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In this paper, the effect of fluidized bed temperature on primary fragmenta-
tion of Huadian oil shale was investigated experimentally in thermal state 
using a small-scale fluidized bed with N2 as fluidizing gas. The fluidized-bed 
temperatures changed from 600 °C to 1000 °C. Experimental results indicate 
that the fluidized bed temperature is an important factor of primary 
fragmentation of oil shale, and that higher bed temperature results in severer 
fragmentation. The laminated structure and high ash content may contribute 
to the primary fragmentation characteristics of Huadian oil shale. The 
thermal stress fragmentation and devolatilization-induced fragmentation 
have little effect on small oil shale particles. Furthermore, the experimental 
data were treated by a neural network method, and a Back Propagation 
network model for primary fragmentation of oil shale was set up through 
network learning and validated by experimental data. 

Introduction 

To improve the availability of oil shale, many specialists recommend burn-
ing oil shale in circulating fluidized beds (CFBs), which produce satisfactory 
combustion efficiency, low NOx and SO2 emission, adaptability to low-grade 
coal, appropriate capital and operation costs, etc. [1–5]. After oil shale 
particles are plunged into a fluidized bed (FB), severe primary fragmentation 
and secondary fragmentation will occur, which have great effect on bed 
materials’ concentration and particle size distribution referring to combus-
tion ratio, heat transfer in furnace, distribution of heat load, etc. In addition, 
the fragmentation can also play a role in desulfurizer utilization efficiency, 
separator design and abrasive wear of heating surface. 

Primary fragmentation is usually defined as the breakage of fuel particles 
into smaller particles during devolatilization, and it is mainly caused by 
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thermal stress because of the fast heating rate and the internal pressure built 
up by the volatile matter in the pore network [6–8]. Primary fragmentation 
occurs before combustion begins, then secondary fragmentation takes place 
during the post-devolatilization combustion of char particles [9]. Many 
researches of the fragmentation of fuel during combustion have been carried 
out and the cause of fragmentation has been analyzed. Using a high-tem-
perature drop-tube furnace, Dacombe et al. [10] examined the fragmentation 
nature of large (1–4 mm) granular anthracites and bituminous coal particles 
and found that the number of fragments tends to reduce with time for smaller 
particles, while the number of fragments remains high for larger particles. 
They also found that the extent of fragmentation increases with increasing 
furnace temperature and particle size. Lee et al. [11] studied primary frag-
mentation and particle size reduction of anthracite coal during devolatiliza-
tion, with the result that the fragmentation increases with increasing 
devolatilization temperature and particle size. Two processes, fragmentation 
and swelling, can cause change in large particle diameter in a relatively short 
period, mainly during devolatilization of coal [12]. Abdelmounaim et al. [13] 
studied thermal pre-treatment effect on the fragmentation of oil shale solid 
particles from Tarfaya deposit (Morocco), processed in a fluidized-bed 
combustor. It was found that fragmentation rates were experimentally 
estimated to increase as high as 3–5 times once shale was preheated. Al-
Otoom et al. [14] found that there was very small number of fragmentations 
of Jordanian oil shale particles occurring during combustion or ashing in a 
laboratory furnace in the studied range of oil shale particle size (<0.15 mm). 
They suggested that the stagnant conditions of the experimental combustion 
process may also help the phenomenon. 

After being crushed for the demand of combustion in an industrial oil 
shale-fired FB boiler, Huadian oil shale exhibited laminated structure 
because of its self-affinity in physical properties [2]. In order to understand 
the primary fragmentation characteristics of oil shale particles with 
laminated stucture, the experiment of the primary fragmentation of Huadian 
oil shale in a lab-scale fluidized bed was conducted. Since the primary 
fragmentation process is determined by many factors such as physical and 
thermal properties of oil shale, bed temperature and other operating condi-
tions, and is so complicated that it is a nonlinear system, the experimental 
results obtained at different bed temperature were analyzed by a neural 
network method, and a neural network model for the primary fragmentation 
of oil shale during fluidized bed was set up through network learning. 

