headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2020
» 2019
» 2018
Vol. 67, Issue 4
Vol. 67, Issue 3
Vol. 67, Issue 2
Vol. 67, Issue 1
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Morita contexts, ideals, and congruences for semirings with local units; pp. 252–259

(Full article in PDF format) https://doi.org/10.3176/proc.2018.3.09


Authors

Laur Tooming

Abstract

We consider Morita contexts for semirings that have certain local units but not necessarily an identity element. We show that the existence of a Morita context with unitary bisemimodules and surjective maps implies that the two semirings involved have isomorphic quantales of ideals and lattices of congruences.

Keywords

semiring, semimodule, Morita context, ideal, congruence.

References

1. Morita , K. Duality for modules and its applications to the theory of rings with minimum condition. Sci. Rep. Tokyo Kyoiku Daigaku , Sect. A , 1958 , 6 , 83–142.

2. Anderson , F. W. and Fuller , K. R. Rings and Categories of Modules. Graduate Texts in Mathematics 13. Springer Sci. Bus. Media , New York , 1974.
https://doi.org/10.1007/978-1-4684-9913-1

3. Abrams , G. D. Morita equivalence for rings with local units. Commun. Algebra , 1983 , 11 , 801–837.
https://doi.org/10.1080/00927878308822881

4. Ánh , P. N. and Ma´rki , L. Morita equivalence for rings without identity. Tsukuba J. Math. , 1987 , 11 , 1–16.
https://doi.org/10.21099/tkbjm/1496160500

5. Banaschewski , B. Functors into the categories of M-sets. Abh. Math. Sem. Univ. Hamburg , 1972 , 38 , 49–64.

6. Knauer , U. Projectivity of acts and Morita equivalence of semigroups. Semigroup Forum , 1972 , 3 , 359–370.
https://doi.org/10.1007/BF02572973

7. Talwar , S. Morita equivalence for semigroups. J. Aust. Math. Soc. , 1995 , 59 , 81–111.
https://doi.org/10.1017/S1446788700038489

8. Katsov , Y. and Nam , T. G. Morita equivalence and homological characterization of semirings. J. Algebra Appl. , 2011 , 10 , 445–473.
https://doi.org/10.1142/S0219498811004793

9. Sardar , S. K. , Gupta , S. , and Saha , B. C. Morita equivalence of semirings and its connection with Nobusawa G-semirings with unities. Algebra Colloq. , 2015 , 22 , 985–1000.
https://doi.org/10.1142/S1005386715000826

10. Sardar , S. K. and Gupta , S. Morita invariants of semirings. J. Algebra Appl. , 2016 , 15.

11. Gupta , S. and Sardar , S. K. Morita invariants of semirings – II. Asian-European J. Math. , 2018 , 11.

12. Liu , H. Morita equivalence for semirings without identity. Ital. J. Pure Appl. Math. , 2016 , 36 , 495–508.

13. Laan , V. and Márki , L. Morita invariants for semigroups with local units. Monatsh. Math. , 2012 , 166 , 441–451.
https://doi.org/10.1007/s00605-010-0279-8

14. Golan , J. S. Semirings and their Applications. Kluwer Acad. Publ. , Dordrecht–Boston–London , 1999.
https://doi.org/10.1007/978-94-015-9333-5

15. Rosenthal , K. I. Quantales and their Applications. Pitman Research Notes in Mathematics Series 234. Longman Sci. Tech. , London , 1990.

16. Katsov , Y. Tensor products and injective envelopes of semimodules over additively regular semirings. Algebra Colloq. , 1997 , 4 , 121–131.

17. Katsov , Y. Toward homological characterization of semirings: Serre’s conjecture and Bass’s perfectness in a semiring context. Algebra Univers. , 2004 , 52 , 197–214.
https://doi.org/10.1007/s00012-004-1866-0

18. Laan , V. Context equivalence of semigroups. Period. Math. Hung. , 2010 , 60 , 81–94.
https://doi.org/10.1007/s10998-010-1081-z

 
Back

Current Issue: Vol. 69, Issue 2, 2020




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December