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Abstract. The object of the present paper is to study pseudo-slant submanifolds of trans-Sasakian manifolds. Integrability
conditions of the distributions on these submanifolds are worked out. Some interesting results regarding such manifolds have
also been deduced. An example of a pseudo-slant submanifold of a trans-Sasakian manifold is given.
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1. INTRODUCTION

In 1990, Chen [6] introduced the concept of slant immersions as a generalization of both holomorphic and
totally real immersions. Many authors have studied slant immersions in Hermitian manifolds. Lotta [9],
introduced the notion of slant immersions in contact manifolds. In papers [3,4], slant submanifolds of
K-contact and Sasakian manifolds have been characterized by Cabrerizo et al. Recently, Carriazo [5]
defined and studied bi-slant immersions in almost Hermitian manifolds and simultaneously gave the
notion of pseudo-slant submanifolds in almost Hermitian manifolds. The contact version of pseudo-slant
submanifolds has been defined and studied by V. A. Khan and M. A. Khan [8]. Slant submanifolds of trans-
Sasakian manifolds have been studied by Gupta et al. [7]. In an analogous way we would like to extend the
notion of pseudo-slant submanifolds in trans-Sasakian manifolds. The present paper is organized as follows.

Preliminaries are given in Section 2. In Section 3, we define pseudo-slant submanifolds of trans-
Sasakian manifolds. Section 4 deals with the integrability conditions of the distributions of such sub-
manifolds and some other geometric results. Section 5 contains an example of a pseudo-slant submanifold
of a trans-Sasakian manifold.

2. PRELIMINARIES

Let M̃ be a (2n + 1)-dimensional C∞-differentiable manifold endowed with the almost contact metric
structure (φ ,ξ ,η ,g), where φ is a tensor field of type (1,1), ξ is a vector field, η is a 1-form and g a
Riemannian metric on M̃, all these tensor fields satisfying [1]

φ 2(X) =−X +η(X)ξ , η(ξ ) = 1, g(X ,ξ ) = η(X), (2.1)

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ), (2.2)

φξ = 0, ηφ = 0, g(X ,φY ) =−g(φX ,Y ), (2.3)
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for any X ,Y ∈ T M̃. Here T M̃ is the standard notation for the tangent bundle of M̃. The two-form Φ denotes
the fundamental two-form and is given by g(X ,φY ) = Φ(X ,Y ). The manifold is said to be contact if Φ = dη .

If ξ is a Killing vector field with respect to g, the contact metric structure is called a K-contact structure.
It is known that a contact metric manifold is K-contact if and only if ∇̃X ξ = −φX , where ∇̃ denotes the
Levi-Civita connection on M̃. The almost contact structure M̃ is said to be normal if [φ ,φ ]+ 2dη⊗ξ = 0,
where [φ ,φ ] is the Nijenhuis tensor of φ . A Sasakian manifold is a normal contact metric manifold. Every
Sasakian manifold is K-contact. A three-dimensional K-contact manifold is Sasakian. An almost contact
metric manifold is Sasakian if and only if

(∇̃X φ)Y = g(X ,Y )ξ −η(Y )X . (2.4)

Moreover, on a Sasakian manifold
∇̃X ξ =−φX , (2.5)

for any X ∈ T M̃ and ξ is the structure vector field.
An almost contact metric structure (φ ,ξ ,η ,g) on M̃ is called a trans-Sasakian structure of type (α,β )

if it satisfies
(∇̃X φ)Y = α{g(X ,Y )ξ −η(Y )X}+β{g(φX ,Y )ξ −η(Y )φX}, (2.6)

for certain functions α and β on M̃, where ∇̃ means the covariant differentiation with respect to g. In
particular, it is normal and generalizes cosymplectic, α-Sasakian, and β -Kenmotsu manifolds. If β = 0,
then the structure is called α-Sasakian. If α = 0, then the structure is called β -Kenmotsu. If both α and β
are zero, then the manifold reduces to a cosymplectic manifold [2]. If α and β are not simultaneously zero,
then we shall call a trans-Sasakian manifold a proper trans-Sasakian manifold.

