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Abstract. We consider a Riemannian manifold carrying a biconcircular gradient vector field X , having as generative a closed
torse forming U . The existence of such an X is determined by an exterior differential system in involution depending on two
arbitrary functions of one argument. The Riemannian manifold is foliated by Einstein surfaces tangent to X and U . Properties of
the biconcircular vector field X are investigated.
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1. INTRODUCTION

Let (M,g) be a Riemannian (or pseudo-Riemannian) C∞-manifold, and ∇, d p, and [ : T M → T ∗M be the
Levi-Civita connection, the soldering form of M (i.e. the canonical vector-valued 1-form of M), and the
musical isomorphism defined by g, respectively.

A vector field X on M such that
∇X = U [⊗X +X [⊗U, (1.1)

where U is a certain vector field, called the generative of X , is defined as a biconcircular gradient (abbr. BC
gradient) vector field. In consequence of (1.1), X is a self-adjoint vector field (i.e., dX [ = 0).

If U is a closed torse forming [8,9]

∇ZU = aZ +g(Z,U)U, a = const., (1.2)

then the existence of such an X is determined by an exterior differential system in involution (in the sense
of Cartan [1]) and depends on two arbitrary functions of one argument. In these conditions, we prove that a
manifold (M,g) which carries such an X is foliated by Einstein surfaces MX tangent to X and U .

If LU is the Lie derivative, we also find

LU ∇U = 0, [U,X ] = aX , (1.3)

i.e., U is an affine vector field and defines an infinitesimal homothety of X .
We also consider the skew-symmetric Killing vector field V defined by

∇V = X ∧U,

(∧ : wedge product) and prove that V is a 2-exterior concurrent vector field. Finally two examples are given.
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2. PRELIMINARIES

Let (M,g) be a Riemannian C∞-manifold and ∇ be the covariant differential operator with respect to the
metric tensor g. We assume that M is oriented and ∇ is the Levi-Civita connection. Let ΓT M be the set of
sections of the tangent bundle and [ : T M → T ∗M and \ = [−1 the classical musical isomorphisms defined
by g.

As usual, we denote by C∞M and ΓΛ1T M the algebra of smooth functions on M and the set of 1-forms
on M, respectively.

Following [6], we denote by Aq(M,T M) = ΓHom(ΛqT M,T M) the set of vector-valued q-forms,
q < dimM, and by

d∇ : Aq(M,T M)→ Aq+1(M,T M)

the covariant derivative operator with respect to ∇ (in general d∇2
= d∇ ◦ d∇ 6= 0, unlike d2 = d ◦ d = 0).

The vector-valued 1-form d p ∈ A1(M,T M) is the identity vector-valued 1-form, called the soldering form
of M (see [2]). Since ∇ is symmetric, we have d∇(d p) = 0.

A vector field Y such that

d∇(∇Y ) = ∇2Y = π ∧d p ∈ A2(M,T M) (2.1)

for some 1-form π (called the concurrence form) is defined as exterior concurrent vector field [4,8].
If R is the Ricci tensor of ∇, we have

R(Y,Z) =−(n−1)λg(Y,Z), Z ∈ ΓT M, (2.2)

where n = dimM and π = λY [ (λ ∈C∞M is a conformal scalar).
A vector field U such that

∇U = ad p+u⊗U, u ∈ ΓΛ1T M, a ∈C∞M, (2.3)

is called a torse forming [9].
Let O = {eA; A = 1, ...,n} be a local field of adapted vectorial frames over M and let O∗ = {ωA} be its

associated coframe. Then the soldering form d p of M is expressed by d p = ωA⊗ eA and Cartan structure
equations written in an indexless manner are

∇e = θ ⊗ e, (2.4)

dω =−θ ∧ω, (2.5)

dθ =−θ ∧θ +Θ. (2.6)

In the above equations, θ (resp. Θ) are the local connection forms in the tangent bundle T M (resp. the
curvature forms on M).

