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Abstract. The paper derives a condition that allows construction of the σ -differential fields for nonlinear control systems, described
by the set of input–output (i/o) higher-order delta-differential equations, defined on a homogeneous time scale. This condition is
related to the submersivity assumption of the extended system, associated with i/o equations, but is formulated directly in terms of
i/o equations.
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1. INTRODUCTION

The submersivity property plays a crucial role in the study of discrete-time nonlinear control systems.
The concept of submersivity was introduced into the nonlinear control theory by Grizzle [1] and since
then this assumption has been made in the majority of papers on discrete-time nonlinear control systems.
Especially, this assumption is vital in the algebraic approach based on differential forms as well as in the
differential geometric approach based on vector fields. Under the submersivity assumption the backward
shift, playing an important role in the above approaches, is a well-defined operator in the inversive closure
of the difference field, associated with the control system. The submersivity condition is also necessary for
system inversion [1] and in application of the Singh compensator to solve the dynamic input–output (i/o)
linearization problem in the discrete-time case; see Example 4 in [2]. In [3] it was proved that the discrete-
time nonlinear control system, described by the rational state transition function, is submersive if and only
if the ideal, defined by the control system, is prime, proper, and reflexive. Finally, note that the submersivity
assumption is not restrictive, since it is a necessary condition for the system to be accessible [1].

The submersivity condition also plays an important role in the study of nonlinear control systems on time
scales [4]. The time scale is a framework that allows unifying the study of continuous-time and discrete-
time systems into a single general formalism and also an extension to the cases when time may be partly
continuous and partly discrete. The main concept of the time scale calculus is the so-called delta-derivative
that is a generalization of both the time-derivative (in the continuous-time case) and the difference operator
(in the discrete-time case) [5]. In a similar manner a related definition of a delta-differential equation
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describes both the differential and difference equations. Therefore, note that since the shift operator is
not a delta-derivative, the time scale formalism accommodates the discrete-time system description in terms
of the difference operator, in opposition to more conventional models based on the shift operator [1,6].

The submersivity assumption is given, in general, for systems described via state equations. If the
system description is given in terms of i/o equations, then the condition may be formulated with the help of
the so-called extended state equations, associated with i/o equations, as it has been done, for example, in [4]
for a single-input single-output (SISO) system, defined on the time scale. As a result, every time one studies
a system defined by i/o equations, one needs to introduce an additional description of the system. The
only purpose of this description, called the extended system, is verifying the submersivity assumption. This
approach, though possible in principle, would also complicate the proofs, because one has to go from one
system description to the other every time the submersivity assumption shows up. It would be much more
desirable to present the submersivity condition directly in terms of i/o equations under study. Finally, note
that this task becomes especially urgent in addressing the multi-input multi-output (MIMO) systems defined
on the time scale, since in such a case the relationship between two equivalent submersivity conditions is far
from immediate unlike in the SISO case, or even in the MIMO case when the system is described in terms
of the shift operator. The goal of this paper is to derive the submersivity condition that is presented directly
in terms of the set of i/o delta-differential equations. We examine the structure of the extended system,
associated with the set of i/o equations and its submersivity conditions.

2. TIME SCALES AND THE DELTA-DERIVATIVE

In this section the necessary facts are defined. For a more detailed presentation of this topic, see the
references, e.g. [4,5,7]. Let us remark that the central problem is to define a generalization of the derivative
operator (known from the real analysis) for functions defined on time scales.

A time scale T is defined as a nonempty closed subset of the set R. We assume that T is a topological
space with the topology induced by R. Let T be a time scale and t ∈ T. The forward jump operator
σ : T→ T is defined as σ(t) = inf{s ∈ T, s > t} if t 6= maxT, σ(maxT) := maxT. Then the graininess
function µ : T→ T is defined as µ(t) = σ(t)− t for t ∈ T. We are interested in homogeneous time scales.
The time scale T is called homogeneous if µ = const. Moreover, the backward jump operator ρ : T→ T is
defined by ρ(t) = sup{s ∈ T, s < t} if t 6= minT, ρ(minT) := minT.

Let Tκ =T\{maxT} if ρ(maxT) < maxT, Tκ =T in other cases. Assume that f :T→R is a function
defined on the time scale T. The delta-derivative f ∆(t), t ∈ Tκ is defined as the real number (provided it
exists) with the property that, given ε > 0, there exists δ > 0 such that, for all s ∈ (t−δ , t +δ )∩T,

| f (σ(t))− f (s)− f ∆(t)(σ(t)− s)|6 ε|σ(t)− s|.