Again, it is known that a trans-Sasakian manifold of dimension≥ 5 is either α-Sasakian or β -Kenmotsu
or cosymplectic [10]. We know that a trans-Sasakian structure satisfies

∇̃X ξ =−αφX +β (X−η(X)ξ ), (2.7)

for any X ∈ T M̃ and ξ is the structure vector field.
Let M be a submanifold immersed in a (2n+1)-dimensional contact metric manifold M̃; we denote by

the same symbol g the induced metric on M. T M is the tangent bundle of the manifold M and T⊥M is the
set of vector fields normal to M. Then the Gauss and Weingarten formula is given by

∇̃XY = ∇XY +h(X ,Y ), (X ,Y ∈ T M), (2.8)

∇̃X N =−ANX +∇⊥
X N, (N ∈ T⊥M), (2.9)

for any X ,Y ∈ T M and N ∈ T M̃, where ∇⊥ is the connection in the normal bundle. The second fundamental
form h and AN are related by

g(ANX ,Y ) = g(h(X ,Y ),N). (2.10)

For any X ∈ T M, N ∈ T⊥M, we write

φX = T X +NX , (T X ∈ T M,NX ∈ T⊥M), (2.11)

φN = tN +nN, (tN ∈ T M,nN ∈ T⊥M). (2.12)

The submanifold M is invariant if N is identically zero. On the other hand, M is anti-invariant if T is
identically zero. From (2.3) and (2.11), we have

g(X ,TY ) =−g(T X ,Y ), (2.13)

for any X ,Y ∈ T M.
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From now on, we put Q = T 2. We define

(∇̃X Q)Y = ∇X QY −Q∇XY, (2.14)

(∇̃X T )Y = ∇X TY −T ∇XY, (2.15)

(∇̃X N)Y = ∇⊥
X NY −N∇XY, (2.16)

for any X ,Y ∈ T M. In view of (2.8), (2.11), and (2.7) it follows that

∇X ξ =−αT X +β (X−η(X)ξ ), (2.17)

h(X ,ξ ) =−αNX . (2.18)

3. PSEUDO-SLANT SUBMANIFOLDS OF TRANS-SASAKIAN MANIFOLDS

Definition 3.1. We say that M is a pseudo-slant submanifold of a trans-Sasakian manifold M̃ if there exist
two orthogonal distributions D1 and D2 on M such that [8]

(i) T M admits the orthogonal direct decomposition

T M = D1⊕D2⊕< ξ >,

(ii) the distribution D1 is anti-invariant, that is,

φD1 ⊆ T⊥M,

(iii) the distribution D2 is slant with slant angle θ 6= π
2 , that is, the angle between D2 and φ(D2) is a

constant θ .

From the above definition it is clear that if θ = 0, then the pseudo-slant submanifold is a semi-invariant
submanifold. On the other hand, if we denote the dimension of Di by di, for i = 1,2, then we find the
following cases:
(a) If d2 = 0, then M is an anti-invariant submanifold.
(b) If d1 = 0 and θ = 0, then M is an invariant submanifold.
(c) If d1 = 0 and θ 6= 0, then M is a proper slant submanifold, with the slant angle θ 6= 0.

A pseudo-slant submanfold is proper if d1d2 6= 0 and θ 6= 0.

4. INTEGRABILITY OF THE DISTRIBUTIONS

Theorem 4.1. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold M̃. Then

AφY X = AφXY, (4.1)

for all X ,Y ∈ D1.