3. PROPERTIES OF BICONCIRCULAR GRADIENT VECTOR FIELDS

A vector field X on a Riemannian (or pseudo-Riemannian) manifold (M,g) is said to be biconcircular (abbr.
BC) if its covariant differential ∇X has no zero components only in two directions.

An example of a BC vector field is given by the skew-symmetric Killing vector field (in the sense of
Rosca [8]).

In the present paper we consider a BC vector field X such that

∇X = U [⊗X +X [⊗U, (3.1)
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where U is a certain vector field called the generative of X . It is easy to prove that

g(∇ZX ,Z′) = g(∇Z′X ,Z), Z,Z′ ∈ ΓT M, (3.2)

which shows that X is a gradient vector field in the sense of Okumura (see [7]). Using Cartan’s structure
equations, it follows that

dX [ = 0. (3.3)

In the current paper we assume that U is a closed torse forming [4], i.e.

∇U = ad p+U [⊗U ⇔ ∇ZU = aZ +g(Z,U)U, a = const. (3.4)

From (3.1) and (3.4) we derive
LU X = (‖U‖2−a)X , (3.5)

which, as is known, proves that X admits an infinitesimal transformation U.
Since

dU [ = 0, (3.6)

it follows from (3.3) and (3.6) that M receives a foliation.
Operating on (3.1) and (3.4) by d∇, we derive by a standard calculation

{
d∇(∇X) = ∇2X =−aX [∧d p,

d∇(∇U) = ∇2U =−aU [∧d p,
(3.7)

which proves that X and U are exterior concurrent vector fields. Then, by reference to [8], the Ricci tensors
of X and U are expressed by

{
R(X ,X) = (n−1)ag(X ,X)⇒ RicX = (n−1)a,

R(U,U) = (n−1)ag(U,U)⇒ RicU = (n−1)a.
(3.8)

We recall that a (pseudo)-Riemannian manifold N is said to be Einstein if its Ricci tensor is given by
R = cg, for some constant c (see [5]).

It follows from (3.8) that if M is compact, then the constant a is positive. In order to simplify, we set

lX = ‖X‖2 , lU = ‖U‖2 , s = g(X ,U). (3.9)

We obtain 



dlX = 2lXU [ + sX [,

dlU = (a+2lU)U [,

ds = (a+2lU)X [ +2sU [.

(3.10)

Denote now by ∑ the exterior differential system which defines the BC gradient vector field X under
consideration.

By (3.3), (3.6), and (3.10) the characteristic numbers of ∑ (i.e. Cartan’s numbers) are r = 5, s0 = 3,
s1 = 2. Since r = s0 +s1, it follows that ∑ is in involution and by Cartan’s test we conclude that the existence
of X depends on two arbitrary functions of one argument.

Further, we denote by DX = {X ,U} the 2-dimensional distribution spanned by X and U .
Since the property of exterior concurrency is invariant by linearity, it follows that if X ′ , X ′′ ∈ DX , then

∇X ′′X ′ ∈ DX . (3.11)
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Summing up, we conclude from (3.11) and (3.8) that the manifold (M,g) carrying X is foliated by
Einstein surfaces MX tangent to DX .

Theorem 1. Let (M,g) be a Riemannian manifold carrying a BC gradient vector field X with closed
torse forming generative U. The existence of such an X is determined by an exterior differential system
in involution depending on two arbitrary functions of one argument.

Any manifold (M,g) which carries such an X is foliated by Einstein surfaces MX tangent to X and U.

In another order of ideas, if we take the Lie derivative of ∇U with respect to U and since a = const., we
get

LU ∇U = 0, (3.12)

which means that U is an affine vector field.
Further, we define a vector field V such that

∇V = X ∧U = U [⊗X−X [⊗U. (3.13)

We find
d∇(∇V ) = ∇2V = aX [∧d p+2(X [∧U [)⊗U, (3.14)

d∇(∇2V ) = ∇3V = 2a(X [∧U [)∧d p, (3.15)

i.e., V is a 2-exterior concurrent vector field.
We also remark that V is a Killing vector field, i.e.

g(∇ZV,Z′)+g(∇Z′V,Z) = 0. (3.16)

From the general formula

dV [(U,X) = g(∇UV,X)−g(U,∇XV ),

we also derive
dV [(U,X) = ‖X‖2 ‖U‖2−2g(U,X)2.