Moreover, f is delta-differentiable (on Tκ ) provided f ∆(t) exists for all t∈Tκ . The properties of the delta-
derivative can be found in [5], therefore their description is omitted here. The nth delta-derivative of the
function f , denoted by f [n], is defined recursively as f [1] := f ∆ and f [n] := ( f [n−1])∆, n > 2.

Assume the function f : R→ R is a differentiable function and g : T → R is a delta-differentiable
function. Then the function f ◦g is delta-differentiable and the delta-derivative satisfies the relation

( f ◦g)∆(t) =
{∫ 1

0
f ′(g(t)+hµ(t)g∆(t))dh

}
·g∆(t).

At the end of this section we introduce some notation that will be useful in the following sections. Let
f be a function admitting the delta-derivatives up to the qth order. Let q1 and q2 be integers such that
0≤ q1 < q2 ≤ q. We set f [0] = f . Let f [q1...q2] denote the set { f [q1], . . . , f [q2]}. Moreover, instead of f (σ(t))
the symbol f σ (t) is often used. We define also f [q1...q2]σ as { f [q1]σ , . . . , f [q2]σ}.
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3. THE CONTROL SYSTEM AND THE ASSOCIATED σ -DIFFERENTIAL FIELD

Consider a MIMO nonlinear control system (with m inputs and p outputs) described by a set of higher-order
i/o delta-differential equations on the homogeneous time scale T relating the inputs u j, j = 1, . . . ,m, the
outputs yi, i = 1, . . . , p, and the finite number of their delta-derivatives:

y[n1]
1 = Φ1(y

[0...n1−1]
1 ,y[0...n1,2]

2 , . . . ,y[0...n1,p]
p ,u[0...s1,1]

1 , . . . ,u[0...s1,m]
m )

...
...

y[np]
p = Φp(y

[0...np,1]
1 ,y[0...np,2]

2 , . . . ,y[0...np−1]
p ,u[0...sp,1]

1 , . . . ,u[0...sp,m]
m ),

(1)

where the functions Φi, i = 1, . . . , p are analytic functions of their arguments and functions yi : T→ R,
i = 1, . . . , p and u j : T → R, j = 1, . . . ,m are delta-differentiable at least up to order ni and s j :=
max16i6p(si, j), respectively. It is assumed throughout this text that for each i = 1, . . . , p the following
inequalities hold: ni > ni, j and ni > max(n j,i), j = 1, . . . , p, j 6= i. In other words, the highest derivative of
yi appears in the ith equation. Moreover, one assumes that sk < ni for i = 1, . . . , p, k = 1, . . . ,m.

The σ -differential field to be defined in this section plays an important role in further investigations as
all the functions defining the control systems are elements of this field.

Consider the set of (independent) variables

C = {y[0...n1−1]
1 , . . . ,y[0...np−1]

p ,u[l1]
1 , . . . ,u[lm]

m , for all l1, . . . , lm ≥ 0}.
Denote by R the ring of analytic functions depending on a finite number of variables from the set C . The
operator σ can be extended onto this ring as follows. Let ϕ ∈R. Assume the function ϕ depends on the
variables y[0...n1−1]

1 , . . . ,y[0...np−1]
p ,u[0...s1]

1 , . . . ,u[0...sm]
m , s1, . . . ,sm > 0. Then

σ(ϕ)(y[0...n1−1]
1 , . . . ,y[0...np−1]

p ,u[0...s1+1]
1 , . . . ,u[0...sm+1]

m )

:= ϕ(y[0...n1−1]σ
1 , . . . ,y[0...np−1]σ

p ,u[0...s1]σ
1 , . . . ,u[0...sm]σ

m ), (2)

where

y[0...ni−1]σ
i = y[0...ni−1]

i +µ
[
y[1...ni−1]

i ,Φi
(
y[0...ni,1]

1 , . . . ,y[0...ni−1]
i , . . . ,y[0...ni,p]

p ,u[0...sp,s]
1 , . . . ,u[0...sp,m]

m
)]

, i = 1, . . . , p

and
u[0...s j]σ

j = u[0...s j]
j + µu[1...s j+1]

j , j = 1, . . . ,m.