Proof. In view of (2.10),

g(AφY X ,Z) = g(h(X ,Z),φY ) =−g(φh(X ,Z),Y ). (4.2)

By virtue of (2.8), (4.2) reduces to

g(AφY X ,Z) = −g(φ∇̃ZX ,Y )+g(φ∇ZX ,Y )

= −g(φ∇̃ZX ,Y ), [since φ∇ZX ∈ T⊥M]
= g((∇̃Zφ)X ,Y )−g(∇̃ZφX ,Y ). (4.3)
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Now, for X ∈ D1, φX ∈ T⊥M. Hence, from (2.9) we have

∇̃ZφX =−AφX Z +∇⊥
Z φX . (4.4)

Combining (4.3) and (4.4), we obtain

g(AφY X ,Z) = g((∇̃Zφ)X ,Y )+g(AφX Z,Y ). (4.5)

Since h(X ,Y ) = h(Y,X), it follows from (2.10) that

g(AφX Z,Y ) = g(AφXY,Z).

Hence, from (4.5) we obtain, with the help of (2.6),

g(AφY X ,Z)−g(AφXY,Z) = g(α(g(Z,X)ξ −η(X)Z),Y )
+β (g(φZ,X)ξ −η(X)φZ),Y )

= αη(Y )g(Z,X)−αη(X)g(Z,Y )
+βη(Y )g(φZ,X)−βη(X)g(φZ,Y ). (4.6)

The above equation yields

AφY X−AφXY = α(η(Y )X−η(X)Y )−β (η(Y )φX−η(X)φY ).

Since X ,Y,Z ∈ D1, an orthonormal distribution to the distribution < ξ >, it follows that η(X) = η(Y ) = 0.
Therefore, the above equation reduces to

AφY X = AφXY. ¤

Remark 4.1. As particular cases the above result holds for α-Sasakian, β -Kenmotsu, and cosymplectic
manifolds. For the Sasakian case the above result has been proved in [8].

Theorem 4.2. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold M̃. Then the distribution
D1⊕< ξ > is integrable.

Proof. Since h(X ,Y ) = h(Y,X), in view of (2.8) we see that

∇XY −∇Y X = ∇̃XY − ∇̃Y X . (4.7)

Let X ∈ D1,Y ∈ D2, then

(∇̃X g)(Y,Z) = ∇̃X g(Y,Z)−g(∇̃XY,Z)−g(Y, ∇̃X Z)

or,
0 = 0−g(∇̃XY,Z)−g(Y, ∇̃X Z).

Hence
g(∇̃XY,Z) =−g(Y, ∇̃X Z). (4.8)

Now

g([X ,ξ ],T Z) = g(∇X ξ −∇ξ X ,T Z)

= g(∇̃X ξ − ∇̃ξ X ,T Z)

= g(∇̃X ξ ,T Z)−g(∇̃ξ X ,T Z). (4.9)
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Since X ∈ D1 and Z ∈ D2, where D1 and D2 are two orthogonal distributions and D1 is anti-invariant, in
view of (2.7), (4.8) we obtain from (4.9)

g([X ,ξ ],T Z) = g(∇̃ξ T Z,X). (4.10)

In view of (2.6),
(∇̃ξ φ)Y = 0. (4.11)

In virtue of (2.11) and (4.11), equation (4.10) yields

g([X ,ξ ],T Z) = 0.

Hence [X ,ξ ]∈D1 for X ∈D1. Therefore, the distribution D1⊕< ξ > is integrable. ¤
Remark 4.2. As particular cases the above result holds for α-Sasakian, β -Kenmotsu, and cosymplectic
manifolds. For the Sasakian case the above result has been proved in [8].

Theorem 4.3. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold M̃. Then for any
X ,Y ∈ D1⊕D2

g([X ,Y ],ξ ) = 2αg(X ,TY ). (4.12)

Proof.
g([X ,Y ],ξ ) = g(∇XY,ξ )−g(∇Y X ,ξ ). (4.13)

In view of (4.8) we have from above

g([X ,Y ],ξ ) =−g(∇X ξ ,Y )+g(∇Y ξ ,X). (4.14)

By (2.17), (4.14) yields

g([X ,Y ],ξ ) = 2αg(X ,TY ). ¤

The above equation gives the following:

Corollary 4.1. In a proper trans-Sasakian manifold and α-Sasakian manifold the distribution D1⊕D2 is
not integrable.