Experimental 

The oil shale sample was obtained from Huadian, China. Its ultimate and 
proximate analysis is given in Table 1. 
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The lab-scale FB system used in the experiment is shown in Fig. 1. It 
consists of a fluidized bed, an automatic temperature controller and a gas 
supply system. The fluidized bed is made of a stainless-steel tube (50 mm 
diameter, 400 mm height), and its distributor grid is a stainless-steel net with 
200 meshes. Bed materials are quartz sand particles in the size range 
0.5 mm–0.6 mm. 

Experimental conditions were: fluidized bed temperature was 600, 650, 
700, 750, 800, 850, 900, 1000 °C, respectively; particle size distribution of 
oil shale plunged into the FB is consistent with that generally used in 
industrial oil shale-fired FB  boiler,  as shown in Fig. 2,  and its mass content  
 

Table 1. Proximate and ultimate analysis of Huadian oil shale 

Proximate analysis Ultimate analysis, mass%, ad 

Moisture, mass%, ad 2.90 C 31.63   
Volatile matter, mass%, ad 41.89 H 4.37 
Ash, mass%, ad 51.61 O 7.76 
Fixed carbon, mass%, ad 3.60 N 0.73 
Net calorific value, kJ·kg-1, ad 8374 S 1.00 

 

ad – air dry basis 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Block diagram of the fluidized-bed system: 1 – gas cylinder, 2 – flow control 
valve, 3 – manometer, 4 – flowmeter, 5 – refractory, 6 – fluidized bed, 7 – electric 
heater, 8 – distributor grid, 9 – thermometer, 10 – gas box, 11 – thermocouple, 12 – 
automatic temperature controller. 
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         Sieve size, mm 

 

Fig. 2. Particle size distribution of shale chars at different fluidized bed temperatures. 
 
 
was 5 wt% of all the materials (oil shale and bed materials) which was 
50 mm in height; N2 was used as fluidizing gas to avoid any possibility of 
combustion during the primary fragmentation process, and fluidizing 
velocity was 0.8 m/s for keeping the bed in the turbulent fluidizing regime.  

When the FB was initially heated to a desired temperature by the 
temperature controller, a red light was on and an electric heater switch 
tripped off so that the resistance wire stopped working, in the mean time oil 
shale samples prepared were plunged into the bed and subsequently crackles 
can be heard, indicating that severe fragmentation of oil shale particles was 
occurring there. After the bed temperature was maintained for 120 s by the 
automatic temperature controller, power and N2 supply switch would be shut 
off, and shale char and quartz sand particles were poured out and covered 
rapidly and fully with cold quartz sand particles (0.5–0.6 mm) and cooled to 
the normal temperature. At last, the materials were sieved to separate quartz 
sand particles and shale char was obtained and analyzed in the particle size 
distribution. 

Results and discussion 

Figure 2 shows the particle size distribution of shale chars obtained at 
different fluidized bed temperatures, showing that the particle size distribu-
tion of shale chars submits approximately R-R distribution. Figure 3 gives 
the change of the median size of these shale chars with increasing bed 
temperature. Based on the Fig. 2 – Fig. 3, it is concluded that the fluidized-
bed temperature is an important factor of oil shale primary fragmentation, 
and that higher fluidized-bed temperature results in severer fragmentation.  
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           Bed temperature, °C 

Fig. 3. The median size of shale chars with increasing bed temperature. 
 
 
It is usually recognized that primary fragmentation consists of thermal 

stress fragmentation and devolatilization-induced fragmentation. Oil shale 
particles plunged into the fluidized bed are heated rapidly by the scorching 
bed materials in turbulent fluidizing status, which forms a large temperature 
gradient within the particles. On the other hand, due to rapid heating rate, 
much volatile matter released from oil shale particles cannot give off out of 
the particles in a short time, which can build up a high internal pressure 
within the particles. When the stresses caused by both the temperature 
gradient and the internal pressure within the particles are larger than tensile 
failure strength of the oil shale particles, the primary fragmentation can 
occur. When the fluidized-bed temperature is higher and, consequently, the 
volatile matter is formed more and more faster, the yielding stresses within 
the oil shale particles will subsequently increase greatly, and so the primary 
fragmentation happens more easily.  

