induced by R. Let T be a time scale and t € T. The forward jump operator
0 :T — T is defined as 6(t) =inf{s € T, s >t} if t # max T, 6(maxT) := maxT. Then the graininess
function - T — T is defined as u(r) = o(t) —¢ for r € T. We are interested in homogeneous time scales.
The time scale T is called homogeneous if u = const. Moreover, the backward jump operator p : T — T is
defined by p(¢) =sup{s € T, s <t} ift ZminT, p(minT) := minT.

Let T =T\ {max T} if p(max T) < max T, T* = T in other cases. Assume that f : T — R is a function
defined on the time scale T. The delta-derivative f*(t), t € T¥ is defined as the real number (provided it
exists) with the property that, given € > 0, there exists & > 0 such that, forall s € (t — 5,7+ 6) N T,

[f(a(0)) = f(s) = f2() (0 (1) —5)| < elo(r) 5.

Moreover, f is delta-differentiable (on T¥) provided f(t) exists for all t € TX. The properties of the delta-
derivative can be found in [5], therefore their description is omitted here. The nth delta-derivative of the
function f, denoted by f ", is defined recursively as f .= fAand f ). — (f [”_1])A, nz=2.

Assume the function f : R — R is a differentiable function and g : T — R is a delta-differentiable
function. Then the function f o g is delta-differentiable and the delta-derivative satisfies the relation

o0 ={ [ £e)+ g 0)an} -0

At the end of this section we introduce some notation that will be useful in the following sections. Let
f be a function admitting the delta-derivatives up to the gth order. Let ¢q; and ¢, be integers such that
0<q) <q<q. Weset fl0) = f. Let flr-9| denote the set { fl91],.... fl92I}. Moreover, instead of f(c(r))
the symbol £°(r) is often used. We define also f191-©10 as {flailo  flaloy,
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3. THE CONTROL SYSTEM AND THE ASSOCIATED o-DIFFERENTIAL FIELD

Consider a MIMO nonlinear control system (with m inputs and p outputs) described by a set of higher-order

i/o delta-differential equations on the homogeneous time scale T relating the inputs u;, j = 1,...,m, the
outputs y;, i = 1,..., p, and the finite number of their delta-derivatives:
y[lnl] — q)](y[lomnlil],y[zomnll},...7y£?mn1‘p]7l/t[]0mshl]7...714,[,,(3“31”"])
: : (1
ygzp} _ q)p (yEO...nptl] ’y[ZO...npﬁz} . 7y£?...np71] ’ u[]OA..sp,,]]’ o ,l/t,[g'“Sp’m}),

where the functions ®;, i = 1,..., p are analytic functions of their arguments and functions y; : T — R,
i=1,...,pand u; : T — R, j=1,...,m are delta-differentiable at least up to order n; and s; :=
max<i<p(si ), respectively. It is assumed throughout this text that for each i = 1,..., p the following
inequalities hold: n; > n; j and n; > max(n;;), j=1,...,p, j#i. In other words, the highest derivative of
y; appears in the ith equation. Moreover, one assumes that sy < n;fori=1,....,p,k=1,...,m.

The o-differential field to be defined in this section plays an important role in further investigations as
all the functions defining the control systems are elements of this field.

Consider the set of (independent) variables

& — {y[]O...I’ll—l]7 N wyg)..‘ﬂp*l] u[lll]’ o 714’[711;)1]7 for all 117. ] -;lm > O}

)

Denote by Z the ring of analytic functions depending on a finite number of variables from the set 4. The
operator o can be extended onto this ring as follows. Let ¢ € Z. Assume the function ¢ depends on the

variables y[lo"'"l_l], ... ,yg)"'"”fu,u[lo“'“], .. .,u,L?'“Sm], St,-..,Sm = 0. Then
T — 0..ny—1] [0... S
(@) ety
= @(y-mle el 0o sley )
where
= = ni— 0.1 ni— 0.tip]  [0msps 0. -5pm .
yl[_o " 11":y£0 . 1]—1—,11[)71[1 " 1],<I>,-(yg n’l],...,yl[-o " 1],...,y£, "”],ug S”],...,uLl 5. ])], i=1,...,p
and 0 0 s+l
ug ~Sile u.[,- 5] -Hlu‘[, T ]7 Jj=1....m.