Suppose α = 0, that is, the manifold is β -Kenmotsu. Then g([X ,Y ],ξ ) = 0. This implies that
[X ,Y ] ∈ D1⊕D2, for X ,Y ∈ D1⊕D2. In other words, we have the following

Corollary 4.2. In a β -Kenmotsu manifold the distribution D1⊕D2 is integrable.

Again, in a similar manner we have

Corollary 4.3. In a cosymplectic manifold the distribution D1⊕D2 is integrable.

Theorem 4.4. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold M̃. Then the anti-invariant
distribution D1 is integrable.

Proof. For any X ∈ T M, let
X = P1X +P2X +η(X)ξ , (4.15)

where Pi, i = 1,2 are projection maps on the distribution Di. From (4.15) it follows that

φX = NP1X +T P2X +NP2X ,

T X = T P2X , NX = NP1X +NP2X .
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Now for any X ,Y ∈ D1 and Z ∈ D2,

g([X ,Y ],T Z) = g([X ,Y ],T P2Z) =−g(φ [X ,Y ],P2Z). (4.16)

Now

φ [X ,Y ] = φ∇XY −φ∇Y X
= φ∇̃XY −φ∇̃Y X
= ∇̃X φY − (∇̃X φ)Y − ∇̃Y φX +(∇̃Y φ)X . (4.17)

In view of (2.6) and (2.9) and keeping in mind that g(U,V ) = 0 for U ∈D1 and V ∈D2, we obtain from
(4.16)

g([X ,Y ],T P2Z) = − g(AφXY −AφY X−α(η(Y )X−η(X)Y )
+ β (η(Y )φX−η(X)φY ),P2Z). (4.18)

For X ,Y ∈D1, we get η(X) = η(Y ) = 0. Hence Theorem 4.1 and the above equation yield g([X ,Y ],T Z) = 0,
that is, [X ,Y ]∈D1 for X ,Y ∈D1. Therefore the distribution D1 is integrable. ¤

The immediate consequence of the above theorem is the following:

Corollary 4.4. On a pseudo-slant submanifold M of a trans-Sasakian manifold M̃, the distribution
D1⊕< ξ > is integrable.

Remark 4.3. The above result also holds for cosymplectic, α-Sasakian, and β -Kenmotsu manifolds.

For a Sasakian manifold the above result was proved by V. A. Khan and M. A. Khan [8].

Theorem 4.5. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold M̃. Then the slant
distribution D2 is not integrable.

Proof. Since g([X ,Y ],ξ ) = 2αg(X ,TY ), by the definition of the pseudo-slant submanifold the proof follows.
¤

The above theorem produces

Corollary 4.5. In an α-Sasakian manifold the slant distribution D2 is not integrable.

Theorem 4.6. Let M be a submanifold of an almost contact metric manifold M̃, such that ξ ∈ T M. Then M
is a pseudo-slant submanifold if and only if there exists a constant λ ∈ (0,1] such that
(a) D = {X ∈ T M|T 2X =−λX} is a distribution on M.
(b) For any X ∈ T M, orthogonal to D, T X = 0.

Furthermore, in this case λ = cos2θ , where θ denotes the slant angle of D.

Proof. Follows from [8]. ¤
Theorem 4.7. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold M̃. Then ∇Q = 0 if and
only if M is an anti-invariant submanifold.

Proof. If we consider the distribution D2⊕< ξ >, then from Theorem 4.6 we can write

T 2X =−λ (X−η(X)ξ ). (4.19)

Denote by θ the slant angle of M. Then, replacing X by ∇XY, we get from (4.19)

Q(∇XY ) =−cos2θ(∇XY )+ cos2θη(∇XY )ξ , (4.20)

for any X ,Y ∈ D2⊕< ξ > .
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Equation (4.19) also gives

∇X QY = − cos2θ(∇XY )+ cos2θη(∇XY )ξ
+ cos2θg(Y,∇X ξ )ξ + cos2θη(Y )∇X ξ , (4.21)

because Xη(Y ) = η(∇XY )+g(Y,∇X ξ ). Now, since M is a submanifold of a trans-Sasakian manifold M̃,