Compared with the primary fragmentation extent of several coals [9], that 
of Huadian oil shale is not marked, which could be explained by the fact that 
Huadian oil shale has laminated structure and contains large proportions of 
ash (51.61% on air-dry basis). The high proportions of ash are expected to 
maintain the original structure of the oil shale particles [14]. In addition, the 
fragmentation of oil shale particles with laminated stucture follows the self-
affine behavior in the fracture developing and fragmentation mode of 
particles. Figure 4 shows the fragmentation process of one oil shale particle 
with laminated stucture. Such a particle is thin, and fragmentation initiation 
is anticipated at the side faces of the particle, which has the trend of forming 
more oil shale particles with laminated stucture. 

Figure 2 also illustrates that thermal stress fragmentation and devolatiliza-
tion-induced fragmentation have little effect on small-size particles  (<0.6 mm)  
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Fig. 4. The fragmentation process of one oil shale particle with laminated stucture. 
 

 

because of uniform temperature distribution in little time and rapid mass 
transfer during devolatilization. Thus, the fragmentation on small particles 
may be mainly caused by secondary fragmentation and attrition during the 
later period of fluidized bed combustion [15]. It could be said that shale char 
particles (<0.6 mm) change little during the primary fragmentation. 

Neural network model 

Artificial neural networks (ANN) is a new information processing system 
modeling and spreading intellectual function of human. ANN are composed 
of a great deal of simple processing elements connected according to a 
certain rule, and are a non-linearity dynamic system with parallel calcula-
tion, distributed storage, self-adaption, self-learning and self-organization 
[16, 17]. Over 50 different types of neural networks are set up to describe 
and model the biological neural system at different levels [18]. The most 
commonly employed neural networks for modeling steady-state systems is 
the 'feed forward' one, in which information is propagated in one direction 
only [19]. At present, the most extensively adopted algorithm for the 
learning phase is the Back Propagation (BP) one, which is a generalization 
of the steepest descent method [20, 21]. The typical BP network consists of 
an input layer, an output layer and at least one hidden layer, as shown in 
Fig. 5. Each layer contains neurons and each neuron is a simple micro-
processing element which receives and combines signals from many neurons 
via weighted connections and is connected to all the neurons in the next 
layer. 

Suppose a set of training samples 'input-output pair (x, y)' is available, 
each neuron in the hidden layer and output layer first calculates the weighted 
sum of all interconnected signals from the previous layer, and then generates 
an output through its transfer function: 

 

i ii x= ,  ( ), ,j i j i j ih f W i= ∑ ,  ( ), ,k j k j k jo f W h= ∑ ,            (1) 
 

where Wi, j and Wj, k are the weights between two adjacent layers. 
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Fig, 5. Illustration of the structure of a BP network. 
 
 
Next, the problem can be characterized as the process of minimizing the 

following sum of quadratic mean deviation Ep: 
 

( )21
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where P is the number of data pairs. 
The weights are adjusted by back-propagating the error from the output 

layer to the input layer. Herein, the deferred adjustment is used, and the 
adjustment between the (n)th and the (n+1)th iterative is: 
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where the positive constant η is the learning rate. 
In this work, a BP network model was used to analyze the primary 

fragmentation of Huadian oil shale particles operating in the turbulent 
fluidizing bed. The dimensions of input layer and output layer in the BP 
network structure are designed by the object that the particle size distribution 
of Huadian oil shale after primary fragmentation can be predicted at random 
temperature. That is to say, the fluidized-bed temperature is the input part 
and the particle size distribution after primary fragmentation is the output 
part. Thus, the input layer consists of one input neuron corresponding to 
different fluidized-bed temperature, the transfer function of which is tangent 
sigmoid transfer function (tansig). The output layer is composed of 13 output 
neurons corresponding to 13 sieve sizes (0, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, 10, 
12 mm), the transfer function of which is linear transfer function 'purelin'. 
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An important step in the modeling process is the determination of the 
adequate number of neurons in the hidden layer. Using too few neurons 
impairs the neural network and prevents the correct mapping of input to 
output. Using too many neurons impedes generalization and increases 
training time [22]. The optimal number of neurons in the hidden layer was 
determined by varying the number of hidden neurons and observing the root 
mean square error (RMS) between the experimental results and the 
calculated output of the BP network [23]. The number of neurons used for 
the hidden layer is optimized by trial-and-error training assays, and it is 
confirmed that choosing 12 hidden neurons can make the network model 
come to convergence in a short time. The transfer function of the hidden 
neurons is tansig. 