The operator ¢ defined on the ring % is an endomorphism. This means, it is a linear mapping satisfying the
conditions

o(ey) =o(9)o(v)
and
o(lz) =1z,
where the symbol 14 stands for the unit in the ring Z.
Additionally, in the ring &% one can define the operator A : Z — Z# as follows:

A((p)(y,-, ... ,yl[.n’;l],uk, . .,u,[(lﬂ])

! ni— R EE 0...n;,—1 .S . Sim
::/0 {grad(p(yﬁ—huyf,...,yl[ 1]+h/,L(]),~(y[10 '1],...,y£, ? ],u[lo '},...,u,[g ]),

Uy +h,uuﬁ, . ,u,[{l] —l—h‘uul[{l—’_l])
(y-A y[n"fl] T
x | ¢; (y[lo...nirl] e 7y£9...nip*1] ’ M[IO...si1]7 o uL?...sim]) }dh. 3)
(ud u[1+1])T
N 7/
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We will use o(¢) and @° to denote the action of ¢ on F. Similarly, both A(¢) and ¢* will be used
interchangeably.

Denote by 7" the quotient field of %Z. That means, %" is the field of meromorphic functions in variables
from €. If the operator o is injective, one can extend this operator onto the field J#" by

o(e/y)=o0(¢)/o(y).

Note that if o is not injective, there may exist a non-zero function ¢ € % such that 6(¢) = 0. Then, taking
F = (y/@) € %, we get that the operator o is not well defined on the field .#". For the operator o to be
injective the set of i/o equations has to satisfy an assumption equivalent to the submersivity of the extended
system associated with the set of i/0 equations.

3.1. Submersivity

In this section we derive a condition that is equivalent to the submersivity property of the extended system
associated with the set of i/o equations. The condition is given in terms of i/0 equations and it guarantees
the injectivity of the operator o.

First, associate with the set of i/o equations (1), the so-called extended state-space system with the state
(z,w), where

— ni+e+n
7= (Z1,07' . azl7n1717' . )Zi707' . )Zl‘7n,‘715 cee 7Zp,05 cee 7Zp7np71) € R™ P

and
Ww.= (Wl,O;- e Wlhsy oo o sWils oo s Wigy oo oy Win 0y - - -,Wm,s) S Rms,
whereas )
;o= Woi=1,p, j=0, . n—1,
wig = u, k=1,...,m 1=0,...,s,
[s+1]

and the inputs v = u; ', where s := max<x<m (sx). Then, with the set of equations (1) one can associate
the following extended system X.:

ij = Zij+l, i=1,....,p, j=0,....,n;,—2,
2. = @i(zw), i=1,...p, N
wh = wes,  k=1l..m =0, s—1,

Wﬁs = Vi k=1,....m.

The set of equations (4) governing the dynamics of the extended system X. can be rewritten using the
operator o as follows:

Z?j - Zi7j+uZi,j+], i= 7-'-7P7J.:Oa-~7”i_27
anﬁl = Zia”i—l—i_uq)i(z:w): izl:"'7pa (5)
WP = Wit HWeg k=1,...,m 1=0,...,s—1,
Wiy = Wit Mg, k=1,....m.
We are going to examine the structure of (5). Let v= (vy,...,v;,) be the vector of inputs and

(z,w,v) = (z,w) + ufe (z,w,v) (6)
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be the map corresponding to the right-hand side of (5), where f. (z,w,v) := [Zl,l vy Zim—1,P1 (2, W),
s Zpmy—1,Pp (2, W) ,wLo,...,wLS,vl,wm,o,...,wm7s,vm}T is the the right-hand side of (4). For the
operator ¢ to be injective the map (6) has to define generically a submersion' [1,6], that is to satisfy
(generically) the following condition:

d[(z,w) + uf. (z,w,v)]
d(z,w,v)

rank =m+-+n,+m-(s+1). @)

If the map (6) is a submersion, then systems (1) and (4) are called submersive [1,6]. The characterization
of the submersive system can also be found in [3], where the authors have proved that submersivity of the
system is equivalent to the ideal defined by the system to be prime, proper, and reflexive. By rank »A we
mean the rank of the matrix A over the field 7.