∇X ξ =−αT X +β (X−η(X)ξ ), (4.22)

for any X ∈ T M. Putting the value of ∇X ξ in (4.21), we obtain

∇X QY = − cos2θ(∇XY )+ cos2θη(∇XY )ξ
− αcos2θg(Y,T X)ξ −αcos2θη(Y )T X
+ βcos2θ(g(X ,Y )ξ −η(X)η(Y )ξ )
+ βcos2θ(η(Y )X−η(X)η(Y )ξ ). (4.23)

Combining (4.20) and (4.23), we find

(∇X Q)Y = − αcos2θ(g(X ,T X)ξ −η(Y )T X)
+ βcos2θ(g(X ,Y )ξ −2η(X)η(Y )ξ +η(Y )X), (4.24)

for any X ,Y ∈ D2⊕< ξ >. Here, we note that

g(X ,Y )ξ −2η(X)η(Y )ξ +η(Y )X 6= 0.

Hence ∇Q = 0 if and only if θ = π
2 holds in D2⊕< ξ >. Again, D1 is anti-invariant by definition. Thus,

the theorem follows. ¤
As a consequence of Theorem 4.7 we immediately obtain

Corollary 4.6. In a pseudo-slant submanifold of an α-Sasakian manifold ∇Q = 0 if and only if the
submanifold is anti-invariant.

Corollary 4.7. In a pseudo-slant submanifold of a β -Kenmotsu manifold ∇Q = 0 if and only if the
submanifold is anti-invariant.

But for a cosymplectic manifold we have

Corollary 4.8. In a submanifold of a cosymplectic manifold ∇Q is always zero, whether the submanifold is
anti-invariant or not.

Theorem 4.8. Let M be a submanifold of an almost contact metric manifold M̃ with a slant angle θ . Then,
at each point x ∈M, Q|D has only one eigenvalue λ1 = cos2θ , for the slant distribution D of M.

Proof. Follows from [9]. ¤
Theorem 4.9. Let M be a submanifold of a trans-Sasakian manifold M̃ with T M = D1⊕D2⊕< ξ >. Then
M̃ is pseudo-slant if and only if
(a) the endomorphism Q|D2 has only one eigenvalue at each point of M,
(b) there exists a function λ : M → [0,1] such that

(∇X Q)Y = λ{α(g(X ,PY )ξ −η(Y )PX)
+ β (g(X ,Y )ξ −2η(X)η(Y )ξ +η(Y )X)}, (4.25)

for any X ,Y ∈ D2⊕< ξ >. Moreover, if θ is the slant angle of M, then λ = cos2θ .
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Proof. Statements (a) and (b) follow from (4.24) and Theorem 4.8.
Conversely, suppose that (a) and (b) hold. Let λ1(x) be the eigenvalue of Q|D2 at each point x of M and

Y ∈ D2 be a unit eigenvector associated with λ1, that is, QY = λ1Y. Then from (b) we get

X(λ1Y )+λ1∇XY = (∇X Q)Y +Q(∇X)Y
= ∇X(QY ) = Q(∇XY )+λ (αg(X ,TY )ξ )+β (g(X ,Y )ξ ), (4.26)

for any X ∈ T M. Since both ∇XY and Q(∇XY ) are perpendicular to Y, we conclude that λ1 is a constant
on M.

Now we want to prove that M is pseudo-slant. To fulfill our purpose, in view of Theorem 4.6, it is
sufficient to show that there exists a constant µ such that

T 2 = Q =−µI,

holds in D2. To this end, let X be in D2 ⊂ T M. Then by condition (a)

X = X−η(X)ξ ∈ D2.

Hence,
QX = λ1X ,

where λ1 is the eigenvalue of Q|D2 . Putting λ1 =−µ, we see that condition (a) of Theorem 4.6 is satisfied.
Now, φξ = 0 implies T ξ = 0. Again, for all Y ∈ D1, g(φY,Y ) = 0. This gives that φY ∈ T⊥D1. For
X ∈ D2, the slant distribution, g(φY,X) = g(Y,φX) = g(Y,kX) = kg(Y,X) = 0, k ∈ (0,1). This shows that
φY ∈ T⊥M. Therefore TY = 0.