The operator σ defined on the ring R is an endomorphism. This means, it is a linear mapping satisfying the
conditions

σ(ϕψ) = σ(ϕ)σ(ψ)

and
σ(1R) = 1R ,

where the symbol 1R stands for the unit in the ring R.
Additionally, in the ring R one can define the operator ∆ : R →R as follows:

∆(ϕ)
(
yi, . . . ,y

[ni−1]
i ,uk, . . . ,u

[l+1]
k

)

:=
∫ 1

0

{
gradϕ

(
yi +hµy∆

i , . . . ,y[ni−1]
i +hµφi

(
y[0...ni1−1]

1 , . . . ,y[0...nip−1]
p ,u[0...si1]

1 , . . . ,u[0...sim]
m

)
,

uk +hµu∆
k , . . . ,u[l]

k +hµu[l+1]
k

)

×




(
y∆

i , . . . ,y[ni−1]
i

)T

φi
(
y[0...ni1−1]

1 , . . . ,y[0...nip−1]
p ,u[0...si1]

1 , . . . ,u[0...sim]
m

)
(
u∆

k , . . . ,u[l+1]
k

)T




}
dh. (3)
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We will use σ(ϕ) and ϕσ to denote the action of σ on F . Similarly, both ∆(ϕ) and ϕ∆ will be used
interchangeably.

Denote by K the quotient field of R. That means, K is the field of meromorphic functions in variables
from C . If the operator σ is injective, one can extend this operator onto the field K by

σ(ϕ/ψ) = σ(ϕ)/σ(ψ).

Note that if σ is not injective, there may exist a non-zero function ϕ ∈R such that σ(ϕ) = 0. Then, taking
F = (ψ/ϕ) ∈K , we get that the operator σ is not well defined on the field K . For the operator σ to be
injective the set of i/o equations has to satisfy an assumption equivalent to the submersivity of the extended
system associated with the set of i/o equations.

3.1. Submersivity

In this section we derive a condition that is equivalent to the submersivity property of the extended system
associated with the set of i/o equations. The condition is given in terms of i/o equations and it guarantees
the injectivity of the operator σ .

First, associate with the set of i/o equations (1), the so-called extended state-space system with the state
(z,w), where

z := (z1,0, . . . ,z1,n1−1, . . . ,zi,0, . . . ,zi,ni−1, . . . ,zp,0, . . . ,zp,np−1) ∈ Rn1+···+np

and
w := (w1,0, . . . ,w1,s, . . . ,wi,0, . . . ,wi,s, . . . ,wm,0, . . . ,wm,s) ∈ Rms,

whereas
zi, j = y[ j]

i , i = 1, . . . , p, j = 0, . . . ,ni−1,

wk,l = u[l]
k , k = 1, . . . ,m, l = 0, . . . ,s,

and the inputs vk = u[s+1]
k , where s := max16k6m(sk). Then, with the set of equations (1) one can associate

the following extended system Σe:

z∆
i, j = zi, j+1, i = 1, . . . , p, j = 0, . . . ,ni−2,

z∆
i,ni−1 = Φi (z,w) , i = 1, . . . , p,

w∆
k,l = wk,l+1, k = 1, . . . ,m, l = 0, . . . ,s−1,

w∆
k,s = vk, k = 1, . . . ,m.

(4)

The set of equations (4) governing the dynamics of the extended system Σe can be rewritten using the
operator σ as follows:

zσ
i, j = zi, j + µzi, j+1, i = 1, . . . , p, j = 0, . . . ,ni−2,

zσ
i,ni−1 = zi,ni−1 + µΦi (z,w) , i = 1, . . . , p,

wσ
k,l = wk,l + µwk,l+1, k = 1, . . . ,m, l = 0, . . . ,s−1,

wσ
k,s = wk,s + µvk, k = 1, . . . ,m .