Next we consider the skew-symmetric Killing vector field W having U as generative [3], i.e.

∇W = W ∧U. (3.17)

Then, by Rosca’s Lemma [8] it follows that

dW [ = aU [∧W [. (3.18)

It should be noticed that, since a = const., [W,U ] is also a Killing vector field.

Theorem 2. Let (M,g) be a Riemannian manifold carrying a BC gradient vector field X , having as
generative a closed torse forming U . Then

i) the generative U of the BC vector field X is an affine vector field;
ii) the wedge product X ∧U of X and U defines a 2-exterior concurrent vector field V, which is a Killing

vector field;
iii) if W is a skew-symmetric vector field having U as generative, then [W,U ] is also a Killing vector field.
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4. EXAMPLES

We shall determine the BC gradient vector fields on two Riemannian manifolds.

1. We take the upper half space xn > 0 in the sense of Poincaré’s representation as the model of the
hyperbolic n-space form Hn. The metric of Hn is given by

gi j(x) =
1

(xn)2 δi j, ∀x ∈Hn, ∀i, j ∈ {1, ...,n}.

The Christoffel’s symbols with respect to g are

Γi
ni =−Γn

λλ =− 1
xn , i ∈ {1, ...,n}, λ ∈ {1, ...,n−1},

the other being zero.
The vector field ξ = xn ∂

∂xn is a closed torse forming (see [4]).
We determine the BC gradient vector fields on Hn having ξ as generative. Equation (3.1) can be written

as
∇X = u⊗X + v⊗ξ ,

where u = ξ [ and v = X [.
Let

X =
n−1

∑
λ=1

f λ ∂
∂xλ + f

∂
∂xn .

Then v = 1
(xn)2 (∑n−1

λ=1 f λ dxλ + f dxn) and u = 1
xn dxn.

In particular, we have

∇ ∂
∂xn

X = u
(

∂
∂xn

)
X + v

(
∂

∂xn

)
xn ∂

∂xn ,

i.e.,

∇ ∂
∂ xn

(
f λ ∂

∂xλ + f
∂

∂xn

)
=

1
xn

(
f λ ∂

∂xλ + f
∂

∂xn

)
+

f
xn

∂
∂xn ,

or, equivalently,

∂ f λ

∂xn
∂

∂xλ + f λ Γk
nλ

∂
∂xk +

∂ f
∂xn

∂
∂xn + f Γk

nn
∂

∂xk =
1
xn

(
f λ ∂

∂xλ +2 f
∂

∂xn

)
.

Thus we have
∂ f λ

∂xn
∂

∂xλ −
f λ

xn
∂

∂xλ +
∂ f
∂xn

∂
∂xn −

f
xn

∂
∂xn =

1
xn

(
f λ ∂

∂xλ +2 f
∂

∂xn

)
.

It follows that 



∂ f λ

∂xn = 2
f λ

xn ,

∂ f
∂xn = 3

f
xn .

By integrating we get {
f λ = cλ (x1, ...,xn−1)(xn)2,

f = a(x1, ...,xn−1)(xn)3.
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On the other hand, for µ ∈ {1, ...,n−1}, we have

∇ ∂
∂xµ

(
f λ ∂

∂xλ + f
∂

∂xn

)
= u

(
∂

∂xµ

)
X + v

(
∂

∂xµ

)
xn ∂

∂xn ,

i.e.,
∂ f λ

∂xµ
∂

∂xλ + f λ Γk
µλ

∂
∂xk +

∂ f
∂xµ

∂
∂xn + f Γk

nµ
∂

∂xk =
f µ

xn
∂

∂xn ,

or, equivalently,
∂ f λ

∂xµ
∂

∂xλ +
f µ

xn
∂

∂xn +
∂ f
∂xµ

∂
∂xn −

f
xn

∂
∂xµ =

f µ

xn
∂

∂xn .