Thus, by the use of Theorem 4.6, the above theorem is proved. Since Q|D2 = λ1I, we have QX = λ1X
and so λ1X = λ1(X−η(X)ξ ). By taking µ =−λ1, we get M is pseudo-slant.

Moreover, since M is pseudo-slant, then from (4.25), λ =−λ1 = µ = cos2θ ,where θ denotes the slant
angle of M. ¤

For an α-Sasakian manifold the above theorem yields the following:

Corollary 4.9. Let M be a submanifold of an α-Sasakian manifold M̃ with T M = D1⊕D2⊕ < ξ >. Then
M̃ is pseudo-slant if and only if
(a) the endomorphism Q|D2 has only one eigenvalue at each point of M,
(b) there exists a function λ : M → [0,1] such that

(∇X Q)Y = λ{α(g(X ,PY )ξ −η(Y )PX)} (4.27)

for any X ,Y ∈ D2⊕< ξ >. Moreover, if θ is the slant angle of M, then λ = cos2θ .

In the β -Kenmotsu case Theorem 4.9 takes the following form:

Corollary 4.10. Let M be a submanifold of a β -Kenmotsu manifold M̃ with T M = D1⊕D2⊕< ξ >. Then
M̃ is pseudo-slant if and only if
(a) the endomorphism Q|D2 has only one eigenvalue at each point of M,
(b) there exists a function λ : M → [0,1] such that

(∇X Q)Y = β (g(X ,Y )ξ −2η(X)η(Y )ξ +η(Y )X), (4.28)

for any X ,Y ∈ D2⊕< ξ >. Moreover, if θ is the slant angle of M, then λ = cos2θ .

For the cosymplectic case we obtain the following:
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Corollary 4.11. Let M be a submanifold of a cosymplectic manifold M̃ with T M = D1⊕D2⊕< ξ >. Then
M̃ is pseudo-slant if and only if
(a) the endomorphism Q|D2 has only one eigenvalue at each point of M,
(b) there exists a function λ : M → [0,1] such that

(∇X Q)Y = 0, (4.29)

for any X ,Y ∈ D2⊕< ξ >.

Theorem 4.10. In a pseudo-slant submanifold of a trans-Sasakian manifold

(∇X T )Y = ANY X + th(X ,Y )
+ α(g(X ,Y )ξ −η(Y )X)
+ β (g(T X ,Y )ξ −η(Y )T X). (4.30)

Proof. For any X ,Y ∈ T M we have
∇̃X φY = (∇̃X φY )+φ∇̃XY.

By (2.8) and (2.11) we have from above

∇̃X TY + ∇̃X NY = (∇̃X φ)Y +φ(∇XY +h(X ,Y )).

Again, by (2.11) and (2.12)

∇̃X TY + ∇̃X NY = (∇̃X φ)Y +T ∇XY +N∇XY + th(X ,Y )+nh(X ,Y ).

Using (2.8) and (2.9) from above, we get

∇X TY +h(X ,TY )−ANY X +∇⊥
X NY = α(g(X ,Y )ξ −η(Y )X)

+ β (g(φX ,Y )ξ −η(Y )φX)
+ T ∇XY +N∇XY
+ th(X ,Y )+nh(X ,Y ). (4.31)

Comparing tangential and normal parts, we have

∇X TY −ANY X = α(g(X ,Y )ξ −η(Y )X)
+ β (g(T X ,Y )ξ −η(Y )T X)
+ T ∇XY + th(X ,Y ). (4.32)

That is,

(∇X T )Y = ANY X + th(X ,Y )
+ α(g(X ,Y )ξ −η(Y )X)
+ β (g(T X ,Y )ξ −η(Y )T X). (4.33)

¤
As a consequence of the above theorem we obtain the following:

Corollary 4.12. In a pseudo-slant submanifold of an α-Sasakian manifold

(∇X T )Y = ANY X + th(X ,Y )
+ α(g(X ,Y )ξ −η(Y )X). (4.34)

Corollary 4.13. In a pseudo-slant submanifold of a β -Kenmotsu manifold

(∇X T )Y = ANY X + th(X ,Y )
+ β (g(T X ,Y )ξ −η(Y )T X). (4.35)
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Corollary 4.14. In a pseudo-slant submanifold of a cosymplectic manifold

(∇X T )Y = ANY X + th(X ,Y ). (4.36)

5. EXAMPLE

From [11] we know that R2n+1 admits a trans-Sasakian structure. Now consider an example of a three-
dimensional submanifold of a trans-Sasakian manifold.

Let (x,y,z) be Cartesian coordinates of R3 and put

ξ =
∂
∂ z

, η = dz− ydx,

φ =




0 −1 0
1 0 0
0 0 0


 ,

g =




1 0 0
0 1 0
0 0 0


 .

Then δΦ(ξ ) = −1, δη = −1 and (φ ,ξ ,η ,g) is a trans-Sasakian structure on R3 of type (−1
2 , 1

2) [2]. The
vector fields

e1 =
∂
∂ z

, e2 =
∂
∂y

, e3 =
∂
∂x

form an orthonormal frame of T M. We see that φe1 = 0, φe3 = e2, φe2 =−e3.
Let D1 =< e2 >, D2 =< e3 >, < ξ >=< e1 >. Suppose X ∈ D1, and Y ∈ T M. Then we can write

X = ke2, k is a scalar and Y = re1 + se2 + te3, r, s, t are scalars. Now cos∠(φX ,Y ) = g(φX ,Y )
|φX ||Y | . From the

components of the metric g see that g(φX ,Y ) = krg(φe2,e1)+ ksg(φe2,e2)+ ktg(φe2,e3) = 0. Hence, the
distribution D1 is anti-invariant.

Again, let us suppose U ∈ D2, and V ∈ T M. Then we can write U = ce3, c is a scalar and V =
ke1 + le2 + me3, k, l, m are scalars. Now cos∠(φU,V ) = g(φU,V )

|φU ||V | . We see that g(φU,V ) = ckg(φe3,e1)+
clg(φe3,e2)+cmg(φe3,e3) = 1. Therefore, cos∠(φU,V ) = 1

|cφe3||ke1+le2+me3| which is constant. We see that
the distribution D2 is slant.

In this case, the distribution D1 is anti-invariant while the distribution D2 is slant. Hence the submanifold
under consideration is pseudo-slant.

6. CONCLUSION

Trans-Sasakian manifolds generalize both α-Sasakian and β -Kenmotsu manifolds. Pseudo-slant submani-
folds mainly extend the notion of semi-invariant submanifolds. The integrability of the distributions of the
tangent bundle of a submanifold determines the nature of the submanifold. In the present paper we consider
the direct orthogonal decomposition of the tangent bundle T M of the pseudo-slant submanifold M of a
trans-Sasakian manifold M̃ as T M = D1⊕D2⊕ < ξ >, where D1 is the anti-invariant distribution and D2
is the slant distribution. We mainly show that the distributions D1⊕ < ξ > and D1 are integrable but the
distribution D2 is not integrable. A necessary and sufficient condition for a pseudo-slant submanifold to
be anti-invariant is obtained. An example of a pseudo-slant submanifold of a trans-Sasakian manifold is
constructed.

Submanifold theory has an important role in many branches of applied mathematics. The results
obtained in this paper can be used in many problems of dynamical system and critical point theory.
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Trans-Sasaki muutkondade pseudo-längus alammuutkondadest

Uday Chand De ja Avijit Sarkar

Artikkel on uurimus trans-Sasaki muutkondade pseudo-längus alammuutkondadest. On välja töötatud jao-
tuste integreeruvustingimused sellistel alammuutkondadel, loetletud teisi geomeetrilisi omadusi ja toodud
ühe pseudo-längus trans-Sasaki alammuutkonna näide.