(5)

We are going to examine the structure of (5). Let v = (v1, . . . ,vm) be the vector of inputs and

(z,w,v) 7→ (z,w)+ µfe (z,w,v) (6)
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be the map corresponding to the right-hand side of (5), where fe (z,w,v) :=
[
z1,1, . . . ,z1,n1−1,Φ1 (z,w) , . . . ,

zp,1, . . . ,zp,np−1,Φp (z,w) ,w1,0, . . . ,w1,s,v1,wm,0, . . . ,wm,s,vm
]T is the the right-hand side of (4). For the

operator σ to be injective the map (6) has to define generically a submersion1 [1,6], that is to satisfy
(generically) the following condition:

rankK
∂ [(z,w)+ µfe (z,w,v)]

∂ (z,w,v)
= n1 + · · ·+np +m · (s+1) . (7)

If the map (6) is a submersion, then systems (1) and (4) are called submersive [1,6]. The characterization
of the submersive system can also be found in [3], where the authors have proved that submersivity of the
system is equivalent to the ideal defined by the system to be prime, proper, and reflexive. By rankK A we
mean the rank of the matrix A over the field K .

Our goal is to formulate the condition (7) in terms of i/o equations. Before formulating the main theorem
we define the following elementary column transformations which do not change the rank of the matrix:
1. Interchange of columns i and j.
2. Multiplication of column i by a nonzero scalar in K .
3. Replacement of column i by itself plus any scalar in K multiplied by any other column j.

Theorem 3.1. The nonlinear control system, defined on a homogeneous time scale via the higher-order i/o
equations (1), is submersive if and only if the following condition

rankK




1+α11 . . . α1p β11 . . . β1m
...

. . .
...

...
. . .

...
αp1 . . . 1+αpp βp1 . . . βpm


 = p (8)

holds, where

αi j :=
n j−1

∑
k=0

(−1)n j−k−1µn j−k ∂Φi

∂y[k]
j

, (9)

i, j = 1, . . . , p, and

βlk :=
s

∑
j=0

(−1)s− j+1µs− j+2 ∂Φl

∂u[ j]
k

, (10)

l = 1, . . . , p, k = 1 . . . ,m.

Proof. Let us assume that the system (1) is submersive, i.e. the map (6) is a submersion (or, equivalently, the
condition (7) holds). We are going to represent the Jacobi matrix ∂ [(z,w)+µfe(z,w,v)]

∂ (z,w,v) , using matrices that can be
changed by elementary column transformations into the form for which the computation of the rank can be
easily reduced to the computation of the ranks of its certain submatrices. Let us define the ni×ni-matrices
Ai, i = 1, . . . , p

Ai =




1 µ 0 . . . 0
0 1 µ . . . 0
...

...
. . .

...
0 0 0 . . . µ

µ ∂Φi
∂ zi,0

µ ∂Φi
∂ zi,1

µ ∂Φi
∂ zi,2

. . . 1+ µ ∂Φi
∂ zi,ni−1




1 Recall that a map f̃ is called a submersion at a point p if its differential D f̃p is a surjective linear map. A differentiable map f̃
that is a submersion at each point is called a submersion. Equivalently, f̃ is a submersion if its differential has constant rank
equal to the dimension of the codomain of f̃ .
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and also the matrices Bi,r, i 6= r, i,r = 1, . . . , p

Bi,r =




0 . . . 0
...

. . .
...

0 . . . 0
µ ∂Φi

∂ zr,0
. . . µ ∂Φi

∂ zr,nr−1


 ,

whose dimensions are ni×nr. Moreover, matrices Ci,k of dimension ni× (s+2) are defined as follows:

Ci,k =




0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

µ ∂Φi
∂wk,0

. . . µ ∂Φi
∂wk,s

0


 ,

where i = 1, . . . , p, k = 1, . . . ,m. Let now D be the following matrix:

D =




1 µ 0 . . . 0 0
0 1 µ . . . 0 0
...

...
. . .

...
...

0 0 0 . . . µ 0
0 0 0 . . . 1 µ




with dimension (s+1)× (s+2).
The Jacobi matrix ∂ [(z,w)+µfe(z,w,v)]

∂ (z,w,v) in (7) is as follows:

A =




A1 B1,2 . . . B1,p C1,1 . . . C1,m
B2,1 A2 B2,p C2,1 . . . C2,m

...
. . .

...
...

...
Bp,1 Bp,2 . . . Ap Cp,1 . . . Cp,m

0 0 . . . 0 D . . . 0
...

...
. . .

...
...

. . . 0
0 0 . . . 0 0 . . . D




.