Our goal is to formulate the condition (7) in terms of i/o equations. Before formulating the main theorem
we define the following elementary column transformations which do not change the rank of the matrix:
1. Interchange of columns i and j.
2. Multiplication of column i by a nonzero scalar in JZ".
3. Replacement of column i by itself plus any scalar in 2" multiplied by any other column ;.

Theorem 3.1. The nonlinear control system, defined on a homogeneous time scale via the higher-order i/o
equations (1), is submersive if and only if the following condition

14091 ... Qip ﬁll Blm
rank : - : s : =p 3)
Op1 1+(pr Bpl Bpm
holds, where
nj—1 od;
aij — Z (_1)nj7k71‘u’nj7k [kl] , (9)
k=0 3yj
i,j=1,...,p,and
s i in 0P
Buo= Y (~1) e R 10)
Jj=0 a”k]

I=1,....pk=1....m.

Proof. Letus assume that the system (1) is submersive, i.e. the map (6) is a submersion (or, equivalently, the
condition (7) holds). We are going to represent the Jacobi matrix W, using matrices that can be
changed by elementary column transformations into the form for which the computation of the rank can be
easily reduced to the computation of the ranks of its certain submatrices. Let us define the n; X n;-matrices

Ai, izl,...,p

1 u 0 0

0 1 TR 0
a=| :

0 0 0o .. m

0P; 0P; 0d; 0d;

Homo Mo Mo, - 1tha o

' Recall that a map f is called a submersion at a point p if its differential D f,, is a surjective linear map. A differentiable map f
that is a submersion at each point is called a submersion. Equivalently, f is a submersion if its differential has constant rank
equal to the dimension of the codomain of f.
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and also the matrices B, ,, i #r,i,r=1,...,p
0 0
B — : . :
(R 0 ’
29; 2P,
'LL aZr_O 'LL aZr,nr—l

whose dimensions are n; x n,. Moreover, matrices C; ; of dimension n; x (s +2) are defined as follows:

0 e 0 0
Cike = o .. 0 o[’
JP; JP;
Howeo o Haw
wherei=1,...,p, k=1,...,m. Let now D be the following matrix:
1 u O 0 0
01 u 0 0
D= :
0 0 O u 0
0 0 O 1 u
with dimension (s+1) x (s+2).
The Jacobi matrix W in (7) is as follows:
A1 3172 BLP C171 C]ﬂm
3271 A2 Bg7p C271 ce C2,m
A=| By,1 By Ap Cpi Cpm
0 0 0 D 0
: 0
0 0 0 0 D
The submersivity condition (7) requires the following
rank y A=ny+---+n,+m-(s+1). (11)

The matrices A; can be converted by using elementary column transformations of A (that do not change its
rank) into the form where the only nonzero elements are placed on the last row and on the diagonal, the
latter being units. This can be achieved by subtracting the first column multiplied by —u from the second
one, then subtracting the second column multiplied by —ut from the third column, and proceeding in this
way up to the last column. This converts the matrix A; into

—_
o
S

0 1 0

" 0 0 ... 0
aq)i aq)i 2 8(191' ”li_l i— i—1 i— j 8<1>,—
.U(;Zm ”92,:1 —u due 1+ Y (_1)11 J=tyn J%

Jj=0
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These transformations simultaneously change the matrices B; ; into B; i F T

0 0 0
Ei,j: 0 0 0
ni—1
9P 9P, 2 9P g i—k—1,,n;—k O0P;
Bas B —HE kgo(—l)nj ik g

Analogous elementary column transformations carried out with the matrix D convert this matrix into the
following matrix:

1 00 ... 00
010 .. 00
D=| 1 : IR
000 .. 00
000 .. 10

Simultaneously, the matrices C;  are transformed into the matrices

0 0 e 0 0
Ck=| 0 0 » 0 0
0P; 0P; 2 0®; J —J —j+1 0D; S —j+1 —j+2 dD;
Haneo Moawe ~H an, jgo(_l)s Jys=i+ Fir j);o(_l)s =it 2o
To conclude, the matrix A is transformed into the matrix A of the following form:
{11 E},z Bil,p (zl,l (jl,m
3271 A2 Bg,p C271 ce C2,m
A=| By Bpo . A, Cp oo Con
0 o ... 0 D ... 0
0 0 0 0 D
Note that aav:I:,- =0forj=s+1,...,5 50
i (_ l)sfijlusfjJﬂ IP; _ S (_l)skfjJrl‘uskfj+2 0P, )
=0 8wk_,j =0 8wk,j
Moreover, ~ ~
Cit - Cim
Gy Com
) O1,1 O
L oL ®2,1 .. ®2,m
ranky | Cp1 ... Cpm | =m(s+1)+rank 4 . ] . , (12)
h! 0 S
. . ®p,1 (")p,m
0 -
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0
where O, ; = 0 ,i=1,...,p,k=1,...,m are the matrices of dimensions n; x 1.
N
s—j41,,5—j+2 0P
Y (=) g

j=0
Since rank » A = rank(;gg and the condition (12) holds, we get that the condition (11) is equivalent to

fi] E}z BELP @171 @17,,,
Bz’] Az BQJ, @271 . @27,"
rank » . ) . . ) =ny+ny+---+n,. (13)
B,i B,o ... A, ©p1 ... O,
Note that fori=1,...,p
I'al’lk]/ (Ei,l B‘,’J‘,l Al‘ §i7i+l B‘,"p ®i71 ®i,m)
=n—l+ranky (& ... @1 1+@; @iq ... O Pi -0 Bim)
where |
nj— ID;
~ —k—1, ni—k 99i
Oj =) (=D e —,
kg() 9%jk
Lj=1,...,p, ) 5
~ . , D,
Buo= Y (-1
j;) 8wk7j
[=1,....p, k= ,M, SO
Ay g~12 1?17,; IR O1,m
By A By, 0 O,
rank .
Epl EPZ Ap 0),1 Opm
1+a; ... @, B - PBim
=n+n+--+n,—p+ranky : . : : :
dpl 1—|—6Cpp ﬁp] ﬁpm

Since zl‘yj:yl[.j], i=1,...,p, j=0,...,nj—1 and wy, :u,[{l], k=1,....m [ =0,...,s, we get &; = o},

i,j=1,...,p and ﬁ,k =P, [=1,...,p, k=1...,m, where o;; and P are defined by (9) and (10),
respectively, and therefore the condition (11) is equivalent to (13) and consequently to (8). ]

Remark 3.2. Note that in the continuous-time case when T = R we have g = 0 and the condition (8) is
satisfied automatically. Moreover, in this case ¢ = id.

Example 4.1 in Section 4 illustrates the effects the nonsubmersive system may exhibit.

Assuming the submersivity property (8) to hold for the set of i/o delta-differential equations (1), we
guarantee the injectivity of the operator 0. And, consequently, o is well defined on the field of meromorphic
functions depending on variables associated with the control system. The operator ¢ can be extended to . %,
using the formula (2). Additionally, the operator A can be extended to %", using the formula (3). The
operator A, which is the extension of delta-derivative to the field ., satisfies a generalization of the Leibniz
rule

(FG)A =FAG+F°G*, (14)
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for F,G € ¢ . The derivation satisfying the rule (14) is called a ‘c-derivation’ (for example, see [8]).
Therefore %" is a field equipped with a ¢-derivation A such that ¢ is an injective endomorphism of % .
The field # with o-derivation A is a o-differential field. Since o is injective, there exists a o-differential
overfield 7 *, called the inversive closure of %, such that ¢ can be extended to ¢ and this extension is
an automorphism of Z* (see [8]). The inversive closure for a MIMO dynamical nonlinear system can be
found in a similar way as that for the SISO case in [7], using the extended state-space model associated with
the set of i/o equations.

4. EXAMPLES

The results of the previous section are illustrated by simple examples here.

Example 4.1. Consider the system described by the set of i/o delta-differential equations on a homogeneous
time scale with the graininess function u # 0

W= =5 —y2) +uyayn,

! (15)
Yo = uy2y1.

The function 1/(y; —y2) is meromorphic and belongs to the field %, but o(1/(y; —y2)) is not defined

because o(y; —y2) = 0. Note that the considered system is not submersive according to Theorem 3.1,

since @1 = —1 + fHuyy, o = 1 + Uuyy, 01 = fuya, 0p = puyy, Bi1 = —p>y1y2, far = —p?y1y2, and the

condition (8) is not satisfied, i.e.