It follows that 



∂ f λ

∂xµ =
f

xn δλ µ =⇒ cλ = cλ (xλ ),

∂ f
∂xµ = 0 =⇒ a = const.

For λ = µ , we get ∂cµ

dxµ = a⇐⇒ cµ = axµ +bµ .
Consequently,

X =
n−1

∑
λ=1

(axλ +bλ )(xn)2 ∂
∂xλ +a(xn)3 ∂

∂xn .

2. Let T n−1 be an (n−1)-dimensional flat torus with the coordinate system (x1, ...,xn−1) and R a real line
with coordinate xn. Consider the warped product M = R×σ T n−1, with σ(xn) = e−xn

. Then the components
of the Riemannian metric on M are

gλ µ = e−2xn
δλ µ , gnλ = 0, λ ,µ ∈ {1, ...,n−1}; gnn = 1,

and Christoffel’s symbols are
Γλ

nλ =−1, Γn
λλ = e−2xn

,

the other being zero.
We can prove that ξ = ∂

∂xn is a closed torse forming (see [4]). The BC gradient vector fields on M having
ξ as generative are defined by

∇X = u⊗X + v⊗ξ ,

with u = ξ [ and v = X [.
If we put

X =
n−1

∑
λ=1

f λ ∂
∂xλ + f

∂
∂xn ,

then v = e−2xn
f λ dxλ + f dxn.

We have

∇ ∂
∂xn

X = u
(

∂
∂xn

)
X + v

(
∂

∂xn

)
∂

∂xn ,

i.e.,
∂ f λ

∂xn
∂

∂xλ − f λ ∂
∂xλ +

∂ f
∂xn

∂
∂xn = f λ ∂

∂xλ +2 f
∂

∂xn ,

or, equivalently,
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∂ f λ

∂xn = 2 f λ ,

∂ f
∂xn = 2 f ,

⇐⇒





f λ = cλ e2xn
, cλ = cλ (x1, ...,xn−1),

f = ae2xn
, a = a(x1, ...,xn−1).

For µ ∈ {1, ...,n−1}, we have

∇ ∂
∂xµ

X = u
(

∂
∂xµ

)
X + v

(
∂

∂xµ

)
∂

∂xn ,

i.e.,
∂ f λ

∂xµ
∂

∂xλ + e−2xn
f µ ∂

∂xn +
∂ f
∂xµ

∂
∂xn − f

∂
∂xµ = e−2xn

f µ ∂
∂xn ,

or, equivalently, 



∂ f λ

∂xµ = f δλ µ ,

∂ f
∂xµ = 0.

The last equation implies a = const.; then f µ = (axµ +bµ)e2xn
.

Consequently,

X =
n−1

∑
µ=1

(axµ +bµ)e2xn ∂
∂xµ +ae2xn ∂

∂xn .
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Bikaasringse gradientvektorvälja mõned omadused

Adela Mihai

On vaadeldud Riemanni muutkonda (M,g), millel on määratud bikaasringne gradientvektorväli X , st X
rahuldab tingimust ∇X = U [⊗X +X [⊗U , kus ∇ on kovariantne diferentsiaal, U on vektorväli muutkonnal
M ja [ : T M→ T ∗M on puutujavektorkonna ning kaaspuutujavektorkonna vaheline isomorfism. Tingimusel,
et vektorväli U rahuldab tingimust ∇ZU = aZ + g(Z,U)U , kus a on konstant, on uuritud bikaasringse
gradientvektorvälja X olemasolu ja näidatud, et X on involutsiooniga välisdiferentsiaalvõrrandisüsteemi
lahendiks, kusjuures selle võrrandisüsteemi iga lahend sõltub kahest parameetrist ning parameetriteks on
siledad ühemuutuja funktsioonid muutkonnal M. On tõestatud, et kui Riemanni muutkonnal M eksisteerib
selline bikaasringne gradientvektorväli X , et U rahuldab eelmainitud tingimust, siis muutkond M on
foliatsioon, mille iga kiht on Einsteini pind, ja vektorväljad X ,U on selle pinna puutujavektorväljad.