The submersivity condition (7) requires the following

rankK A = n1 + · · ·+np +m · (s+1). (11)

The matrices Ai can be converted by using elementary column transformations of A (that do not change its
rank) into the form where the only nonzero elements are placed on the last row and on the diagonal, the
latter being units. This can be achieved by subtracting the first column multiplied by −µ from the second
one, then subtracting the second column multiplied by −µ from the third column, and proceeding in this
way up to the last column. This converts the matrix Ai into

Ãi =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 0

µ ∂ Φi
∂ zi,0

µ ∂Φi
∂ zi,1

−µ2 ∂Φi
∂ zi,0

. . . 1+
ni−1
∑
j=0

(−1)ni− j−1µni− j ∂Φi
∂ zi, j




.
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These transformations simultaneously change the matrices Bi, j into B̃i, j, i 6= j:

B̃i, j =




0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

µ ∂Φi
∂ z j,0

µ ∂Φi
∂ z j,1

−µ2 ∂Φi
∂ z j,0

. . .
n j−1
∑

k=0
(−1)n j−k−1µn j−k ∂Φi

∂ z j,k




.

Analogous elementary column transformations carried out with the matrix D convert this matrix into the
following matrix:

D̃ =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
. . .

...
...

0 0 0 . . . 0 0
0 0 0 . . . 1 0




.

Simultaneously, the matrices Ci,k are transformed into the matrices

C̃i,k =




0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

µ ∂Φi
∂wk,0

µ ∂Φi
∂wk,1

−µ2 ∂Φi
∂wk,0

. . .
s
∑
j=0

(−1)s− jµs− j+1 ∂Φi
∂wk, j

s
∑
j=0

(−1)s− j+1µs− j+2 ∂Φi
∂wk, j




.

To conclude, the matrix A is transformed into the matrix Ã of the following form:

Ã =




Ã1 B̃1,2 . . . B̃1,p C̃1,1 . . . C̃1,m
B̃2,1 Ã2 B̃2,p C̃2,1 . . . C̃2,m

...
. . .

...
...

. . .
...

B̃p,1 B̃p,2 . . . Ãp C̃p,1 . . . C̃p,m
0 0 . . . 0 D̃ . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . D̃




.

Note that ∂Φi
∂wk, j

= 0 for j = sk +1, . . . ,s, so

s

∑
j=0

(−1)s− j+1µs− j+2 ∂Φi

∂wk, j
=

sk

∑
j=0

(−1)sk− j+1µsk− j+2 ∂Φi

∂wk, j
.

Moreover,

rankK




C̃1,1 . . . C̃1,m
C̃2,1 . . . C̃2,m

...
. . .

...
C̃p,1 . . . C̃p,m

D̃ . . . 0
...

. . .
...

0 . . . D̃




= m(s+1)+ rankK




Θ1,1 . . . Θ1,m
Θ2,1 . . . Θ2,m

...
. . .

...
Θp,1 . . . Θp,m


 , (12)
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where Θi,k =




0
...
0

s
∑
j=0

(−1)s− j+1µs− j+2 ∂Φi
∂wk, j




, i = 1, . . . , p, k = 1, . . . ,m are the matrices of dimensions ni×1.

Since rankK A = rankK Ã and the condition (12) holds, we get that the condition (11) is equivalent to

rankK




Ã1 B̃1,2 . . . B̃1,p Θ1,1 . . . Θ1,m
B̃2,1 Ã2 B̃2,p Θ2,1 . . . Θ2,m

...
...

. . .
...

...
. . .

...
B̃p,1 B̃p,2 . . . Ãp Θp,1 . . . Θp,m


 = n1 +n2 + · · ·+np . (13)

Note that for i = 1, . . . , p

rankK

(
B̃i,1 . . . B̃i,i−1 Ãi B̃i,i+1 . . . B̃i,p Θi,1 . . . Θi,m

)

= ni−1+ rankK

(
α̃i1 . . . α̃i,i−1 1+ α̃ii α̃i,i+1 . . . α̃ip β̃i1 . . . β̃im

)
,

where

α̃i j :=
n j−1

∑
k=0

(−1)n j−k−1µn j−k ∂Φi

∂ z j,k
,

i, j = 1, . . . , p,

β̃lk :=
s

∑
j=0

(−1)s− j+1µs− j+2 ∂Φl

∂wk, j
,

l = 1, . . . , p, k = 1 . . . ,m, so

rankK




Ã1 B̃1,2 . . . B̃1,p Θ1,1 . . . Θ1,m
B̃2,1 Ã2 B̃2,p Θ2,1 . . . Θ2,m

...
...