I+air  an P puy, 1+ puy;  —p?yiys
rank =rank =142
x < w 1+on Ba A \puyy U+ puy; —pPyiys 7

It is easy to see that for the considered system the operator o is not injective and o(y;) = o(y2). The
noninjective operator is not well defined on the quotient field. Hence we would like the operator o to be
injective.

Example 4.2. Consider the system

y? = Yyt uiuy, (16)
W= yi+ad,
Then the extended state-space system X, with the state
(2,W) = (210,220, 221, W10, W11, W20, W21) = (V1,Y2,Y5 U1, U3, 2, 3
and the inputs v = (v;,v) = (u[lz] , u[zz]) has the following form:
2y = z20+wiowao,
Dy = 21,
B = ziot+wa,
wiy = wi, (17)
WlAl = Vi
wy = Wwal,
A
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The set of equations governing the dynamics of the extended system X, can be rewritten, using the operator
o as follows:

Xy = 210+ 1(z20 +wiowao),

B = 220+ U221,

B = 221+ u(zio+war),

W?O = Wwio+uwii, (18)
wi = wi+uv,

WSy = W+ Uwa,

ws = wa+ Uvs.

Note that the map corresponding to the right-hand side of (18) has the following form:
(210,220,221, W10, W11, V1, W20, Wa1,V2) = (2, W) + fe (2, w,v) (19)

where f. (z,w,v) := (Zzo + wiow20,221,210 + wzl,wll,vl,w21,v2) is the right-hand side of (17). For the
operator © to be injective the map (19) has to satisfy (generically) the condition

d((z,w)+ ufe (z,w,v)]

k =7. 20
T S wy) o
Note that

1 u 0 uwy 0 0 uwyp 0 O

01 g 0 00 0 00

g 01 0 00 0 pu o

Alzza[(z’wa)+“fe(z’w’v)]: 000 1 w0 0 00

(z,w,v) 000 O 1 u 0 00

000 O 0O I pu O

000 O OO0 0 1 pu

Using the elementary column transformations specified in the proof of Theorem 3.1 and the fact that in the
transformed matrix the 2nd, 4th, 5th, 6th, and 7th row vectors (or, equivalently, the 2nd, 4th, 5th, 7th, and
8th column vectors) are linearly independent, we get

1w —p? pwy —pPwy Wwa uwio —pwio Wwio
0 1 0 0 0 0 0 0 0
u 0 1 0 0 0 0 u —u?
rank y Ay =rtank» | 0 0 O 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
1 —p? wdwy wwio
=5-+rank » <I~L 1 0 —,u2> .

Thus the condition (20) is equivalent to

1 —p? wwy wwi)
rank (N 1 0 2 =2.

: A A A
Since (210,220,221, W10, W11, W20, Wa1) = (V1,Y2,¥5, U1, Uy, iz, u5' ), we get

L= Wu pluy)
rankt;g(‘u ] 0 2 =2. 21
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Therefore the condition which guarantees the injectivity of the operator ¢ : .#  — % is given in terms of
variables uy,u; € 6. Moreover, using the elementary column transformations, namely by replacing the first
column by itself plus —u multiplied by the second column and replacing the fourth column by itself plus
u? multiplied by the second column, we get

1 —p? Wu pPur 1+p? —p? gy plug—pt
rank (/J 1 0 2 =rank 0 1 0 0 .

Therefore the condition (21) is equivalent to rank » (1+u* p?ur p?uy —p*) = 1. Thus the system
described by the set of equations (16) is submersive and the operator ¢ defined on the field of meromorphic
functions in variables y;, yo, y%, uy, and uy is injective.

Example 4.3. Consider the system
2
y[l] = yiyy iy,
2
V= by 4 yhys.