A three-layer network model for primary fragmentation of oil shale 
particles has been set up. The input layer of the model has one neuron, the 
hidden layer has 12 neurons, and the output layer has 13 neurons. The BP 
neural network system can be trained by the following steps, shown in 
Fig. 6. The learning rate of the network model is 10-4. In the first place, the 
actual outputs of the BP network are computed forward from the input layer 
to the output layer. While in the second place, the descent gradient is 
calculated in a back-propagation fashion, which makes it possible to adjust 
the weights in a descent direction. After presentation of the first input-output 
pair, the second pair is processed, and so on. Training is carried out by 
repeatedly presenting the entire set of training patterns until all error signals 
between the desired and actual outputs over all the training patterns are 
minimized and within the preset training precision (10-9 in this work). At 
each iteration, the weights between the hidden and output layers are adjusted 
first. Subsequently, the weights between the input and hidden layers are 
changed. Thus, the knowledge rules of the network model are trained in the 
process of network learning. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Framework of training neural network using BP algorithm. 
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In order to verify the validity of the network model, the experiment data 
at bed temperature of 600, 750 and 1000 °C are used as check-up samples to 
compare with prediction results. The values and errors between them are 
listed in Table 2, showing that the prediction data agree with experimental 
data. 

 

Table 2. Comparison between experimental data and network prediction results 

600 °C 750 °C 1000 °C 
Subject, 

mm 
experi- 

ment data, 
wt% 

predic- 
tion data, 

wt% 
error 

experi- 
ment data, 

wt% 

predic- 
tion data, 

wt% 
error 

experi- 
ment data, 

wt% 

predic- 
tion data, 

wt% 
error 

0 100 100.0002 0.0002 100 100.0004 0.0004 100 100.0005 0.0005 
0.6   90.82 90.8196 –0.0004   90.82 90.8191 –0.0009   90.82 90.8193 –0.0007 
0.8   85.661 85.6607 –0.0003   85.294 85.2932 –0.0008   83.896 83.9954 0.0994 
1   77.225 77.2245 –0.0005   76.977 76.9754 –0.0016   69.083 69.0818 –0.0012 
2   49.253 49.2529 –0.0001   48.309 48.3088 –0.0002   45.653 45.6537 0.0007 
3   33.067 33.0763 0.0093   27.982 27.9821 0.0001   29.595 29.5954 0.0004 
4   18.413 18.4129 –0.0001   18.853 18.8523 0.0007   15.026 15.0266 0.0006 
5   10.901 10.901 0             9.7996 9.7994 –0.0002     8.4662 8.4663 0.0001 
6     5.7473 5.7479 0.0006     5.0145 5.0158 0.0013     5.9353 5.9364 0.0011 
7     3.1345 3.1347 0.0002     2.6359 2.6361 0.0002     2.2962 2.2967 0.0005 
8     1.5403 1.5399 –0.0004     1.1139 1.1128 –0.0011     0.5444 0.5437 –0.0007 

10     0.45 0.4501 0.0001     0.45 0.4502 0.002     0.45 0.4592 0.0092 
12     0 0.0001 0.0001 0    0.0003 0.0003     0 0.0002 0.0002 

Conclusions 

The experiment of the primary fragmentation of Huadian oil shale was 
conducted using a small-scale fluidized-bed reactor, and a Back Propagation 
network model for the primary fragmentation of oil shale has been set up 
through network learning. The prediction results from the BP network model 
agree with experimental data. The main conclusions are given below: 
1) The experiment results indicate that the fluidized-bed temperature is an 

important factor of oil shale primary fragmentation, and that higher 
fluidized-bed temperature results in severer fragmentation. 

2) The particle size distribution of both oil shale and its chars approximately 
submits R-R distribution. The laminated structure and high ash content 
may contribute to the primary fragmentation characteristics of Huadian 
oil shale. 

3) The thermal stress fragmentation and devolatilization-induced fragmenta-
tion have little effect on small oil shale particles. It could be said that 
shale char particles (<0.6 mm) change little during primary fragmenta-
tion. 

4) The Back Propagation network model for oil shale primary fragmentation 
can predict the particle size distribution of shale chars obtained at 
different fluidized-bed temperatures, which provides some references for 
the computation and design of fluidized bed boilers. 
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