. . .
...

...
. . .

...
B̃p,1 B̃p,2 . . . Ãp Θp,1 . . . Θp,m




= n1 +n2 + · · ·+np− p+ rankK




1+ α̃11 . . . α̃1p β̃11 . . . β̃1m
...

. . .
...

...
. . .

...
α̃p1 . . . 1+ α̃pp β̃p1 . . . β̃pm


 .

Since zi, j = y[ j]
i , i = 1, . . . , p, j = 0, . . . ,n j − 1 and wk,l = u[l]

k , k = 1, . . . ,m, l = 0, . . . ,s, we get α̃i j = αi j,
i, j = 1, . . . , p and β̃lk = βlk, l = 1, . . . , p, k = 1 . . . ,m, where αi j and βlk are defined by (9) and (10),
respectively, and therefore the condition (11) is equivalent to (13) and consequently to (8).

Remark 3.2. Note that in the continuous-time case when T = R we have µ ≡ 0 and the condition (8) is
satisfied automatically. Moreover, in this case σ = id.

Example 4.1 in Section 4 illustrates the effects the nonsubmersive system may exhibit.
Assuming the submersivity property (8) to hold for the set of i/o delta-differential equations (1), we

guarantee the injectivity of the operator σ . And, consequently, σ is well defined on the field of meromorphic
functions depending on variables associated with the control system. The operator σ can be extended to K ,
using the formula (2). Additionally, the operator ∆ can be extended to K , using the formula (3). The
operator ∆, which is the extension of delta-derivative to the field K , satisfies a generalization of the Leibniz
rule

(FG)∆ = F∆G+Fσ G∆, (14)
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for F,G ∈ K . The derivation satisfying the rule (14) is called a ‘σ -derivation’ (for example, see [8]).
Therefore K is a field equipped with a σ -derivation ∆ such that σ is an injective endomorphism of K .
The field K with σ -derivation ∆ is a σ -differential field. Since σ is injective, there exists a σ -differential
overfield K ∗, called the inversive closure of K , such that σ can be extended to K ∗ and this extension is
an automorphism of K ∗ (see [8]). The inversive closure for a MIMO dynamical nonlinear system can be
found in a similar way as that for the SISO case in [7], using the extended state-space model associated with
the set of i/o equations.

4. EXAMPLES

The results of the previous section are illustrated by simple examples here.

Example 4.1. Consider the system described by the set of i/o delta-differential equations on a homogeneous
time scale with the graininess function µ 6= 0

y∆
1 = − 1

µ (y1− y2)+uy2y1,

y∆
2 = uy2y1 .

(15)

The function 1/(y1− y2) is meromorphic and belongs to the field K , but σ(1/(y1 − y2)) is not defined
because σ(y1 − y2) = 0. Note that the considered system is not submersive according to Theorem 3.1,
since α11 =−1+ µuy2, α12 = 1+ µuy1, α21 = µuy2, α22 = µuy1, β11 =−µ2y1y2, β21 =−µ2y1y2, and the
condition (8) is not satisfied, i.e.

rankK

(
1+α11 α12 β11

α21 1+α22 β21

)
= rankK

(
µuy2 1+ µuy1 −µ2y1y2
µuy2 1+ µuy1 −µ2y1y2

)
= 1 6= 2.

It is easy to see that for the considered system the operator σ is not injective and σ(y1) = σ(y2). The
noninjective operator is not well defined on the quotient field. Hence we would like the operator σ to be
injective.

Example 4.2. Consider the system
y∆

1 = y2 +u1u2,

y[2]
2 = y1 +u∆

2 .
(16)

Then the extended state-space system Σe with the state

(z,w) = (z10,z20,z21,w10,w11,w20,w21) = (y1,y2,y∆
2 ,u1,u∆

1 ,u2,u∆
2 )

and the inputs v = (v1,v2) = (u[2]
1 ,u[2]

2 ) has the following form:

z∆
10 = z20 +w10w20,

z∆
20 = z21,

z∆
21 = z10 +w21,

w∆
10 = w11,

w∆
11 = v1,

w∆
20 = w21,

w∆
21 = v2.