(22)

Then the extended state-space system X, with the state

(2, W) = (210,211,220, 221, W10, W11) = (Y1, Y7, 32,5 1, u™)

and the input v; = ul?! has the following form:

A
Ziop = X211,
A 2
711 = 210221 +W1p210220,
o — <21,
A
1 = Wiowii2io + 211220,
A
Wip = Wii,

Using the operator o, the system X can be rewritten as follows:

2 = 2o+ Mzin,
_ 2
1 = zi0+ (210221 +Wipz10220),
50 = 220+ M221,
(23)
= 21+ u(wiowiizio +211220),
wip = Wio+Uwrr,

Then the map corresponding to the right-hand side of (23) is as follows:
(210,211,220,221, W10, W11, V1) — (210,211,220,221, W10, wi1) + ufe (2, w,v1), (24)

T. . .
where f, (z,w,v;) := [Zu,zmzm + W%Ozlozm,zzl,wlowuzlo +Z11z20,w11,v1] is the the right-hand side of
Y. For the operator o to be injective the map (24) has to satisfy (generically) the condition

d((z,w) + pufe (z,w,v1)]
d(z,w,vy)

rank =6. (25)
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Note that
d [(Zv W) + ‘Ufe (Z, W, V| )]
A2 =
a(Z,W,Vl)
1 u 0 0 0 0 0
Wz +wipzo) 1 pwipzio Mzio 2UWi0Z10220 0 0
_ 0 0 1 u 0 0 0
Uwiowii UzZ20  MzZ11 1 Uwiizio  Mwiozio O
0 0 0 0 1 u 0
0 0 0 0 0 1 u

By using the elementary column transformations, the matrix A, can be transformed to A, in the following
form:

1 0 0 0 0 0 0
wlzar+wlyzo)  1-p2(z21 +whyzo)  mwlpzio mzio—mZwlozio  2Uwiozi0220 —20%w10210220 23 wi0z10220
0 0 1 0 0 0 0
Bwiowi K(z20 — Hwiow11) uzyy 1— g2z w1210 H(wiozio —#wizio) M2 (Hwi1210 —Wi0210)
0 0 0 0 1 0 0
0 0 0 0 1 0

Note that rank » A, = rank » A, and the 1st, 3rd, 5th, and 6th row vectors (or, equivalently, the 1st, 3rd, 5th,
and 6th column vectors) are linearly independent over .#". Then
1— p%(z21 +wipz0) M0 — H2WioZio 23 w10210220
rank Ay =4 + rank 10 10 )
a2 l< M (z20 — Uwiowi1) 1—p?zy 12 (w1210 — wi0Z10)

So the condition (25) is equivalent to

rank 1— p?(z21 +wipz20)  Mz10 — H2wipzio 213 wi0210220 _s
: K (z20 — wiowi) 1 -z w2 (w1210 — wi0z10) .

: A A A
Since (210721172207221,W107W11) = (y17y1 y Y2, Yo, U U )’ we get

1—p2(y3+uly2)  pyr — 12uy 2p3uyiys >
rank =2. 26
z < 1 (y2 — puu) 1=y p2(uutyy —uyy) (26)

Therefore the condition which guarantees the injectivity of the operator o : # — £ is given in terms of
variables yi,y},y2,y5,u,u® € €. Assuming the condition (26) holds generically, we get that the system
described by the set of equations (22) is submersive and the operator ¢ defined on the field of meromorphic
functions in variables yy, y7, y2, ¥5, u, and u® is injective.

S. CONCLUSION

The submersivity condition for a MIMO nonlinear control system on a homogeneous time scale is derived
directly in terms of i/o equations. The result is illustrated by several examples, including the demonstration
of necessity of this assumption for the construction of the delta-differential field, associated with the control
system.
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Submersiivsuse eeldusest mittelineaarsete juhtimissiisteemide jaoks
homogeensetel ajaskaaladel

Ulle Kotta, Branislav Rehdk ja Matgorzata Wyrwas

On tuletatud alternatiivne submersiivsuse tingimus mittelineaarsete juhtimissiisteemide jaoks, mis on
kirjeldatud korgemat jirku delta-diferentsiaalvorranditega. Viimased on sisend-véljundvorrandid homo-
geensetel ajaskaaladel, mis seovad juhtimissiisteemi sisendeid, véljundeid ja 16plikku arvu nende delta-
tuletisi. Alternatiivne submersiivsuse tingimus on esitatud otseselt sisend-véljundvorrandite kaudu ja on
tuletatud siisteemi submersiivsuse tingimusest, mis on esitatud sisend-véljundvorranditega seotud nn laien-
datud olekuvorrandite abil.