(17)
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The set of equations governing the dynamics of the extended system Σe can be rewritten, using the operator
σ as follows:

zσ
10 = z10 + µ(z20 +w10w20),

zσ
20 = z20 + µz21,

zσ
21 = z21 + µ(z10 +w21),

wσ
10 = w10 + µw11,

wσ
11 = w11 + µv1,

wσ
20 = w20 + µw21,

wσ
21 = w21 + µv2.

(18)

Note that the map corresponding to the right-hand side of (18) has the following form:

(z10,z20,z21,w10,w11,v1,w20,w21,v2) 7→ (z,w)+ µfe (z,w,v) , (19)

where fe (z,w,v) :=
(
z20 + w10w20,z21,z10 + w21,w11,v1,w21,v2

)
is the right-hand side of (17). For the

operator σ to be injective the map (19) has to satisfy (generically) the condition

rankK
∂ [(z,w)+ µfe (z,w,v)]

∂ (z,w,v)
= 7 . (20)

Note that

A1 :=
∂ [(z,w)+ µfe (z,w,v)]

∂ (z,w,v)
=




1 µ 0 µw20 0 0 µw10 0 0
0 1 µ 0 0 0 0 0 0
µ 0 1 0 0 0 0 µ 0
0 0 0 1 µ 0 0 0 0
0 0 0 0 1 µ 0 0 0
0 0 0 0 0 0 1 µ 0
0 0 0 0 0 0 0 1 µ




.

Using the elementary column transformations specified in the proof of Theorem 3.1 and the fact that in the
transformed matrix the 2nd, 4th, 5th, 6th, and 7th row vectors (or, equivalently, the 2nd, 4th, 5th, 7th, and
8th column vectors) are linearly independent, we get

rankK A1 = rankK




1 µ −µ2 µw20 −µ2w20 µ3w20 µw10 −µ2w10 µ3w10
0 1 0 0 0 0 0 0 0
µ 0 1 0 0 0 0 µ −µ2

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0




= 5+ rankK

(
1 −µ2 µ3w20 µ3w10
µ 1 0 −µ2

)
.

Thus the condition (20) is equivalent to

rankK

(
1 −µ2 µ3w20 µ3w10
µ 1 0 −µ2

)
= 2 .

Since (z10,z20,z21,w10,w11,w20,w21) = (y1,y2,y∆
2 ,u1,u∆

1 ,u2,u∆
2 ), we get

rankK

(
1 −µ2 µ3u2 µ3u1
µ 1 0 −µ2

)
= 2 . (21)
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Therefore the condition which guarantees the injectivity of the operator σ : K →K is given in terms of
variables u1,u2 ∈ C . Moreover, using the elementary column transformations, namely by replacing the first
column by itself plus −µ multiplied by the second column and replacing the fourth column by itself plus
µ2 multiplied by the second column, we get

rankK

(
1 −µ2 µ3u2 µ3u1
µ 1 0 −µ2

)
= rankK

(
1+ µ3 −µ2 µ2u2 µ3u1−µ4

0 1 0 0

)
.

Therefore the condition (21) is equivalent to rankK

(
1+ µ3 µ2u2 µ3u1−µ4

)
= 1. Thus the system

described by the set of equations (16) is submersive and the operator σ defined on the field of meromorphic
functions in variables y1, y2, y∆

2 , u1, and u2 is injective.

Example 4.3. Consider the system
y[2]

1 = y1y∆
2 +u2y1y2,

y[2]
2 = uu∆y1 + y∆

1 y2 .
(22)

Then the extended state-space system Σe with the state

(z,w) = (z10,z11,z20,z21,w10,w11) = (y1,y∆
1 ,y2,y∆

2 ,u,u∆)

and the input v1 = u[2] has the following form:

z∆
10 = z11,

z∆
11 = z10z21 +w2

10z10z20,

z∆
20 = z21,

z∆
21 = w10w11z10 + z11z20,

w∆
10 = w11,

w∆
11 = v1.

Using the operator σ , the system Σe can be rewritten as follows:

zσ
10 = z10 + µz11,

zσ
11 = z10 + µ(z10z21 +w2

10z10z20),

zσ
20 = z20 + µz21,

zσ
21 = z21 + µ(w10w11z10 + z11z20),

wσ
10 = w10 + µw11,

wσ
11 = w11 + µv1.

(23)

Then the map corresponding to the right-hand side of (23) is as follows:

(z10,z11,z20,z21,w10,w11,v1) 7→ (z10,z11,z20,z21,w10,w11)+ µfe (z,w,v1) , (24)

where fe (z,w,v1) :=
[
z11,z10z21 + w2

10z10z20,z21,w10w11z10 + z11z20,w11,v1
]T is the the right-hand side of

Σe. For the operator σ to be injective the map (24) has to satisfy (generically) the condition

rankK
∂ [(z,w)+ µfe (z,w,v1)]

∂ (z,w,v1)
= 6 . (25)
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Note that

A2 :=
∂ [(z,w)+ µfe (z,w,v1)]

∂ (z,w,v1)

=




1 µ 0 0 0 0 0
µ(z21 +w2

10z20) 1 µw2
10z10 µz10 2µw10z10z20 0 0

0 0 1 µ 0 0 0
µw10w11 µz20 µz11 1 µw11z10 µw10z10 0

0 0 0 0 1 µ 0
0 0 0 0 0 1 µ




.

By using the elementary column transformations, the matrix A2 can be transformed to Ã2 in the following
form:




1 0 0 0 0 0 0
µ(z21 +w2

10z20) 1−µ2(z21 +w2
10z20) µw2

10z10 µz10−µ2w2
10z10 2µw10z10z20 −2µ2w10z10z20 2µ3w10z10z20

0 0 1 0 0 0 0
µw10w11 µ(z20−µw10w11) µz11 1−µ2z11 µw11z10 µ(w10z10−µw11z10) µ2(µw11z10−w10z10)

0 0 0 0 1 0 0
0 0 0 0 0 1 0


 .

Note that rankK A2 = rankK Ã2 and the 1st, 3rd, 5th, and 6th row vectors (or, equivalently, the 1st, 3rd, 5th,
and 6th column vectors) are linearly independent over K . Then

rankK A2 = 4 + rankK

(
1−µ2(z21 +w2

10z20) µz10−µ2w2
10z10 2µ3w10z10z20

µ(z20−µw10w11) 1−µ2z11 µ2(µw11z10−w10z10)

)
.

So the condition (25) is equivalent to

rankK

(
1−µ2(z21 +w2

10z20) µz10−µ2w2
10z10 2µ3w10z10z20

µ(z20−µw10w11) 1−µ2z11 µ2(µw11z10−w10z10)

)
= 2 .

Since (z10,z11,z20,z21,w10,w11) = (y1,y∆
1 ,y2,y∆

2 ,u,u∆), we get

rankK

(
1−µ2(y∆

2 +u2y2) µy1−µ2u2y1 2µ3uy1y2
µ(y2−µuu∆) 1−µ2y∆

1 µ2(µu∆y1−uy1)

)
= 2 . (26)

Therefore the condition which guarantees the injectivity of the operator σ : K →K is given in terms of
variables y1,y∆

1 ,y2,y∆
2 ,u,u∆ ∈ C . Assuming the condition (26) holds generically, we get that the system

described by the set of equations (22) is submersive and the operator σ defined on the field of meromorphic
functions in variables y1, y∆

1 , y2, y∆
2 , u, and u∆ is injective.

5. CONCLUSION

The submersivity condition for a MIMO nonlinear control system on a homogeneous time scale is derived
directly in terms of i/o equations. The result is illustrated by several examples, including the demonstration
of necessity of this assumption for the construction of the delta-differential field, associated with the control
system.
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Submersiivsuse eeldusest mittelineaarsete juhtimissüsteemide jaoks
homogeensetel ajaskaaladel

Ülle Kotta, Branislav Rehák ja Małgorzata Wyrwas

On tuletatud alternatiivne submersiivsuse tingimus mittelineaarsete juhtimissüsteemide jaoks, mis on
kirjeldatud kõrgemat järku delta-diferentsiaalvõrranditega. Viimased on sisend-väljundvõrrandid homo-
geensetel ajaskaaladel, mis seovad juhtimissüsteemi sisendeid, väljundeid ja lõplikku arvu nende delta-
tuletisi. Alternatiivne submersiivsuse tingimus on esitatud otseselt sisend-väljundvõrrandite kaudu ja on
tuletatud süsteemi submersiivsuse tingimusest, mis on esitatud sisend-väljundvõrranditega seotud nn laien-
datud olekuvõrrandite abil.


